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Abstract

Background: FHIR (Fast Healthcare Interoperability Resources) has been proposed to enable health data interoperability. So
far, its applicability has been demonstrated for selected research projects with limited data.

Objective: This study aimed to design and implement a conceptual medical intelligence framework to leverage real-world care
data for clinical decision-making.

Methods: A Python package for the use of multimodal FHIR data (FHIRPACK [FHIR Python Analysis Conversion Kit]) was
developed and pioneered in 5 real-world clinical use cases, that is, myocardial infarction, stroke, diabetes, sepsis, and prostate
cancer. Patients were identified based on the ICD-10 (International Classification of Diseases, Tenth Revision) codes, and
outcomes were derived from laboratory tests, prescriptions, procedures, and diagnostic reports. Results were provided as
browser-based dashboards.

Results: For 2022, a total of 1,302,988 patient encounters were analyzed. (1) Myocardial infarction: in 72.7% (261/359) of
cases, medication regimens fulfilled guideline recommendations. (2) Stroke: out of 1277 patients, 165 received thrombolysis and
108 thrombectomy. (3) Diabetes: in 443,866 serum glucose and 16,180 glycated hemoglobin A1c measurements from 35,494
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unique patients, the prevalence of dysglycemic findings was 39% (13,887/35,494). Among those with dysglycemia, diagnosis
was coded in 44.2% (6138/13,887) of the patients. (4) Sepsis: In 1803 patients, Staphylococcus epidermidis was the primarily
isolated pathogen (773/2672, 28.9%) and piperacillin and tazobactam was the primarily prescribed antibiotic (593/1593, 37.2%).
(5) PC: out of 54, three patients who received radical prostatectomy were identified as cases with prostate-specific antigen
persistence or biochemical recurrence.

Conclusions: Leveraging FHIR data through large-scale analytics can enhance health care quality and improve patient outcomes
across 5 clinical specialties. We identified (1) patients with sepsis requiring less broad antibiotic therapy, (2) patients with
myocardial infarction who could benefit from statin and antiplatelet therapy, (3) patients who had a stroke with longer than
recommended times to intervention, (4) patients with hyperglycemia who could benefit from specialist referral, and (5) patients
with PC with early increases in cancer markers.

(J Med Internet Res 2024;26:e55148) doi: 10.2196/55148
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Introduction

Electronic health records (EHRs) were developed in the 1970s
and have evolved and grown in usage over the years [1,2]. An
important milestone in the use of routinely collected clinical
data was the publication of Medical Information Mart for the
Intensive Care (MIMIC-III). Now in its fourth version, it was
the first, large, granular publicly available patient-level dataset
and includes more than 50,000 unique intensive care unit
patients [3,4]. While numerous other publicly available intensive
care unit databases have recently been released, the use of
hospital-wide EHR data is strikingly less common [5]. More
recently, implementation of EHRs has been mandated in the
United States and they are the accepted standard in many other
countries [6,7].

Although there have been many improvements in the EHRs,
various challenges using EHR data remain. The data are
large-scale (a large volume), heterogeneous (drawn from
different resources), multimodal (multiple data modalities),
temporal (collected over time), high-dimensional (thousands of
distinct medical events), and often uncurated (not carefully
chosen and thoughtfully organized or presented), poor quality
(rarely subject to data quality audits), sparse (many zero values),
and incomplete (missing values) [8]. Furthermore, not all patient
data are located within a unified EHR. Even within a single
hospital, the information is distributed across many primary
systems, for example, laboratory, pathology, or medication
systems—to name just a few. Within an average hospital, the
number of these primary systems can easily add up to hundreds.

FHIR (Fast Healthcare Interoperability Resources) has been
proposed to unify information exchange. It is a standardized set
of application programming interfaces that enables the secure
and efficient exchange of health care data across platforms and
operating systems [9]. It is rapidly gaining traction in the health
care industry and is being adopted by a growing number of
health care organizations around the world. FHIR has emerged
as the de facto standard for interoperability in health care, such
that it is anchored within the Office of the National Coordinator
for Health Information Technology 21st Century Cures Act
[10].

