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Background: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm
features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these
studies, potentially biasing interpretations in real-world settings.

Objective: This study aims to explore the associations between depression severity and wearable-measured circadian rhythms
while accounting for seasonal impacts.

Methods: Data were sourced from a large longitudinal mHealth study, wherein participants’ depression severity was assessed
biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants’ behaviors, including sleep, step count, and
heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day
Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and
nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association
between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear
mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding
seasonality, and (3) adding an interaction term between season and the PHQ-8 score.

Results: Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48,
IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily
steps (β=–93.61, P<.001), increased sleep variability (β=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: β=0.55,
P=.001; sleep offset: β=1.12, P<.001; M10 onset: β=0.73, P=.003; HR acrophase: β=0.71, P=.001). Notably, the negative
association with daily steps was more pronounced in spring (β of PHQ-8 × spring = –31.51, P=.002) and summer (β of PHQ-8
× summer = –42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed
solely in summer (β of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter
sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak
time by 67.9 minutes during summer.

Conclusions: Our findings highlight significant seasonal influences on human circadian rhythms and their associations with
depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This
study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.

(J Med Internet Res 2024;26:e55302) doi: 10.2196/55302
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Introduction

Depression is a globally prevalent mental disorder with various
negative impacts, including reduced quality of life, disability,
premature mortality, and an increased risk of suicide [1-6].
However, current depression diagnostic methods face several
critical limitations: (1) reliance on individuals’ subjective recall
of past behaviors, which introduces recall bias and neglects
day-to-day fluctuations [7,8]; (2) dependence on skilled and
experienced clinicians [9,10]; and (3) evaluations often delayed
until the mental health issues have progressed to a more severe,
difficult-to-treat stage [11]. Consequently, these limitations
result in the underdiagnosis and delayed treatment for those
with depression [12,13], underscoring the critical need for
objective and timely methods for early detection.

Previous research has found significant links between circadian
rhythms and depression [14,15]. Circadian rhythms are
approximately 24-hour endogenous oscillations, controlled by
the master clock in the suprachiasmatic nucleus of the
hypothalamus, that regulate many aspects of human behavior
and physiology, such as sleep-wake cycles, hormone secretion,
and body temperature [16-18]. Disturbances in circadian
rhythms have been associated with an increased risk of both
physical and mental diseases [15,19-21]. Therefore, tracking
human circadian rhythms is a potential objective method for

early-stage depression identification. Traditional methods for
circadian rhythm assessment involve tracking melatonin in
bodily fluids (such as saliva, urine, or blood samples) in a
constant light environment to prevent external light from altering
melatonin production and biasing the assessment of the circadian
phase [22,23]. However, this traditional approach is expensive,
labor-intensive, and impractical for large cohort studies and
long-term monitoring in real-world settings [24,25].

With the development of ubiquitous sensors and mobile
technologies, wearable devices provide a convenient and
cost-effective way to continuously monitor individuals’ daily
behaviors and physiological signals in real-world settings [26].
Previous mobile health (mHealth) studies have explored the
approximation of human circadian rhythms through
wearable-measured patterns, including sleep-wake cycles,
rest-activity patterns, and circadian rhythms in heart rate (HR)
[24,27-32]. Higher depression severity has been found to be
associated with later sleep onset and offset times, higher sleep
variability, lower amplitude of activity, lower intradaily stability,
and later acrophase of activity and HR [24,27-32].

However, previous mHealth studies have not fully accounted
for seasonal variations, possibly due to their short study
durations. Seasonal changes in sunlight and temperature are
crucial environmental zeitgebers for the internal circadian clock,
impacting human circadian rhythms [33-35]. Prior research has
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reported significant seasonal effects on sleep patterns and
activity levels [36-39]. Ignoring these seasonal impacts may
introduce bias into the associations between depression and
wearable-measured circadian rhythms in real-world settings.
Thus, examining the effects of seasonality on
wearable-measured circadian rhythms and their connections to
depression in a comprehensive longitudinal data set is needed.

The primary aim of this study was to explore the associations
between depression severity and wearable-measured circadian
rhythms, accounting for seasonal effects and investigating
potential variations across seasons. Our secondary aim was to
quantify the seasonal changes in wearable-measured circadian
rhythms within a European mHealth study for depression [40].

