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Abstract

Background: Chronic subdural hematoma (CSDH) represents a prevalent medical condition, posing substantial challenges in
postoperative management due to risks of recurrence. Such recurrences not only cause physical suffering to the patient but also
add to the financial burden on the family and the health care system. Currently, prognosis determination largely depends on
clinician expertise, revealing a dearth of precise prediction models in clinical settings.

Objective: This study aims to use machine learning (ML) techniques for the construction of predictive models to assess the
likelihood of CSDH recurrence after surgery, which leads to greater benefits for patients and the health care system.

Methods: Data from 133 patients were amassed and partitioned into a training set (n=93) and a test set (n=40). Radiomics
features were extracted from preoperative cranial computed tomography scans using 3D Slicer software. These features, in
conjunction with clinical data and composite clinical-radiomics features, served as input variables for model development. Four
distinct ML algorithms were used to build predictive models, and their performance was rigorously evaluated via accuracy, area
under the curve (AUC), and recall metrics. The optimal model was identified, followed by recursive feature elimination for feature
selection, leading to enhanced predictive efficacy. External validation was conducted using data sets from additional health care
facilities.

Results: Following rigorous experimental analysis, the support vector machine model, predicated on clinical-radiomics features,
emerged as the most efficacious for predicting postoperative recurrence in patients with CSDH. Subsequent to feature selection,
key variables exerting significant impact on the model were incorporated as the input set, thereby augmenting its predictive
accuracy. The model demonstrated robust performance, with metrics including accuracy of 92.72%, AUC of 91.34%, and recall
of 93.16%. External validation further substantiated its effectiveness, yielding an accuracy of 90.32%, AUC of 91.32%, and recall
of 88.37%, affirming its clinical applicability.

Conclusions: This study substantiates the feasibility and clinical relevance of an ML-based predictive model, using
clinical-radiomics features, for relatively accurate prognostication of postoperative recurrence in patients with CSDH. If the
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model is integrated into clinical practice, it will be of great significance in enhancing the quality and efficiency of clinical
decision-making processes, which can improve the accuracy of diagnosis and treatment, reduce unnecessary tests and surgeries,
and reduce the waste of medical resources.

(J Med Internet Res 2024;26:e54944) doi: 10.2196/54944
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Introduction

Background
Chronic subdural hematoma (CSDH) is a prevalent
neurosurgical pathology, disproportionately affecting
middle-aged and older adults. Epidemiological data indicate
incidence rates of 13.5/100,000, escalating to 58.1/100,000 in
individuals aged ≥65 years [1,2]. Manifestations commonly
include headache, nausea, vomiting, and diplopia, indicative of
elevated intracranial pressure. Diagnosis is generally confirmed
through cranial computed tomography (CT) or magnetic
resonance imaging. Established as a medical condition since
1857, surgical intervention remains a proven, efficacious
treatment modality for CSDH. However, postoperative
recurrence serves as a critical metric for evaluating surgical
success [3]. Such recurrence imposes not only physical suffering
on patients but also accentuates financial burden on families
and health care systems. For patients who are older, have a
history of multiple surgeries, or have other complications, an
accurate predictive tool can help physicians identify these
high-risk patients in advance, allowing for a more precise
treatment and follow-up plan. Each patient with CSDH has a
different condition and clinical background, and thus requires
a personalized treatment plan that can assess the risk of
postoperative recurrence based on the patient’s specific clinical
information (age, sex, medical history, symptoms, signs, and
imaging manifestations). Given the increasing strain on medical
resources, optimizing the allocation and use of medical resources
and improving the operational efficiency of hospitals has
become an important issue. Hence, in the above clinical context,
the development of a predictive tool for postoperative recurrence
risk is integral for informed clinical decision-making and
optimized treatment outcomes, which can bring greater benefits
to both patients and the health care system.

Recent advancements in computer technology have facilitated
the construction of predictive models anchored on clinically
pertinent data. Machine learning (ML) has emerged as a
particularly robust paradigm, capable of delineating complex,
nonlinear relationships between variables and outcomes. A
plethora of studies substantiate the impressive levels of accuracy
and reliability achieved through ML applications [4-7]. This
study uses 4 ML methodologies—convolutional neural networks
(CNNs), support vector machines (SVMs), random forest (RF),
and linear regression (LR)—each enjoying widespread academic
acceptance and demonstrated applicability in predictive research
across various domains, including health care and food sciences
[6,8,9].

By surveying existing literature, it is evident that ML models
integrated with radiomics are garnering increased scholarly

attention [10,11]. Radiomics constitutes a novel approach in
medical image analysis, principally centered on quantitative
feature extraction. This technique transforms medical imagery
into high-dimensional structures, facilitating the comprehensive
analysis of regions of interest (ROIs) in conjunction with
relevant clinical, diagnostic, and prognostic data. A typical
radiomics workflow encompasses stages of image acquisition,
reconstruction, preprocessing and processing, feature extraction,
selection, and eventually, classification or regression modeling
[12]. Although previous research has melded radiomics and ML
for diagnostic and prognostic applications in other medical
specialties such as dermatology, oncology, and cardiology
[13-15], studies targeting CSDH remain comparatively scant.