Using FHIR to exchange medical data may provide potential
benefits in many different areas, such as clinical decision
support, precision medicine, mobile health apps, wearable
devices, big data analytics, and using EHRs for clinical research
[11]. Current reviews demonstrate that its application thus far
is limited to (clinical) research with selected narrow use cases
[12-14].

While FHIR holds the potential to standardize data, various
challenges persist. Most frequently named is the implementation
of FHIR as an application, the complexity of the FHIR standard
(including its nested structure), and the representational state
transfer (RESTful) approach [14]. In particular, the complexity
of the data structure makes it not readily available for processing
and easy access to the end user. Various solutions have been
proposed, including SMART (Substitutable Medical
Applications and Reusable Technologies) on FHIR, which is
gaining momentum [15,16].

In this study, we evaluate the application of FHIR for a
comprehensive analysis across medical disciplines to support
multimodal decision management as part of routine clinical
care. We propose to call this paradigm medical intelligence,
akin to the expression business intelligence, which is defined
as “strategies and technologies used by enterprises for the data
analysis and management of business information [17,18].

We developed a standardized data pipeline using Germany’s
largest FHIR database located at the University Hospital Essen.
Together with department heads and (senior) physicians, we
built and iteratively evaluated intuitive dashboards that provide
health care workers with relevant information in a one-stop,
intuitive format. As a start, we chose 5 common hospital
diseases with a high disease burden, that is, myocardial
infarction (MI), prostate cancer (PC), sepsis, stroke, and
diabetes. To demonstrate clinical use, we iteratively tested and
evaluated the dashboards with real-world data from our hospital.

Methods

FHIR
The resources infrastructure of FHIR forms the basic building
blocks of the standard, representing health care information
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such as patient demographics, medication requests and
administrations, or diagnostic reports. Each resource is defined
in a standard way, with a consistent structure and a set of
standardized elements. FHIR resources are designed to be
modular, meaning that they can be combined in various ways
to represent more complex information or workflows. For
example, a medication order (MedicationRequest in FHIR
terminology) can be linked to a patient resource to indicate who
the medication is prescribed for, and a practitioner resource can
be linked to indicate who prescribed the medication [19]. This
modular design makes it easy to create custom workflows and
exchange information granularly. While FHIR offers many
benefits, implementing and using the standard can still be
challenging, especially when extracting and filtering the stored
data.

FHIR Python Analysis Conversion Kit
The clinical use cases presented technical challenges regarding
the identification, retrieval, clean-up, linkage, and subsequent
distillation of FHIR data. To extract meaningful insights in an
abstract, user-friendly, flexible, and reproducible manner we
developed an open-source, interoperable Python client, and
analysis toolkit for FHIR servers (FHIRPACK [FHIR Python
Analysis Conversion Kit]) [20]. FHIRPACK enables clinicians
and data scientists in finding, querying, and transforming FHIR

resources and generating alternative representations with better
processing properties such as powerful Python data analysis
toolkit (pandas) data frames [21]. These can be used to carry
out data analyses, generate static data visualizations, or
implement dynamic dashboards that support medical processes
such as continuous monitoring or complex, data-hungry research
tasks such as hypothesis generation and statistical verification.

Cohort and Covariates
FHIRPACK was used to access and extract relevant information
from the University Hospital Essen FHIR database with over 2
billion resources. Among these are over 1.4 million unique
patients—constantly growing as the EHR system is in routine
use. Our extraction workflow followed a similar structure for
each use case, starting with the extraction of condition resources
labeled with ICD (International Classification of Diseases)
codes provided by clinicians. Next, patient cohorts were built
using subject references in the observational data. We then
obtained specific patient information through targeted queries
from their respective FHIR resource, such as laboratory values
(Observation), procedures (Procedure), diagnostic reports
(DiagnosticReports), drug administration
(MedicationAdministration), and vital signs (Observation;
Figure 1).