Methods

Data Set

Participants and Settings
The data analyzed in this study were sourced from the Remote
Assessment of Disease and Relapse Major Depressive Disorder
(RADAR-MDD) research program, which aimed to investigate
the utility of remote technologies for monitoring depression and
understanding factors that could help predict relapse in MDD
[40]. A total of 623 participants were recruited from 3 study
sites across 3 European countries (United Kingdom, Spain, and
the Netherlands) and followed for up to 2 years [41]. The first
participant was enrolled in November 2017 and the last
participant was enrolled in June 2020, and the data collection
was completed in April 2021. Due to this rolling enrollment
process, participants’ involvement in the study varied from 11
months to 24 months [41]. The RADAR-MDD program used
the RADAR-base open-source platform to concurrently gather
both active (eg, questionnaires) and passive (eg, wearable) data
[42]. Comprehensive details of the study protocol and data set
have been documented in publications [40] and [41],
respectively.

Patient Involvement
The RADAR-MDD protocol was co-developed with a patient
advisory board who shared their opinions on several user-facing
aspects of the study including the choice and frequency of
survey measures, the usability of the study app,
participant-facing documents, selection of optimal participation
incentives, selection and deployment of wearable devices, and
the data analysis plan.

Ethical Considerations
Ethical approvals were obtained from the Camberwell St. Giles
Research Ethics Committee (17/LO/1154) in the United
Kingdom, the Fundacio Sant Joan de Deu Clinical Research
Ethics Committee (CI: PIC-128-17) in Spain, and the Medische
Ethische Toetsingscommissie VUmc (2018.012-
NL63557.029.17) in the Netherlands. All participants provided
their written informed consent. Before the data collection,
participants were assured of their privacy protection, informed
of their right to withdraw at any time without needing to justify
their decision, and allowed to request the deletion of all their
collected data. The data from participants were pseudonymized

and stored in a research database, adhering to the General Data
Protection Regulation. Participants were compensated with £15
(US $19.09)/€20 (US $21.68) for enrollment, £5 (US $6.36)/€10
(US $10.84) for each clinical assessment conducted every 3
months, and an additional £10 (US $12.73)/€10 (US $10.84)
for each qualitative interview they completed. No participant
is identifiable in any images in the manuscript or the
supplementary materials. Further details can be found in the
study protocol and data description papers [40,41].

Measures

Depression Symptom Severity
Participants’ depression symptom severity was measured using
the 8-item Patient Health Questionnaire (PHQ-8) [43] conducted
via mobile phones every 2 weeks. The PHQ-8 comprises 8
questions, and the total score of PHQ-8 ranges from 0 to 24,
indicating increasing severity [43].

Fitbit Data
Participants were asked to wear a Fitbit Charge 2/3 wrist-worn
device throughout the whole study. Participants’ sleep, step
count, and HR were continuously (24/7) measured and recorded.

• Sleep data: Fitbit provided sleep labels (“awake,” “light
sleep,” “deep sleep,” and “rapid eye movement”) along
with the corresponding local clock times every 30 seconds.

• Step data: Participants’ accumulated steps were counted
every minute.

• HR data: Fitbit provided an estimate of HR every 5 seconds,
using an embedded photoplethysmography sensor.
However, technical issues resulted in the absence of some
sample points. To obtain the robust HR trend and align with
step data, we calculated the average HR over 1 minute.

Season
The seasonal division used in this study was based on European
Union astronomical seasons: spring (March 20 to June 20),
summer (June 21 to September 22), autumn (September 23 to
December 20), and winter (December 21 to March 19).

Covariates
In accordance with findings from previous studies [44-46], we
considered several covariates that could potentially influence
participants’ circadian rhythms, including age, gender, and
employment status. Because the COVID-19 pandemic and
relevant restrictions had some significant impacts on individuals’
behavior [47], we introduced a covariate “lockdown” to indicate
the presence of a national lockdown. Furthermore, as the
experience of seasons can be different across countries, the
study site was also considered as a covariate. These covariates
were considered in our statistical analysis.

Feature Extraction

PHQ-8 Interval
To link human circadian rhythms with depression severity, we
extracted circadian rhythm features from each 14-day PHQ-8
interval—specifically, 14 days of Fitbit data preceding a
completed PHQ-8. This feature window aligns with the PHQ-8’s
purpose of evaluating depressive symptom severity over the
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past 2 weeks [43] and is consistent with both the existing
literature in the mHealth field [48-50] and our previous studies

[51,52]. Figure 1 shows an example of a participant’s processed
HR, step, and sleep data in a 14-day PHQ-8 interval.