Objective
The objective of this investigation is to amalgamate ML
algorithms with radiomics and clinical variables for the
construction of a predictive model aimed at gauging the risk of
CSDH recurrence after surgery. The study will rigorously
compare various methodologies and models to identify the most
efficacious predictive framework for CSDH recurrence.

Methods

Ethical Considerations
The retrospective study was approved (approval no
PJ-YX2024-021) by the Ethics Committee of the First Affiliated
Hospital of Anhui Medical University (Anhui Public Health
Clinical Center).

Participants
We compiled clinical and radiological data from patients
diagnosed with CSDH who were treated at the neurosurgery
department of the Second Affiliated Hospital of Anhui Medical
University between May 2012 and May 2022. The inclusion
criteria were as follows: (1) confirmed clinical diagnosis of
CSDH; (2) participants who underwent surgical intervention,
either Burr hole craniostomy or craniotomy; and (3) availability
of comprehensive clinical records, encompassing treatment
histories, preoperative and postoperative imaging examinations,
laboratory analyses, among other pertinent data. Exclusion
criteria included the following: (1) patients who exhibited
symptomatic improvement via pharmacological intervention,
obviating the need for surgical treatment; (2) any history of
prior neurosurgical procedures that could potentially induce
CSDH; and (3) cases with incomplete follow-up data or where
recurrence after surgery was undetermined. Following these
criteria, 133 patients were incorporated into the study, and there
are no missing values for all case data in this study. The process
of patient selection and enrollment is delineated in Figure 1.
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Furthermore, an external validation set was generated by
screening data from 20 patients with CSDH who underwent

treatment at the First Affiliated Hospital of Anhui Medical
University.

Figure 1. Patient selection and enrollment process. CSDH: chronic subdural hematoma.

Clinical Data
Upon a rigorous review of existing literature and consultations
with experienced neurosurgeons, specific data parameters were
established for model construction. These parameters were
extracted from the electronic case files of the participants and
included: patient demographics (age and sex), pertinent clinical
history (smoking or drinking habits, prior medical history,
history of head trauma, and history of antiplatelet or
anticoagulant therapy), preoperative clinical grading based on
the Markwalder Grading Scale (MGS), and duration of
hospitalization. Imaging data encompassed variables such as
the location of the CSDH (unilateral or bilateral), hematoma
classification, preoperative hematoma volume, preoperative
midline shift, postoperative midline improvement, and cranial
CT scans. Subsequent to the follow-up period, 19 patients

exhibited postoperative recurrence. These patients were
bifurcated into 2 cohorts: those with recurrence and those
without recurrence. Clinical indices used in model construction
are elaborated in Table 1. Continuous variables were subjected
to 2-tailed t test analyses and are represented as mean (SD).
Categorical variables were analyzed using chi-square test and
are conveyed as percentages. Statistical analysis was performed
using SPSS Statistics (version 27.0; IBM Corp).

In Textbox 1, we delineate the grading criteria and definitions
associated with the MGS [16]. Initially proposed in the 1980s,
extensive research has validated the MGS as a robust metric for
evaluating postoperative neurological recovery and prognosis
in patients with CSDH. Specifically, a grade of 0 indicates
normal neurological function, grades 1 to 2 signify good
neurological function, and grades 3 to 4 represent poor
neurological function.

J Med Internet Res 2024 | vol. 26 | e54944 | p. 3https://www.jmir.org/2024/1/e54944
(page number not for citation purposes)

Fang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Clinical variables used to construct the model.

P valueRecurrence (n=19)Nonrecurrence (n=114)Variables

.1373.7 (8.3)70.1 (9.4)Age (y), mean (SD)

.50Sex, n (%)

17 (89)91 (79.8)Male

2 (11)23 (20.2)Female

.12Smoking or drinking , n (%)

13 (68)56 (49.1)Yes

6 (32)58 (50.9)No

.10Hypertension , n (%)

11 (58)43 (37.7)Yes

8 (42)71 (62.3)No

.02Cerebral infarction, n (%)

6 (32)11 (9.6)Yes

13 (68)103 (90.4)No

.34History of head trauma, n (%)

10 (53)73 (64.0)Yes

9 (47)41 (36.0)No

.003History of antiplatelet or anticoagulation , n (%)

7 (37)10 (8.8)Yes

12 (63)104 (91.2)No

.004Markwalder Grading Scale, n (%)

0 (0)1 (0.9)0

0 (0)38 (33.3)1

12 (63)56 (49.1)2

7 (37)18 (15.8)3

0 (0)1 (0.9)4

.6414.5 (3.2)14.0 (4.3)Length of stay in hospital (d), mean (SD)

.01CSDHa location, n (%)

13 (68)104 (91.2)Unilateral

6 (32)10 (8.8)Bilateral

.02Classification of hematoma（%）

2 (11)50 (43.9)Homogeneous

1 (5)12 (10.5)Laminar

8 (42)35 (30.7)Separated

8 (42)17 (14.9)Trabecular type

.05127.1 (49.3)103.4 (25.0)Preoperative hematoma volume (mL), mean (SD)

.010.9 (0.3)1.1 (0.3)Preoperative midline shift (cm), mean (SD)

.010.4 (0.2)0.6 (0.2)Postoperative midline improvement (cm), mean (SD)

aCSDH: chronic subdural hematoma.
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Textbox 1. Descriptions of the categories of the Markwalder Grading Scale [16].