Figure 1. Summary of the cohort building process and outcomes studied. Gray circles indicate patient counts for each use case. CRP: C-reactive protein;
FHIR: Fast Healthcare Interoperability Resources; HBA1c: glycated hemoglobin A1c; ICD: International Classification of Diseases; PSA: prostate-specific
antigen.

To enhance the speed and accuracy of our data evaluation, we
restricted our cohort to a single calendar year (January
1-December 31, 2022). However, due to longer observation
periods required for PC, we included all cases with diagnoses
in 2021 and treatments in 2021 or 2022 for this use case. We
used the FHIRPACK [20] and the Streamlit packages [22] to
implement the dashboards at the point of care (PoC), accessible
to clinicians in a web browser. Furthermore, we leveraged the
same data and analysis processes to prepare the figures found
in this manuscript using Matplotlib, another traditional Python
visualization library. Details on the cohort building and covariate
definitions are available in Multimedia Appendix 1.

Ethical Considerations
This study was carried out in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of the
Medical Faculty of the University of Duisburg-Essen
(22-10881-BO). No informed consent was required as routinely
collected health care data were used.

Results

Cohort Description
We identified a total of 1,302,988 patient encounters in Essen
University Hospital’s FHIR database for 2022 (Figure 1). Based
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on the ICD-10 (International Statistical Classification of
Diseases, Tenth Revision) codes, we identified between 269
(PC) and 7957 (diabetes) newly diagnosed patients across the
5 clinical use cases. All outcomes were derived from medication
prescriptions, procedures, laboratory examinations, or diagnostic
reports. While numerous data points could be reported, we
focused on key indicators derived from clinicians’ inputs
through iterative focus groups. The clinical rationale, research
question, and implications will be discussed for each use case
separately.

MI

Background
An acute MI is an event of heart muscle necrosis caused by
insufficient blood and oxygen supply. The incidence of acute
MI or death is approximately 805,000 people in the United
States alone, and accounts for approximately 20% of all causes
of death [23]. Acute MI is classified based on the presence or
absence of ST-segment elevation (ST elevation MI [STEMI]
vs non–ST elevation MI [NSTEMI]) on electrocardiogram,
while serial troponin levels differentiate a non-ST segment MI
from unstable angina. Treatment includes coronary reperfusion
with percutaneous coronary intervention, intravenous fibrinolytic
therapy, or surgery. Depending on the bleeding risk and other

patient factors, different antithrombotic drug combinations exist
and are recommended in the guidelines. Further management
focuses on risk reduction, including lipid-lowering drugs such
as statins [24].

Clinical Question
How many patients were admitted with a new diagnosis of an
NSTEMI or STEMI, received an interventional coronary
revascularization therapy, and which antithrombotic and
lipid-lowering drugs were prescribed?

Results
We identified 730 patients in 2022 with a diagnosis of acute
MI. Of these, 359 patients were coded as STEMI or received a
coronary intervention (Figure 2). Antiplatelet therapy was started
in 71.6% (257/359), with most being on dual-antiplatelet
therapy, while partly single antiplatelet therapy was administered
in combination with existing anticoagulation therapy (not
shown). Independent of antiplatelet therapy, most patients
received a statin (227/359, 63.2%), with only a minority also
receiving ezetimibe (97/359, 27%). Taken together, 72.7%
(261/359) of patients received guideline-recommended therapy.
Meanwhile, it should be appreciated that additional patients
were considered for therapy, yet not administered due to
contraindications, or received bridging therapy.

Figure 2. Sankey Diagram summarizing the antiplatelet (left bars) and lipid-lowering medications (right bars) prescribed to patients with STEMI or
those receiving an intervention. Most patients not receiving antiplatelet therapy also did not receive lipid-lowering drugs (n=98). STEMI: ST elevation
myocardial infarction.

Clinical Implication
Platelet inhibitors and statins play an important role in the
prevention of MI and mortality. Implementation of a clinical
dashboard highlighting patients not receiving all recommended
therapies can help to initiate these cost-efficient drugs and
substantially improve patient care.