Figure 1. An example of a participant’s processed heart rate (HR), step, and sleep Fitbit data during the preceding 14 days of an 8-item Patient Health
Questionnaire assessment collected via the RADAR–base platform.

Data Inclusion Criteria
Some Fitbit data were missing in our data set for several reasons,
including device damage, low battery level, and not being worn.
Building on insights from our prior research [53], which
discussed the sufficient days for stable feature calculation, we
focused on 14-day PHQ-8 intervals with at least 8 days having
more than 80% of step and HR data and a sleep recording in
this study. Considering the potential impact of daylight saving
time on individuals’behaviors [54], we excluded the first 14-day
PHQ-8 interval after the time switching [37]. We then extracted
a total of 12 features for reflecting the circadian rhythms from
sleep, step count, and HR data.

Sleep-Wake Rhythms
Fitbit shows promise in identifying sleep-wake status [55,56].
Therefore, to reflect the sleep-wake rhythms, we computed four
features: (1) sleep duration (the mean total sleep time), (2) sleep
variability (the SD of total sleep time), (3) sleep onset (the mean
clock time of falling asleep), and (4) sleep offset (the mean
clock time of wake-up) [51].

Rest-Activity Rhythms
We extracted five nonparametric features from the Fitbit step
count recordings to characterize the stability, fragmentation,

timing, and mean activity level of participants’ rest-activity
rhythms, using the R package nparACT (R Foundation for
Statistical Computing) [57,58]. These features include (1)
intradaily variability of steps (step IV), quantifying the
fragmentation in the rest-activity cycle; (2) interdaily stability
of steps (step IS), quantifying the stability of rest-activity
patterns over a 14-day PHQ-8 interval; (3) L5 onset,
representing the onset of least active continuous 5-hour period;
(4) M10 onset, representing the onset of the most active
continuous 10-hour period; and (5) daily step, representing the
mean of daily total steps in a 14-day PHQ-8 interval [57,58].

Circadian Rhythm in HR
For estimating circadian rhythms in HR, we used cosinor
analysis—fitting a cosine wave to time series behavioral data
through least-squares regression, which has been widely used
in previous mHealth studies [59-61]. Using the R package
cosinor, we performed the cosinor analysis on Fitbit HR data
of each 14-day PHQ-8 interval and extracted the following
parameters: (1) HR MESOR, the midline estimating statistic of
the fitted cosine wave for HR; (2) HR amplitude, the difference
between the peak value and MESOR of the fitted cosine wave
for HR; and (3) HR acrophase, the timing of the HR peak
[59-61].
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Statistical Analysis
Given the longitudinal nature of our data set, that is, each
participant had repeated measurements, we used the linear
mixed-effects model [62] with a participant-specific random
intercept in this study, implemented using the R package
lmerTest. To investigate whether disregarding seasonal effects
biases the associations between depression severity and circadian
rhythms, we established and compared the following 3 models
for each of circadian rhythm features.

• Model 1: A linear mixed-effects model was established to
regress each circadian rhythm feature with only the PHQ-8
score as the independent variable.

• Model 2: Season was included as an independent variable
in addition to the PHQ-8 score, considering seasonal effects
on the circadian rhythms feature.

• Model 3: To further explore potential variations in the
association between depression severity and circadian
rhythms across seasons, an interaction term between the
PHQ-8 score and season was added to the main-effects
model (model 2).

All models were adjusted by covariates: age, gender, study site,
lockdown, and employment status. The equations of these 3
models are outlined as follows:

• Model 1: Circadian rhythm = β1 PHQ-8 + COVs
• Model 2: Circadian rhythm = β1 PHQ-8 + β2 season +

COVs
• Model 3: Circadian rhythm = β1 PHQ-8 + β2 season + β3

PHQ-8 × season + COVs

where COVs represents all covariates mentioned above and
circadian rhythm is one of the wearable-measured circadian
rhythm features.

Likelihood ratio tests were then performed to examine whether
including more variables (season and the interaction term) can
significantly improve the fitting of the regression model. The
Benjamini-Hochberg method was used for the correction of
multiple comparisons [63]. Despite the inclusion of lockdown
as a covariate, we also repeated our analysis on the subset of
data before the COVID-19 pandemic (before January 31, 2020).