Grading score and description

• Grade 0: neurologically normal

• Grade 1: alert and orientated: absence of mild symptoms such as headache, or mild neurological deficit such as reflex asymmetry

• Grade 2: drowsy or disorientated, or variable neurological deficit such as hemiparesis

• Grade 3: stuporous, but responding appropriately to noxious stimuli, several focal signs such as hemiplegia

• Grade 4: comatose with absent motor responses to painful stimuli, decerebrate or decorticate posturing

Image Data
Complementing the comprehensive clinical data set,
preoperative cranial CT scans were acquired for all enrolled
participants. Hematoma images were systematically categorized
into 4 distinct types: homogeneous, laminar, separated, and
trabecular. Representative CT scans for each category are

furnished in Figure 2. This taxonomic approach to hematoma
classification was initially delineated by Nakaguchi et al [17].
Their work posited that hematomas with more irregular
structures correlated with elevated recurrence rates.
Subsequently, this classification schema has been integrated
into a scoring system aimed at assessing recurrence risk [18].
All procured CT images were stored in DICOM format.

Figure 2. Classification of hematoma.

Radiomics
Hematoma segmentation was executed through semiautomatic
techniques using the 3D Slicer open-source software platform
(version 4.10). The ROI, specifically the hematoma, was further
segmented using the PyRadiomics package, an open-source
plug-in available on the 3D Slicer platform (Figure 3). The use
of open-source software enabled the direct computation of 3D
features without the necessity for slice-wise combination or
averaging. A total of 107 radiomic features were manually

extracted from each patient’s CT images. These features were
allocated to 7 distinct feature categories: 18 were first-order
statistics, 14 were shape based, 24 were derived from gray-level
co-occurrence matrices, 16 were derived from gray-level
run-length matrices, 16 were derived from gray-level size-zone
matrices, 5 were derived from neighboring gray tone difference
matrices, and 14 were derived from gray-level dependence
matrices. This conversion from image-based to data-driven
features optimizes the data set for subsequent computational
analyses and research endeavors.
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Figure 3. Hand-delineated regions of interest.

Modeling

Overview
Neuroscientists participated comprehensively in this research,
inclusive of data collection and categorical predictive model
development. To safeguard patient confidentiality and adhere
to the ethical guidelines stipulated by the ethics committee,
patient data were anonymized through numerical coding. This
approach also ensured the clinical applicability of the study’s
findings. We complied with Items of reporting predictive models
in biomedical research in this study (Multimedia Appendix 1).

Four ML algorithms were used for model development: CNN,
SVM, RF, and LR. Hyperparameter tuning was conducted via
a grid search algorithm to optimize model performance. The

main components of the CNN structure include an input layer,
3 convolution-pooling layers, 1 flat layer, 2 fully connected
layers, and 1 output layer. Textboxes 2 and 3 detail the
parameter configurations of the CNN and SVM. The data set
was stratified into a training set, comprising 69.9% (93/133) of
the samples, and a test set accounting for the remaining 30.1%
(40/133). Given the data set’s limited sample size, 5-fold
cross-validation was executed on the training set to ensure
robustness and validity. This cross-validation technique is a
standard practice in ML for its ability to produce reliable
performance metrics, mitigate the risks of overfitting and
underfitting, and assess the model’s generalization capability.
The models were developed using the scikit-learn framework
and implemented in the Python 3.9 programming environment.

Textbox 2. Setting hyperparameters for convolutional neural network.

Hyperparameter and setting

• Activation function: rectified linear unit

• Optimizer: Adam

• Batch size: 64

• Dropout: 0.5

• Loss: binary cross-entropy
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Textbox 3. Setting hyperparameters for support vector machine.

Hyperparameter and setting

• Kernel: radial basis function

• Gamma: 0.01

• C: 50

Input Data Set Selection
Multiple input data set configurations were assessed to optimize
the predictive model. Initial models were constructed using 3
distinct types of data: clinical data, CT images, and radiomics
from the enrolled patient cohort. These data types were then
aggregated in 2 specific combinations to generate models based
on mixed input data, specifically, clinical-CT and
clinical-radiomics features. Furthermore, a composite model
using clinical data, CT images, and histological imaging was
also developed. Comparative analysis of these data set
configurations was performed to identify the algorithms and
input data sets most conducive for predictive modeling.