Stroke

Background
Ischemic stroke is a cardiovascular disease estimated to affect
approximately 5.5 million patients across the globe in 2016.

With approximately 116 million disease-adjusted life years lost
globally, it carries a high mortality and morbidity [25]. A stroke
occurs when a circulatory block results in a lack of oxygen
delivery thus resulting in the subsequent death of brain tissue.
In the case of an ischemic stroke, the main treatment is the
resolution of the blood clot, either by drugs or mechanically by
catheterization. The time from symptom onset to the resolution
of the clot is one of the most important predictors of outcomes
and an important indicator of improved patient care [26]. Huge
efforts are made to reduce the time of the rescue chain to a
minimum (“time is brain”). Along this way, the reduction of
the time from presentation in the emergency room to initiation
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of treatment, that is, thrombolysis (“Door to Needle”) or
thrombectomy (“Door to Groin”), is an important contribution
of the intrahospital treatment [26]. Even though the outcome
after acute ischemic stroke is generally assessed after 90 days,
early neurological improvement is a surrogate indicator for a
90-day outcome. It is often defined as the percentage change in
the National Institutes of Health Stroke Scale (NIHSS) score
from baseline to 24 hours thereafter [27].

Clinical Questions
Are there fluctuations in the process quality, as measured by
the waiting time between emergency room arrival and treatment
application from the time of arrival in the emergency room until
treatment? Does the time between the onset of symptoms until

the start of a procedure correlate with early neurologic
improvement?

Results
In the study period, we identified 1277 patients with a stroke
diagnosis treated in the department of neurology, of which 1088
were ischemic and 189 were hemorrhagic. Out of 165 patients
treated with intravenous thrombolysis, 143 (86.7%) received
this therapy within the guideline-recommended time window
of less than 60 minutes (Figure 3). Similarly, we identified 108
patients who received thrombectomy, of which 82 (75.9%) were
within the guideline-recommended time window of 90 minutes.
For both therapies, our cohort of a referral stroke center has a
significant number of patients presenting in an extended time
window and with the need of previous coagulation testing.

Figure 3. (A) Visualization of individual patients’ time from admission to the administration of thrombolysis; green area indicates the recommended
time of 60 minutes and (B) correlation of early neurological improvement with time from symptom onset to needle. (C) Individual patients’ time from
admission to thrombectomy; green area indicates the recommended time of 90 minutes and (D) correlation of early neurological improvement with
time from symptom onset to groin puncture time. NIHSS: National Institutes of Health Stroke Scale.

Furthermore, we correlated the time from symptom onset
(witnessed onset or last known-well time) to intervention with
early neurological improvement (NIHSS score) from 157
patients receiving thrombolysis and 101 receiving thrombectomy
(Figures 3B and 3D). Among the patients receiving
thrombolysis, 63.3% (101/157) displayed a decrease in NIHSS
score (ie, clinical improvement), 15.9% (25/157) showed no
change, and 21.7% (31/157) exhibited an increase in NIHSS
score. Among the patients who received thrombectomy, 63%
(48/76) demonstrated a decrease in NIHSS score, while 7%
(5/76) showed no change, and 30% (23/76) exhibited an increase
in NIHSS score. In total, 25 patients were excluded from the
analysis due to ongoing weaning from mechanical ventilation
after thrombectomy.

Clinical Implications
Monitoring of clinical workflows can identify cases with
longer-than-recommended turnaround times. While many
reasons for delays exist, for example, need of previous
coagulation assessment in patients on oral anticoagulation or
need of perfusion imaging in extended-time windows, and not
all may be modifiable, some can potentially be addressed, and
workflows adjusted. Structured analysis of this data is the first
step for improving the care of future patients.