Results

Data Summary
In accordance with our data inclusion criteria (see the Methods
section), we analyzed a total of 10,018 PHQ-8 records alongside
corresponding Fitbit data from 543 participants, with an average
of 16 recordings per participant. The cohort selected for this
study had a median age of 48 (IQR 32-58) years, was
predominantly female (n=414, 76.2%), and included 230
(42.4%) employed participants. The distribution of PHQ-8
records was approximately uniform across the seasons, with
winter accounting for 26.9%, spring 23.6%, summer 25.5%,
and autumn 23.9%. We observed that demographics and data
collection varied across study sites, with participants at the
CIBER (Centro de Investigación Biomédica en Red) site in
Spain being older and more likely to be retired, whereas the
King’s College London site in the United Kingdom had the
highest number of participants and PHQ-8 records collected.
Table 1 summarizes participant demographics and PHQ-8
records for the entire cohort, with site-specific comparisons.
Figure 2 visualizes the variations of wearable-measured
circadian rhythm features across a year.

Table 1. A summary of demographics of participants and PHQ-8a questionnaires in the present study, with the site-specific comparisons.b

VUMCe (Netherlands)KCLd (UK)CIBERc (Spain)TotalCharacteristic

114303126543Participants, n

39.50 (26.00-57.75)44.00 (30.00-56.00)53.00 (47.25-60.00)48.00 (32.00-58.00)Age (years), median (IQR)

90 (78.9)233 (76.9)91 (72.2)414 (76.2)Female, n (%)

36 (31.6)164 (54.1)30 (23.8)230 (42.4)Employed, n (%)

21295899199010,018PHQ-8 records, n

639 (30.0)1519 (25.8)541 (27.2)2699 (26.9)Records in winter, n (%)

409 (19.2)1504 (25.5)450 (22.6)2363 (23.6)Records in spring, n (%)

531 (24.9)1508 (25.6)520 (26.1)2559 (25.5)Records in summer, n (%)

550 (25.8)1368 (23.2)479 (24.1)2397 (23.9)Records in autumn, n (%)

68259115442Participants before the COVID-19 pandemic, n

553 (26.0)2650 (44.9)999 (50.2)4202 (41.9)Records before the COVID-19 pandemic, n (%)

aPHQ-8: 8-item Patient Health Questionnaire.
bDue to the private issue, participants’ specific geographic information was not collected.
cCIBER: Centro de Investigación Biomédica en Red.
dKCL: King’s College London.
eVUMC: Vrije Universiteit Medisch Centrum.
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Figure 2. Variations of wearable-measured circadian rhythm features across a year. For each participant, circadian rhythm features were normalized
to reduce the individual differences. HR: heart rate.

Associations Between the PHQ-8 score and
Wearable-Measured Circadian Rhythm Features
The results of models 1 and 2 are displayed in Table 2. The
likelihood ratio tests revealed that incorporating seasonal effects
(model 2) significantly improved the model fit for all 12
circadian rhythm features. Specifically, model 2 demonstrated
significant positive associations of the PHQ-8 score with several
features: sleep duration (β1=0.46, P<.001), sleep onset (β1=0.55,

P=.001), sleep offset (β1=1.12, P<.001), sleep variability
(β1=0.96, P<.001), L5 onset (β1=0.43, P=.04), M10 onset
(β1=0.73, P=.003), and HR acrophase (β1=0.71, P=.001).
Conversely, significant negative associations were observed
with daily step (β1=–93.61, P<.001), step IS (β1=–0.001,
P<.001), HR MESOR (β1=–0.03, P<.001), and HR amplitude
(β1=–0.04, P<.001). However, the effect sizes of PHQ-8 on step
IS, HR MESOR, and HR amplitude are small, according to their
practical meanings.
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Table 2. Effects of PHQ-8a and seasonality on wearable-measured circadian rhythm features estimated by mixed-effects regression models (models

1b and 2c).d

Likelihood ra-
tio test (P val-
ues)

Model 2Model 1Feature

Autumn, β2 (SE)Summer, β2 (SE)Spring, β2 (SE)PHQ-8, β1 (SE)PHQ-8, β1 (SE)

<.001–6.13 (1.31)***–16.63 (1.31)***–6.48 (1.32)***0.46 (0.14)***0.51 (0.14)***Sleep duration

<.001–4.64 (1.60)**7.16 (1.59)***3.68 (1.61)*0.55 (0.17)**0.52 (0.17)**Sleep onset