Feature Selection

Overview

Our evaluation indicated that the SVM model, when configured
with the clinical-radiomics data set, demonstrated superior
predictive efficacy. However, the complexity of the input
variables compromised both the model’s performance and
computational efficiency, thereby not meeting the study’s
predefined objectives. To address this, a feature selection
strategy was used with the principal aim of isolating the most
impactful variables. This was anticipated to enhance model
performance, increase computational efficiency, and minimize
algorithmic complexity. For this task, the recursive feature
elimination (RFE) method was selected, supported by references
[19-21]. Specific steps for the RFE implementation will be
outlined in the subsequent sections.

Initial Feature Subset Evaluation

The composite data set of radiomic and clinical variables serves
as the initial feature subset for the SVM model. Each feature’s
importance is quantified, and the classification accuracy of this
initial feature set is assessed through cross-validation techniques.

Iterative Feature Removal and Recalculation

he least impactful feature is excised from the current feature
subset, creating a modified feature set. This new set is
subsequently input into the SVM model. Feature importance is
recalculated and the modified feature subset’s classification
accuracy is evaluated using cross-validation methods.

Optimizing Feature Selection

The procedure delineated in step 2 is recursively applied until
no features remain in the subset. Through this iterative process,
a total of 15 distinct feature subsets are generated, each
comprising a varying number of features. The feature subset
yielding the highest classification accuracy is identified as the
optimal feature combination for the predictive model.

Clinical Settings and Modeling Background

The clinical settings for our predictive model include the
following: (1) Facility type—it is mainly applied to neurosurgery
wards in general hospitals or neurosurgery specialty hospitals,
which are capable of handling complex neurosurgical
procedures. (2) Size—it is more suitable to be implemented in
large- or medium-sized hospitals because these hospitals usually
have more case data and experience, which is conducive to the
training and validation of the model, and it can be generalized
to smaller hospitals after it passes the clinical practice. The
modeling background of the prediction model includes the
following: (1) data duration—long-term clinical data, covering
relevant case information over the past 10 years, are needed to
ensure the stability and accuracy of the model. (2) Data
characteristics—the data come from multiple sources, including
medical records, imaging studies, and laboratory tests, reflecting
the multiple and complex factors affecting recurrence. (3)
Modeling purpose—to improve the accuracy of recurrence
prediction through ML, help physicians develop more
personalized treatment plans, and optimize the allocation of
hospital resources. In summary, the clinical environment of the
target prediction model is mainly set in the neurosurgical wards
of large- or medium-sized hospitals, and the modeling
background involves long-term clinical data collection and
analysis, aiming to improve prediction accuracy and optimize
the allocation of medical resources.

Results

Overview
The primary objective of this study was to streamline the clinical
application of the predictive model, specifically by enabling
direct input of cranial CT images for generating predictive
outcomes. Contrary to expectations, models using CT images
as the sole input data type demonstrated suboptimal performance
across all evaluation metrics, irrespective of the ML algorithm
used. Moreover, models incorporating both clinical data and
CT images as input data yielded prediction outcomes
significantly inferior to those relying solely on clinical data.
Upon using 3D Slicer for radiological feature extraction from
the CT images, the resultant model performance exhibited
notable improvement. This underscores the inadequacy of
current ML algorithms in directly using CT images for clinical
research; while predictive results can be generated, they remain
unsatisfactory (Figure 4 and Table 2). Consequently, the study
abandoned the notion of using image-based input data. In
contrast, radiomics data are already a distillation and abstraction
of the CT image information, and using the original image as
input again may lead to information redundancy and even
introduce noise, thus affecting the performance of the model.
From the perspective of computational efficiency, direct
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processing of raw CT images usually requires more
computational resources and time, whereas radiomics data, as
a more compact and higher-level feature representation, can
significantly improve the training and prediction speed of the
model. Therefore, in this study, we did not choose to try

radiomics data+CT images as input data for model validation.
Instead, an exploration into the viability of using clinical data,
radiomic features, or a combination thereof as input data sets
was conducted to optimize predictive model performance.

Figure 4. Classification results of different data sets in 4 machine learning models. ACC: accuracy; AUC: area under the curve; CNN: convolutional
neural network; CT: computed tomography; LR: linear regression; RF: random forest; SVM: support vector machine.
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Table 2. Classification results of different data sets in 4 machine learning models.

CT image-clinicalCTa imageClinical-radiomicsClinicalRadiomicsModel

SVMb

57.8654.2787.7984.8282.19Accuracy (%)

62.7556.9186.1382.2985.57AUCc (%)

65.3260.5482.7079.1680.82Recall (%)

CNNd

58.1948.9582.2775.4479.42Accuracy (%)

60.2451.0784.3273.4582.16AUC (%)

62.8554.2979.2376.1876.64Recall (%)

RFe

56.9743.5579.8573.5877.13Accuracy (%)

60.1147.8280.1372.1678.27AUC (%)

58.6346.3177.6274.3773.89Recall (%)

LRf

54.3242.7574.5665.3268.32Accuracy (%)

52.1945.6876.9169.1770.13AUC (%)

55.1347.5468.7663.2865.34Recall (%)

aCT: computed tomography.
bSVM: support vector machine.
cAUC: area under the curve.
dCNN: convolutional neural network.
eRF: random forest.
fLR: linear regression.