In all figures, patients who underwent a single therapy (either
thrombolysis in Figures 3A and 3B or thrombectomy in Figures
3C and 3D) are color-coded in blue, and patients who received
a dual therapy (both thrombolysis and thrombectomy) in red.
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Diabetes

Background
Diabetes mellitus is a metabolic disorder with a high disease
burden affecting 540 million people worldwide [28]. In
hospitals, diabetes is one of the most common but undetected
comorbidities increasing the length of stay and risk for
nosocomial complications [29]. Identifying dysglycemia is a
critically necessary step to introduce affected patients to
dedicated in-hospital diabetes management and offer primary
prevention strategies to those with prediabetes [29].

Clinical Question
How many inpatients are affected by dysglycemia and are cases
identified appropriately?

Results
In total, 443,866 serum glucose and 16,180 glycated hemoglobin
A1c (HbA1c) readings from 35,494 unique patients in 2022 were

found. Further, 13,887 (39%) individuals, out of 35,494, were
identified as having at least one pathologic glycemic finding.
Overall, 30.5% (10,835/35,494) of the total cohort were at least
hyperglycemic, while the prevalence of prediabetes and diabetes
was 11.8% (4176/35,494) and 15.8% (5601/35,494; of which
3270 were identified by serum glucose, 941 by HbA1c levels,
and 1390 by both criteria), respectively (Figure 4A). Per
definition, mean serum glucose and HbA1c levels discriminated
patients with normoglycemia from those with dysglycemia with
a rise of mean glucose from 103.1 mg/dL to 112.3 mg/dL and
130.9 mg/dL to 167.1 mg/dL, respectively, and HbA1c from
5.6% to 5.7% and 6% to 7.2%, respectively, in patients with
normoglycemia, hyperglycemia, prediabetes, and diabetes
(Figures 4B and 4D). ICD-10 code documenting case
identification for dysglycemia was found in 44.2%
(6138/13,887) cases among those with biochemically proven
hyperglycemia, prediabetes, or diabetes. Consequently, 55.8%
(7749/13,887) of patients with dysglycemia would not have
been identified by ICD-10 coding alone (Figure 4C).

Figure 4. (A) Proportion of patients fulfilling the biochemical criteria for hyperglycemia (10,835/35,494, 30.5%), prediabetes (4176/35,494, 11.8%),
and diabetes (5601/35,494, 15.8%), based on glucose and HbA1c readings. (C) Of all patients identified with dysglycemia (hyperglycemia, prediabetes,
and diabetes), only 44.2% (6138/13,887) had a documented ICD-10 code for dysglycemia, while 55.8% (7749/13,887) of patients were not coded
accordingly. Comparison of the distribution of (B) serum glucose and (D) HbA1c measurements of patients who do (blue) and do not fulfill the
biochemical criteria of dysglycemia (red). Percentage of patients with biochemically proven dysglycemia with (blue; 6138/13,887, 44.2%) and without
(red; 7749/13,887, 55.8%) a documented ICD-10 code. ICD-10: International Statistical Classification of Diseases, Tenth Revision.

Clinical Implications
A dashboard visualizing in-hospital glucose metabolism data
improves the dysglycemia detection rate. Future automated
communication of identified cases to health care professionals
may improve inpatient outcome by simplifying access by an

algorithm-based referral to specialized diabetes teams as the
first step of a digitalized in-hospital diabetes management
program triggering dedicated diabetes care.
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Sepsis

Background
Sepsis is a clinically heterogeneous syndrome defined by a
dysregulated host response to infection resulting in
life-threatening (multi-)organ dysfunction [30]. Its primary
treatment is the timely administration of broad-spectrum
antibiotics. Meanwhile, with an ever-increasing prevalence of
multi–drug-resistant pathogens, it is paramount to treat as
targeted and shortly as possible, to avoid the selection of further
resistant strains. To this end, hospital-level insights into current
antibiotic use, isolated pathogens, and the prevalence of
multi–drug-resistant pathogens are critical to tailoring antibiotic
practice to local conditions.

Clinical Question
Which antibiotics are currently used in patients with sepsis?
Which pathogens are isolated from urine and blood cultures

and how do the inflammatory biomarkers, that is, C-reactive
protein and procalcitonin, change during therapy?