<.001–8.32 (1.43)***–6.91 (1.43)***–0.25 (1.44)1.12 (0.15)***1.13 (0.15)***Sleep offset

<.001–2.82 (1.35)*–5.29 (1.35)***–8.48 (1.36)***0.96 (0.14)***0.97 (0.14)***Sleep variability

<.001186.16 (60.75)**394.46 (60.81)***–19.21 (61.28)–93.61 (6.41)***–94.71 (6.43)***Daily step

.006–0.021 (0.006)***–0.026 (0.006)***0.001 (0.006)0.0007 (0.0006)0.001 (0.0006)Step IVe

.0070.004 (0.002)–0.006 (0.002)*0.002 (0.002)–0.001 (0.0002)***–0.001 (0.0002)***Step ISf

.002–3.98 (2.12)–3.84 (2.12)–1.10 (2.13)0.43 (0.21)*0.43 (0.21)*L5 onsetg

<.0011.61 (2.44)20.51 (2.43)***11.94 (2.45)***0.73 (0.25)**0.66 (0.25)**M10 onseth

<.0010.04 (0.09)–0.01 (0.09)–0.47 (0.09)***–0.03 (0.01)***–0.03 (0.01)***HRi MESORj

<.0010.39 (0.05)***0.92 (0.05)***0.19 (0.05)***–0.04 (0.01)***–0.04 (0.01)***HR amplitude

<.00124.09 (2.13)***67.94 (2.13)***43.35 (2.15)***0.71 (0.22)**0.51 (0.24)*HR acrophase

aPHQ-8: 8-item Patient Health Questionnaire.
bModel 1: Circadian rhythm = β1 PHQ-8 + COVs.
cModel 2: Circadian rhythm = β1 PHQ-8 + β2 season + COVs, where COVs represents covariates mentioned in the Methods section. Note that winter
is the reference season.
dThe exact P values are reported in the main text.
eIV: intradaily variability.
fIS: interdaily stability.
gL5 onset: the onset of least active continuous 5-hour period.
hM10 onset: the onset of the most active continuous 10-hour period.
iHR: heart rate.
jHR MESOR: midline estimating statistic of the fitted cosine wave for heart rate.
*P<.05, **P<.01, ***P<.001.

The results of model 3, along with the likelihood ratio
comparison with model 2, are summarized in Table 3. We found
that the inclusion of the interaction term between PHQ-8 and
seasonality significantly improved the model fit for daily step,
step IV, step IS, M10 onset, HR MESOR, and HR amplitude.
Notably, the negative association between the PHQ-8 score and
daily step exhibited greater strength in spring (β3 of PHQ-8 ×

spring = –31.51, P=.002) and summer (β3 of PHQ-8 × summer
= –42.61, P<.001) than in winter. Additionally, a significant
positive association between M10 onset and PHQ-8 was
observed exclusively in summer (β3 of PHQ-8 × summer =
1.06, P=.008), with no significant associations observed in other
seasons.
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Table 3. Coefficients, SE, and significancea of PHQ-8b, seasonality, and the interaction term between PHQ-8 and seasons in model 3c for the entire
data set.

Likelihood
ratio test (P
values)

PHQ-8 × autumn,
β3 (SE)

PHQ-8 × sum-
mer, β3 (SE)

PHQ-8 × spring
β3 (SE)

Autumn,
β2 (SE)

Summer,
β2 (SE)

Spring, β2 (SE)PHQ-8,
β1 (SE)

Feature

.500.11 (0.21)–0.04 (0.22)–0.20 (0.22)–7.2
(2.46)**

–16.27
(2.45)***

–4.55 (2.49)0.49
(0.18)**

Sleep duration

.49–0.53 (0.26)*–0.41 (0.26)–0.09 (0.26)0.55 (3)11.14
(2.98)***

4.57 (3.04)0.79
(0.22)***

Sleep onset

.530.15 (0.23)0.04 (0.23)0.27 (0.24)–9.74
(2.68)***

–7.28
(2.67)**

–2.88 (2.71)1.01
(0.20)***

Sleep offset

.26–0.14 (0.22)–0.57 (0.22)**–0.42 (0.22)–1.43
(2.53)

0.19
(2.52)