Predictive Model Evaluation
This study uses accuracy, AUC, and recall as evaluative metrics
for the predictive models, with corresponding results delineated
in Figure 4. Accuracy serves as a direct indicator of the model’s
consistency in aligning predictive and actual outcomes.
Specifically, accuracy represents the ratio of correctly classified
samples to the overall sample pool, offering both intuitive
understanding and straightforward implementation. It is
principally used to assess the model’s ability to accurately
categorize target variables in the predictive outcomes. However,
accuracy possesses limitations as it exclusively considers the
classification of positive samples, thereby omitting negative
samples. This lack of comprehensiveness limits accuracy’s
capacity to measure the overlap between predicted and true
outcomes. To address this limitation, AUC is incorporated as
it holistically considers both positive and negative samples,
thereby providing a more nuanced evaluation of model
performance. Recall, another metric used, is particularly
pertinent given the study’s objective to predict the recurrence
of CSDH. Recall quantifies the model’s proficiency in accurately
identifying positive samples, focusing on true positive cases. It
is especially vital for this study, as it emphasizes the model’s
ability to correctly predict patient recurrence. Distinct from
accuracy and AUC, recall remains unaffected by the selection
of a decision threshold, rendering it more appropriate for

comparing various models, particularly when the decision
threshold is ambiguous or challenging to ascertain. In summary,
accuracy, AUC, and recall are deployed as multifaceted
evaluative metrics to assess the predictive models constructed
in this study.

In a comprehensive evaluation across all designated metrics—
accuracy, AUC, and recall—the SVM model consistently
outperformed the CNN, RF, and LR models. This was observed
irrespective of the input data set used, be it clinical data,
radiomics features, or a hybrid of both. For models using
radiomics features, SVM demonstrated improvements of 2.77%,
5.06%, and 13.87% in accuracy; 3.41%, 7.3%, and 15.37% in
AUC; and 4.18%, 6.93%, and 15.48% in recall compared to
CNN, RF, and LR models, respectively. Similarly, when clinical
data served as the input, SVM enhanced accuracy by 9.38%,
11.24%, and 19.5%; AUC by 8.84%, 10.13%, and 13.12%; and
recall by 2.98%, 4.79%, and 15.88% in comparison to CNN,
RF, and LR models, respectively. Interestingly, a combination
of clinical and radiomics features as input to the SVM model
resulted in further performance gains: accuracy improved by
5.52%, 7.94%, and 13.23%; AUC by 1.81%, 6%, and 9.22%;
and recall by 3.47%, 5.08%, and 13.94% in comparison to CNN,
RF, and LR models, respectively. These outcomes substantiate
the efficacy of the SVM model in predicting postoperative
recurrence in patients with CSDH. Moreover, it was observed
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that the hybrid input set comprising both clinical and radiomics
data enhanced the performance of the SVM model itself.
Specifically, the accuracy, AUC, and recall were higher by 5.6%
and 2.97%; 0.56% and 3.84%; and 1.88% and 3.54%,
respectively, when compared to SVM models that used either
radiomics features or clinical data as stand-alone inputs. In
conclusion, the SVM model, when constructed based on a fusion
of clinical and radiomics features, exhibited superior predictive
capabilities, making it the optimal choice for this study.

While the SVM model using clinical-radiomics features
demonstrated superior performance, it did not meet our
predefined target of exceeding 90% across key evaluation
metrics. To address this, a feature selection process was
implemented to refine the input variables for the predictive
model. Our analysis identified the top 5 influential variables
impacting postoperative recurrence in patients with CSDH as
history of head trauma, MGS, postoperative midline
improvement, preoperative midline shift, and radiomics features
(Multimedia Appendix 2). History of head trauma is one of the
main factors leading to the formation of CSDH; MGS is used
to assess the severity of CSDH, including hematoma volume,

midline shift, state of consciousness, and other factors;
postoperative midline improvement is an important index for
assessing surgical results and patient’s recovery; preoperative
midline shift reflects the degree of compression of hematoma
on brain tissue, if postoperative midline improvement is poor
or larger midline shift usually indicates a poor prognosis and a
higher risk of recurrence; and radiomics features can provide
detailed information about CSDH, which can help physicians
more accurately assess the disease and predict the risk of
recurrence. These features are valuable in predicting the risk of
recurrence after CSDH and should be emphasized by clinicians
during diagnosis.

Subsequent feature selection experiments, conducted using the
RFE method, indicated an optimal combination of 12 variables
(Figure 5). When variables such as length of stay in hospital,
sex, and age were excluded, the model yielded the highest
performance across accuracy, AUC, and recall, registering
92.72%, 91.34%, and 93.16%, respectively. Consequently, these
12 features were incorporated into the refined SVM model to
yield an optimal predictive tool for assessing the likelihood of
postoperative recurrence in patients with CSDH.