Results
We identified a total of 1803 patients with a sepsis diagnosis
in 2022. Out of 213 distinct isolated pathogen strains, the top
10 most frequently isolated pathogen included Staphylococcus
epidermidis (773/2672, 28.9%), a frequent contaminant with
low pathogenic potential, followed by Escherichia coli
(479/2672, 17.9%) and Enterococcus faecium (348/2672, 13%)
strains (Figure 5A). Of the 10 most prescribed antibiotic
piperacillin and tazobactam (593/1593, 37.2%), a
broad-spectrum penicillin, followed by carbapenems (219/1593,
13.7%) and glycopeptides (eg, vancomycin, 186/1593, 11.7%)
were most common (Figure 5B). For the clinical dashboard, we
also provide a patient-level view showing the change in
inflammatory markers, isolated pathogens, and antibiotics
prescribed (Figure 5C).

Figure 5. (A) Pie chart of the 10 most common antibiotics prescriptions for patients with a sepsis diagnosis. (B) Distribution of the ten most frequently
isolated microorganisms. (C) Example of a patient-level graph showing changes in the inflammatory markers C-reactive protein (purple), procalcitonin
(blue), isolated pathogens (red icons), and prescribed antibiotics (turquoise bars). CRP: C-reactive protein; PCT: procalcitonin.

Clinical Implications
The dashboard provides a summary of the evolution of
inflammatory markers and antibiotic prescriptions. It can help
to identify changes in the causal pathogens and monitor
antibiotic prescriptions to avoid harmful over- or undertreatment.

PC

Background
PC is the most common solid cancer in men in most of the
Western World [31]. Various treatment options exist to achieve
prolonged disease-free periods and cures. Important predictors
for survival include the Tumor, Node, Metastasis stage and
pathological features (International Society for Urological
Pathology [ISUP] Gleason Grade Groups), which are
summarized as a clinical stage (I-IV) as well as synchronous
versus metachronous metastases. To assist in the diagnosis and

monitor disease progression, prostate-specific antigen (PSA) is
commonly used.

Clinical Questions
What is the current treatment landscape for PC by ISUP grades?
What is the evolution of PSA levels before and after treatments
depending on surgical resection status?

Results
We identified a total of 269 patients with newly diagnosed PC
in 2021 who received treatment between 2021 and 2022. Among
these, localized tumors (T1N0M0) with low ISUP scores were
most common at biopsy. The most common treatment approach
was active surveillance (n=29, 72.5%), followed by surgery
(n=8, 20%; Figure 6A). For 54 patients treated with radical
prostatectomy, PSA values were monitored longitudinally,
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identifying 3 patients with PSA persistence or biochemical recurrence (Figure 6B).

Figure 6. (A) Schematic summary of the Tumor, Node, Metastasis stage, International Society for Urological Pathology grade and therapies received.
The color of the lines represents the International Society for Urological Pathology grades (red=1, blue=2, green=3, purple=4, and yellow=5). (B)
Longitudinal evolution of prostate-specific antigen values for all (n=54) patients treated with radical prostatectomy by pathological resection margins.
Normalization of the temporal axis is achieved by ranking measurements according to their corresponding timestamp, where the average time between
prostate-specific antigen–measurements across patients was found to be 110 days. Zoom-in highlighting cases with rising prostate-specific antigen
values after treatment, indicating biochemical persistence. PSA: prostate-specific antigen.

Clinical Implications
Increases in PSA values after treatment indicate disease relapse
or progression. Especially in the context of easy access to
sensitive PSA tests, earlier detection of biochemical recurrence
is warranted. Identification and monitoring can streamline
treatment approaches, potentially improving patient outcomes
by initiating early salvage therapy. Furthermore, with recent
improvements in staging through molecular imaging with
prostate-specific membrane antigen positron emission
tomography or computed tomography (PSMA-PET/CT) and
novel combination treatment regimens, centralized monitoring
of shifts in routine practice is an essential first step to draw
conclusions about the real-world effectiveness of these
approaches.