–4.32 (2.56)1.23
(0.19)***

Sleep variability

<.001–12.66 (9.87)–42.61 (9.95)***–31.51 (10.01)**311.21
(113.92)**

804.05
(113.32)***

289.04 (115.3)*–73.21
(8.55)***

Daily step

<.0010.002 (0.001)0.004 (0.001)***0.002 (0.001)*–0.04
(0.01)***

–0.06
(0.01)***

–0.02 (0.01)–0.001
(0.0008)

Step IVd

<.001–0.0001 (0.0004)–0.001 (0.0004)–0.001 (0.0004)*0.005
(0.004)

–0.001
(0.004)

0.01 (0.005)*–0.001
(0.0003)**

Step ISe

.23–0.11 (0.34)–0.54 (0.35)0.31 (0.35)–2.89
(3.98)

1.26
(3.95)

–4.11 (4.02)0.51
(0.29)

L5 onsetf

.040.21 (0.40)1.06 (0.40)**0.72 (0.41)–0.44
(4.57)

10.33
(4.54)*

4.86 (4.63)0.26
(0.34)

M10 onsetg

.003–0.03 (0.01)–0.01 (0.01)0.01 (0.01)0.28
(0.16)

0.05
(0.16)

–0.57 (0.16)***–0.03
(0.01)*

HRh MESORi

.0010.002 (0.008)0.01 (0.01)–0.02 (0.01)*0.38
(0.1)***

0.87
(0.1)***

0.36 (0.1)***–0.04
(0.01)***

HR amplitude

.750.08 (0.35)0.52 (0.35)0.30 (0.35)23.3
(4)***

62.99
(3.98)***

40.39 (4.05)***0.50
(0.30)

HR acrophase

aThe exact P values are reported in the main text.
bPHQ-8: 8-item Patient Health Questionnaire.
cModel 3: Circadian rhythm = β1 PHQ-8 + β2 season + β3 PHQ-8 × season + COVs, where COVs represents covariates mentioned in the Methods
section. Note that winter is the reference season.
dIV: intradaily variability.
eIS: interdaily stability.
fL5 onset: the onset of least active continuous 5-hour period.
gM10 onset: the onset of the most active continuous 10-hour period.
hHR: heart rate.
iHR MESOR: midline estimating statistic of the fitted cosine wave for heart rate.
*P<.05, **P<.01, ***P<.001.

Seasonal Effects on Wearable-Measured Circadian
Rhythm Features
Our results reveal significant seasonal impacts on various
circadian rhythms, as indicated by the seasonal coefficients in
model 2 (Table 2). Notably, HR acrophase varied significantly
across seasons, delayed by 43.4 minutes in spring (P<.001),
67.9 minutes in summer (P<.001), and 24.1 minutes in autumn
(P<.001) compared with winter (the reference season).

In terms of rest-activity rhythms, compared with winter, summer
was associated with 394.5 more daily steps (P<.001) and 0.03
lower step IV (P<.001), and M10 onset was 20.5 minutes later
(P<.001); autumn was associated with 186.2 more daily steps

(P=.002) and 0.02 lower step IV (P<.001); and spring was
associated M10 onset being 11.9 minutes later (P<.001).

Regarding sleep-wake rhythms, compared with winter, we found
that (1) sleep duration decreased by 6.5 minutes in spring
(P<.001), 16.6 minutes in summer (P<.001), and 6.1 minutes
in autumn (P<.001); (2) sleep onset was 4.6 minutes earlier in
autumn (P=.004), 3.7 minutes later in spring (P=0.02), and 7.2
minutes later in summer (P<.001); (3) sleep offset was 6.9
minutes earlier in summer (P<.001) and 8.3 minutes earlier in
autumn (P<.001); and (4) sleep variability was 8.5 minutes
lower in spring (P<.001), 5.3 minutes lower in summer
(P<.001), and 2.8 minutes lower in autumn (P=.04).
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Site-to-Site Analysis
Results of our subset analyses across 3 study sites are shown
in Tables S1-S3 in Multimedia Appendix 1. Despite a reduction
in sample sizes leading to some nonsignificant coefficients, the
overall direction of associations between the PHQ-8 and
circadian rhythm features remained consistent with the results
in the entire data set. Notably, the seasonal changes in
sleep-related features and HR acrophase are larger in the Spain
site than the sites in the United Kingdom and Netherlands. For
instance, during summer compared with winter, participants
from the Spain site experienced a significant decrease in sleep
duration by 36.6 minutes, whereas participants from the sites
in the United Kingdom and Netherlands experienced reductions
in sleep duration by 18.9 and 8.5 minutes, respectively.
Furthermore, compared with winter, the HR acrophase for

participants in Spain was delayed by 123.2 minutes in summer,
significantly more than the delays of 58.2 minutes in the UK
site and 64.0 minutes in the Netherlands site during summer.