Figure 5. Results of accuracy (ACC), area under the curve (AUC), and recall after selecting the number of features by cross-validation.

External Data Set Validation
To corroborate the reliability and generalizability of the
developed SVM model, an external validation was performed
using clinical-radiomics feature data from 20 patients with
CSDH, sourced from the First Affiliated Hospital of Anhui
Medical University. The inclusion criteria, exclusion criteria,
outcome metrics, and predictors for the data set used for external
validation (including clinical data and preoperative head CT
images) were identical to those for the modeling data set (Table
3). There was no significant difference between the distribution
of significant variables between the model validation data set

and the model development data set when comparing Tables 1
and 3. The obtained data were fed into the 4 preestablished
models, and the outcomes are depicted in Figure 6. The accuracy
metrics for the 4 models (SVM, CNN, RF, and LR) registered
at 90.32%, 84.67%, 81.3%, and 75.78%, respectively. The AUC
outcomes were 91.32%, 86.73%, 82.15%, and 72.16%,
respectively. Recall rates were recorded at 88.37%, 87.12%,
80.01%, and 74.68%, respectively. Across all evaluation
parameters, the SVM model consistently exhibited superior
performance. With context, we found that the SVM model
constructed based on the fusion of clinical and radiomics
features has consistent results in both internal validation and
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external testing, and performs best among the 4 models.
Consequently, these results reconfirm that the SVM model is
the most effective predictive tool for assessing postoperative
recurrence in patients with CSDH, as further substantiated by
this external data set validation.

The data we used for modeling came from the Second Affiliated
Hospital of Anhui Medical University, which mainly serves
local patients, so its medical record data may reflect more of
the disease characteristics and treatment experiences of local

patients. The data used for the external validation of the model
came from the First Affiliated Hospital of Anhui Medical
University, which attracts patients from all over the province
and even the neighboring regions due to the hospital’s reputation
and geographical location. These patients may have different
cultural backgrounds, living habits, and medical needs.
Therefore, the 2 aforementioned hospitals provide a context for
the differences between the internal and external data sets,
ensuring the general applicability of the prediction model.
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Table 3. Clinical variables used to validate the model.

P valueRecurrence (n=3)Nonrecurrence (n=17)Variables

.5268.0 (9.6)72.3 (10.6)Age (y), mean (SD)

.53Sex , n (%)

3 (100)14 (82)Male

0 (0)3 (18)Female

.89Smoking or drinking, n (%)

2 (67)12 (71)Yes

1 (33)5 (29)No

.72Hypertension, n (%)

1 (33)4 (23)Yes

2 (67)13 (77)No

—aCerebral infarction, n (%)

0 (0)0 (0)Yes

3 (100)17 (100)No

.95History of head trauma, n (%)

2 (67)10 (59)Yes

1 (33)7 (41)No

.33History of antiplatelet or anticoagulation , n (%)

1 (33.3)2 (11.8)Yes

2 (66.7)15 (88.2)No

.31Markwalder Grading Scale, n (%)

0 (0)0 (0)0

0 (0)5 (29)1

3 (100)9 (53)2

0 (0)3 (18)3

0 (0)0 (0.0)4

.3811.7 (3.8)14.8 (5.7)Length of stay in hospital (d), mean (SD)

.58CSDHb location, n (%)

3 (100)13 (77)Unilateral

0 (0)4 (23)Bilateral

.11Classification of hematoma, n (%)

0 (0.0)4 (23)Homogeneous

0 (0.0)3 (18)Laminar

1 (33)6 (35)Separated

2 (67)4 (23)Trabecular type

.23126.2 (14.6)105.7 (27.3)Preoperative hematoma volume (mL), mean (SD)

.391.3 (0.2)1.1 (0.4)Preoperative midline shift (cm), mean (SD)

.590.6 (0.3)0.5 (0.3)Postoperative midline improvement (cm), mean (SD)

aNot available.
bCSDH: chronic subdural hematoma.
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Figure 6. Accuracy (ACC), area under the curve (AUC), and recall for the 4 models in the external validation set. CNN: convolutional neural network;
LR: linear regression; RF: random forest; SVM: support vector machine.

Discussion

Principal Findings
In this study, the observed postoperative recurrence rate for
patients with CSDH was 14.3%, a figure that aligns closely with
previously published data, ranging from 5% to 26% [22,23].
This congruence lends credibility to the representativeness of
our data set and suggests that the study’s findings have broad
applicability.

Within the neurosurgical landscape, CSDH has received limited
investigative focus. This is likely due to its relatively high
prevalence and standardized treatment approach, coupled with
its lower mortality risk compared to other neurosurgical
conditions. However, given the global demographic shift toward
an older population, the incidence of CSDH—and consequently,
its recurrence rate—is witnessing a steady uptick. This escalating
trend underscores the need for ongoing research attention, a
need that remains largely unmet.