Discussion

With the introduction of EHRs, significantly more information
has become available to physicians. Yet, this flood of
information does not automatically result in better care, as
pointedly summarized in the saying, “We are drowning in
information but starved for knowledge” [32]. To address this,
we establish a conceptual “medical intelligence” framework for
leveraging real-world data for clinical monitoring and
decision-making across medical specialties and at the PoC. We
demonstrate the applicability of this flexible conceptual
framework using 5 conditions with a high disease burden and
major causes of hospitalization.

The use cases presented in this paper provide new insights for
clinicians and health care managers. In the MI use case, we
identified patients who did not receive lipid-lowering or
antiplatelet therapy, allowing for an internal review. As for the
PC use case, we detected patients with early increases in PSA
values indicating tumor persistence after therapy with curative
intent. We found higher than recommended use of reserve,
broad-spectrum antibiotics in the sepsis use case. For patients
who had a stroke, we identified some with turnaround times
above guideline-recommended thresholds. Meanwhile, the
diabetes use case highlighted a high prevalence of dysglycemia
and diabetes in the hospital population, while coding for
diabetes—and therefore potential referral rates to
endocrinologists—was significantly lower.

These use cases demonstrate the applicability and benefits of a
unified approach based on the interoperability of FHIR and a
Python library that enables easy access to data. The approach
can be quickly scaled and applied to different types of FHIR
data, providing a foundation for hospitals to truly harness the
power of patient data across departments, specialties, and
locations. It enables easier creation of dashboards that can be
used to monitor key performance indicators, summarize
information for clinicians, support clinical decision-making,
and ultimately facilitate better patient care. By analogy with
business intelligence, where data support business decisions,
our approach demonstrates that data can also support clinical
decisions. We show that our approach can lead to new insights
into patient care, both at the patient and hospital levels.
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While the results presented are descriptive, it is possible to
integrate predictive and artificial intelligence algorithms.
Regardless of the use case and methodological technique, we
believe that a multidisciplinary approach is key, and that
successful deployment and adoption will depend on updated
training for the modern physician. These “new” physicians have
been called “information specialists” [33]. Information
management and processing will become increasingly important
with the increasing complexity and availability of data from
novel diagnostic tools. Our proposed medical intelligence
approach is the first step in closing the implementation gap that
currently hinders clinical progress, since it provides an
interoperable data structure (FHIR) with a publicly available
analysis framework (this paper) [34].

The conceptual framework and implementation show that
validated and highly interdisciplinary knowledge acquisition
from FHIR data is possible. However, several key challenges
remain. First, while FHIR provides a standardized format to
exchange data, it does not dictate the content or structure of the
data itself. To achieve this, FHIR profiles can be leveraged,
which are structured, user-defined, and derived FHIR resources.
However, these are used only infrequently or selectively and
typically not hospital-wide, resulting in residual differences in
how health care organizations store and structure their data.

This can create challenges for interoperability and external
validation of results. Second, the FHIR standard and the data it
allows health care institutions to gather, and store are complex,
thus requiring joint technical and medical expertise to
implement. This can be a barrier to adoption for health care
organizations, particularly smaller ones, that may not have the
in-house expertise to develop their own organizational,
conceptual, and programmatic approaches. Third, the accuracy
and completeness of the data exchanged through FHIR depends
on the quality of the data entered into the primary systems. To
this end, incomplete or incorrect data, as is frequently the case
with ICD codes, may negatively impact analytical results. Most
data exist in an unstructured format that can be accessed through
FHIR but requires significant postacquisition structuring.

This study provides the technical basis for pioneering medical
intelligence for all institutions working with FHIR data and the
results presented are directly applicable to clinical practice.
However, a prospective impact on clinical decision-making
remains to be demonstrated.

In summary, we developed and implemented a conceptual
framework for FHIR data analysis that enables researchers and
clinicians to derive insights from hospital EHR data. This
approach has the potential to enable medical intelligence and
improve clinical care by supporting decision-making at the PoC.
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