Pre–COVID-19 Subset Analysis
The pre–COVID-19 subset analysis (Table 4) indicated that the
directions and significances of associations between depression
severity and circadian rhythm features were consistent with
results in the entire data set. The seasonal effects on most
circadian rhythm features (except for daily step) were similar
between the entire data set and the pre–COVID-19 subset.
Notably, daily step exhibited larger seasonal fluctuations in the
pre–COVID-19 period. Specifically, compared with winter,
participants in the pre–COVID-19 subset exhibited 657.2,
1096.4, and 321.6 more daily steps in spring, summer, and
autumn, respectively.

Table 4. Coefficients, SE, and significancea of PHQ-8b, seasonality, and the interaction term between PHQ-8 and seasons in model 3c for the pre-COVID
subset.

PHQ-8 × autumn,
β3 (SE)

PHQ-8 × summer,
β3 (SE)

PHQ-8 × spring,
β3 (SE)

Autumn, β2

(SE)
Summer, β2

(SE)
Spring, β2 (SE)PHQ-8, β1

(SE)
Feature

0.11 (0.29)–0.05 (0.31)–0.01 (0.34)–6.88
(3.45)*

–14.86
(3.67)***

–3.01 (3.99)0.97
(0.26)***

Sleep duration

–0.64 (0.39)–0.51 (0.43)–0.25 (0.46)0.58 (4.73)9.84 (5.02)–2.1 (5.46)0.87 (0.36)*Sleep onset

0.07 (0.34)–0.22 (0.36)–0.24 (0.39)–10.04
(4.03)*

–7.6 (4.27)–6.17 (4.65)1.43
(0.31)***

Sleep offset

–0.33 (0.3)–0.89 (0.32)**–0.76 (0.35)*0.62 (3.55)2.29 (3.76)1.94 (4.09)1.47
(0.26)***

Sleep variability

1.49 (12.91)–48.65 (13.99)***–20.45 (15.21)321.63
(155.06)*

1096.36
(164.67)***

657.17
(179.07)***

–71.62
(12.05)***

Daily step

0.0007 (0.0013)0.003 (0.001)*0.004 (0.002)*–0.01 (0.02)–0.03 (0.02)–0.04 (0.02)*–0.001
(0.001)

Step IVd

–0.0002 (0.0005)–0.0007 (0.0006)–0.0003 (0.0006)0.0035
(0.0063)

0.0021
(0.0066)

–0.004 (0.0072)–0.0003
(0.0005)

Step ISe

–0.17 (0.52)–0.2 (0.56)0.4 (0.61)–2.26 (6.22)–6.74 (6.58)–17.84 (7.16)*0.57 (0.45)L5 onsetf

0.07 (0.57)1.22 (0.62)*1.14 (0.67)1.28 (6.84)4.83 (7.25)–7.37 (7.89)0.09 (0.51)M10 onsetg

0.04 (0.02)*0.04 (0.02)*0.01 (0.02)–0.38 (0.23)–0.53
(0.25)*

–0.4 (0.27)–0.08
(0.02)***

HRh MESORi

0.02 (0.01)0.02 (0.01)–0.01 (0.01)0.07 (0.14)0.58
(0.15)***

0.31 (0.17)–0.05
(0.01)***

HR amplitude

0.19 (0.42)0.26 (0.45)1.15 (0.49)*22.2
(5.0)***

68.14
(5.3)***

35.11 (5.77)***0.52 (0.38)HR acrophase

aThe exact P values are reported in the main text.
bPHQ-8: 8-item Patient Health Questionnaire.
cModel 3: Circadian rhythm = β1 PHQ-8 + β2 season + β3 PHQ-8 × season + COVs, where COVs represents covariates mentioned in the Methods
section.
dIV: intradaily variability.
eIS: interdaily stability.
fL5 onset: the onset of least active continuous 5-hour period.
gM10 onset: the onset of the most active continuous 10-hour period.
hHR: heart rate.
iHR MESOR: midline estimating statistic of the fitted cosine wave for heart rate.
*P<.05, **P<.01, ***P<.001.
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Discussion

Primary Findings
Our study, derived from a large European longitudinal mHealth
study focused on depression, revealed significant seasonal
effects on wearable-measured circadian rhythms and their
associations with depression.