Using extensive data collection, processing, and iterative model
optimization, we arrived at an SVM model predicated on
clinical-radiomics features that exhibited optimal predictive
performance. The final model not only met our predetermined
efficacy criteria but also carries clinical utility. To our
understanding, this constitutes the inaugural effort to leverage
clinical-radiomics features in tandem with ML methodologies
for the relatively accurate forecasting of postoperative recurrence
in patients with CSDH. Thus, this study paves the way for future
research, offering a novel paradigm for evaluating surgical
outcomes in this patient cohort.

Our review of existing literature reveals that although there are
studies incorporating ML with medical imaging (CT or magnetic
resonance imaging) for clinical applications, the prevailing

approach does not typically leverage raw images for model
construction. Instead, researchers use various software tools or
techniques to extract radiomics features from these images,
upon which subsequent models are built. Consistent with these
findings, our empirical results confirm that predictive models
constructed directly from unprocessed images perform
suboptimally. The limitations are primarily attributable to the
inherent difficulty that traditional ML algorithms face in
extracting key lesion characteristics—such as location, size,
and morphology—from unprocessed CT images. To address
these limitations, we used the open-source software, 3D Slicer,
which offers an array of algorithms for feature extraction,
including edge and corner detection, as well as texture analysis.
By segmenting the ROI and extracting features using 3D Slicer,
we acquired meaningful mathematical attributes, such as
gradient and curvature. This enhanced feature set enabled more
effective computerized analysis of lesions and improved
predictive outcomes. Consequently, we shifted our strategy
from using raw CT images to combining extracted radiomics
features with clinical data for patients with CSDH as input
variables in our model construction. The comparative evaluation
of models developed through 4 ML algorithms (SVM, CNN,
RF, and LR) revealed the superiority of the hybrid data approach
over models built solely on clinical or radiomics data. Further,
a performance matrix based on metrics such as accuracy, AUC,
and recall indicated marked variations among the 4 methods,
with the SVM model outperforming CNN, RF, and LR on all
3 metrics (accuracy: 2.77%, 5.06%, and 13.87%; AUC: 3.41%,
7.3%, and 15.44%; and recall: 4.18%, 6.93%, and 15.48%,
respectively). Therefore, our analysis corroborates the high
reliability of the SVM-based predictive model constructed using
the amalgamated data set.

Our analysis of the reasons for the poor performance of other
models is as follows. (1) Mismatch between data characteristics
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and model complexity: some highly complex models, such as
CNN for deep learning, may encounter overfitting problems
when confronted with data sets that are relatively small or not
rich enough in feature dimensions; this means that the model
performs well on training data, but performs poorly on new,
unseen data. (2) Feature extraction and exploitation capabilities:
while RF and LR have some advantages in dealing with
nonlinear problems and feature selection, they may not be as
good as especially designed algorithms such as SVM with
appropriate kernel functions. (3) Sensitivity to unbalanced data:
models such as RF and LR may be biased toward the majority
class if the positive and negative samples are unevenly
distributed, which is a common problem in medical image
analysis. This may lead to a decrease in the recall of the model
and weak identification of the minority class (recurrent cases
in this study). And the main reason why SVM performs well in
predicting postoperative recurrence in patients with CSDH is
that its principle of maximum interval (SVM improves the
generalization ability of the model by maximizing the interval
between the decision boundary and the support vectors) and the
kernel trick (SVM can map the input space to a
high-dimensional feature space through the kernel function, in
which the nonlinear problem may become linearly differentiable)
provide powerful support for dealing with small samples, high
dimensionality, and unbalanced medical data provide powerful
support.

Our model achieved 90.32% accuracy, 91.32% AUC, and
88.37% recall on an independent external validation set. These
metrics indicate that the model has high accuracy in predicting
postoperative recurrence in patients with CSDH. For
socioeconomic purposes, accurate prediction can reduce
unnecessary examinations and follow-up visits, which can save
a large amount of medical resources every year; accurate
prediction can also help physicians to take interventions in
advance to reduce the incidence of postoperative complications
and readmission rate of patients. This not only reduces patient
suffering but also lowers hospital readmission costs. For
patients, it reduces their burden by decreasing unnecessary
examinations and follow-up visits, and timely interventions
based on the predicted results can help reduce the occurrence
of complications and improve their quality of life; in addition,
through the model prediction, physicians can provide patients
with more personalized treatment plans and care
recommendations, which can improve patients’ satisfaction and
trust. In summary, our model has excellent performance and
significant impact on clinical practice and economic benefits.

As early as 2009, Abouzari et al [24] explored the use of ML
algorithms, specifically artificial neural networks and LR, for
prognosis prediction in patients with CSDH. Given the
technological limitations of that era, these models exhibited low
accuracy and questionable evaluation metrics. However, their
pioneering work served as a catalyst for us to implement
contemporary ML techniques in this research domain.