One of our key findings is that the associations between
depression severity and certain wearable-measured circadian
rhythms varied across different seasons. Specifically, we found
a stronger negative association between depression and daily
step count during the warmer seasons of spring and summer
compared with winter. Additionally, a significant positive
association was identified between depression severity and the
onset of the most active continuous 10-hour period exclusively
in summer. This may be attributed to the more favorable weather
conditions for outdoor activities in summer [64], which could
increase the observable relationship between rest-activity
rhythms and depression. Furthermore, we found that the
inclusion of seasonal effects can significantly improve the model
fit for all wearable-measured circadian rhythms. These findings
highlight the critical importance of including seasonal effects
in longitudinal mHealth studies.

On adjusting for seasonal effects, we found that higher
depression severity was significantly associated with lower
levels of physical activity (daily step), more irregular activities
(sleep variability and step IS), and later circadian rhythm timings
(sleep onset and offset, M10 onset, and HR acrophase). These
relationships are consistent with prior research. The linkage
between reduced physical activity levels and worsened
depression severity was reported in both survey-based and
mHealth studies [65,66]. The preventive and therapeutic roles
of physical activity against depression have been
well-documented [67,68]. Moreover, there is extensive evidence
linking depression with more irregular daily behaviors, including
increased sleep variability [51,69-71], less stable rest-activity
rhythms [72], and irregular patterns in Bluetooth [52] and GPS
[73] data. The delayed circadian rhythm timings have been
found to be associated with higher depression severity in
multiple data streams, such as sleep recordings [51,69-71],
activity logs [61], and HR recordings [74]. These consistent
findings highlight the close associations between circadian
rhythms and depression severity.

This study also revealed significant seasonal impacts on
circadian rhythms, most notably between summer and winter.
The cohort demonstrated shorter and later sleep patterns,
increased daily step counts, reduced intradaily step variability,
and delayed circadian rhythm timings during summer compared
with winter. Especially, the circadian phase (HR acrophase)
was delayed by 67.9 minutes in summer. These findings mostly

align with previous laboratory and survey-based studies, which
suggested that people tend to sleep longer in winter, possibly
due to the effects of light exposure on melatonin production
[75-78]. Previous studies have similarly observed higher activity
levels [36,38,39], lower intradaily variability [79,80], and
delayed hormone secretion rhythm [81,82] in summer compared
with winter, further supporting our findings.

Conducted on a large cohort over an extended period using 3
wearable data modalities, this study aligned with some previous
survey and laboratory findings, highlighting the precision of
mobile technology in tracking behavioral rhythms. Our findings
suggest that wearable-measured circadian rhythms have the
potential to be digital biomarkers for depression detection.
Furthermore, this study could inform the future design of
seasonal, context-sensitive mHealth interventions, such as
tailored activity recommendations and light exposure therapy.

Limitations
This study has several limitations that may impact its findings
and interpretations. First, the presence of missing data may
introduce bias, as our previous study indicated data compliance
is associated with depression severity and other personal traits
(eg, age) [83]. Second, the specificity of our cohort,
characterized by a history of depression and a predominantly
female composition, may limit the generalizability of our
findings, highlighting the need for validation in more general
populations. Third, while we accounted for national lockdowns
as a covariate in the regression models and conducted analysis
on the pre–COVID-19 subset, the complexities and varied
impacts of COVID-19 necessitate additional validations in the
postpandemic data sets. Fourth, our study relied on PHQ-8
scores as depression labels, which may introduce subjective
biases.

Lastly, while we adjusted for study sites (in different countries)
as a covariate in our regression models and conducted the
site-to-site analyses, the influence of geographical location on
circadian rhythms and their relationship is still needed to be
explored in future research, ideally through the randomized
controlled trials.

Conclusions
Our analysis of longitudinal wearable data from a large cohort
reveals the significant seasonal impact on circadian rhythms
and their associations with depression, emphasizing the
importance of accounting for seasonal variations in longitudinal
mHealth research. Additionally, we found that
wearable-measured circadian rhythms are significantly linked
to depression severity, indicating their potential to be digital
biomarkers for depression detection. These findings enrich our
understanding of the mechanisms and pathology underlying
depression and could inform the future design of mental health
monitoring and interventions.
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