With respect to postoperative recurrence in patients with CSDH,
extensive studies have been conducted on hematoma staging
using CT imaging. Historically, hematomas were simplistically
categorized into 4 density-based types: low density, isodense,
high density, and mixed density [25]. However, Tsutsumi et al

[26] found no statistically significant difference in postoperative
recurrence rates when using these classifications. Subsequently,
Nakaguchi et al [17] introduced an alternative, more nuanced,
classification—comprising homogeneous, laminar, separated,
and trabecular types—which garnered wide acceptance in the
research community.

In the current investigation, we adhered to this latter
classification scheme when analyzing CT images. Notably, our
data analysis revealed that the “separated” type constituted a
greater fraction of the recurrence group, aligning with prior
research findings. However, the proportion of cases classified
as “trabecular” diverged from existing literature. We hypothesize
that this discrepancy may be attributable to selection bias arising
from our limited data set.

In the realm of CSDH postoperative recurrence, the scholarly
focus has predominantly been on surgical
methodologies—recently emphasizing middle meningeal artery
embolization—patient age, and the administration of antiplatelet
or anticoagulant medications [27-29]. This narrow concentration
likely stems from the ubiquity of CSDH and the established
efficacy of existing surgical treatments, which generally yield
favorable outcomes without posing immediate life-threatening
risks to patients. Consequently, research has largely remained
at the clinical echelon. However, as technological advancements
continue to pervade medical practice, the incorporation of these
innovations not only streamlines clinical operations but also
enhances patient outcomes, thereby advancing the objective of
precision medicine.

In the current investigation, we diverged from the conventional
practice of using either clinical data or imaging histology data
exclusively. Rather, we integrated both data types and, through
comparative analysis, substantiated the superior predictive
performance of combined clinical-radiomics features.
Furthermore, SVM was identified as an efficacious classification
algorithm particularly suited for the unique characteristics of
medical imaging data, which are high-dimensional and often
limited in sample size. SVM achieves classification by
constructing a hyperplane that appropriately segregates distinct
feature sets in medical imaging data, thereby facilitating more
accurate identification and prediction of postoperative recurrence
in patients with CSDH. In addition, SVM exhibits robustness
in mitigating the influence of noise and outliers commonly
present in radiomics features, thus bolstering the reliability of
model predictions.

In the realm of medical research, feature selection predominantly
uses filtering methods, including but not limited to correlation
coefficients, chi-square tests, and mutual information, to identify
variables that highly correlate with the target outcome. Filtering
methods excel in computational efficiency, capable of swiftly
processing large data sets and thereby reducing dimensionality.
These methods also offer adaptability, accommodating
user-defined criteria for application-specific scenarios.

Nevertheless, this study uses RFE in lieu of filtering methods,
and for several substantive reasons: Capability to manage highly
correlated features—filtering methods struggle with the presence
of a multitude of highly correlated variables, a challenge more
effectively navigated by RFE. Distributional assumption
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sensitivity—filtering methods often rest on certain statistical
distribution assumptions (eg, normal, t-distribution), which, if
incorrect, compromise feature selection accuracy. Conversely,
RFE operates independently of such assumptions. Computational
efficiency—contrary to common perception, filtering methods,
while efficient with smaller data sets, may demand substantial
computational resources and time when applied to larger data
sets. RFE, on the other hand, demonstrates superior
computational efficiency in such contexts. Applicability to
nonlinear problems—filtering methods generally rely on linear
models, limiting their efficacy for nonlinear challenges. RFE
exhibits no such constraint. Automated and robust feature
selection—unique to RFE is its ability to automatically discern
the most pertinent feature subset, obviating the need for manual
selection. This automation further minimizes overfitting risks
and enhances model interpretability by focusing on the most
salient features [30,31].

Given these advantages, RFE was selected as the feature
selection methodology for this study.

Upon implementing RFE for feature selection, the predictive
model demonstrated robust performance metrics, including an
accuracy of 92.72%, AUC of 91.34%, and recall rate of 93.16%.
Experimental outcomes identified the top 5 variables influencing
postoperative recurrence in patients with CSDH as follows:
history of head trauma, MGS, postoperative midline
improvement, preoperative midline shift, and radiomics.
Notably, the substantial impact of postoperative midline
improvement and preoperative midline shift on the prognosis
of CSDH has not been highlighted in extant literature.
Consequently, we advocate for the inclusion of these novel
factors in future CSDH studies given their potential clinical
relevance.

In the clinical setting, the specific steps we take to implement
the model prediction function are as follows: (1) integrate the
predictive model into an existing health care information system,
such as an electronic medical record system or medical image
processing software; (2) input data into the system, which
consists of the patient’s medical images and relevant clinical
information; (3) predictive results are presented to the physician
in an easy-to-understand manner, such as a percentage of
probability representation; and (4) regularly update and maintain
the prediction model. This can be done by collecting new clinical
data, optimizing algorithm parameters, or adjusting feature
selection strategies. Through the abovementioned steps, patients
can be provided with personalized treatment plans, reducing
unnecessary tests and surgeries and improving the efficient use
of medical resources. For patients with a higher risk of
recurrence, physicians can take treatment measures earlier, thus
improving the patient’s prognosis. In the event of a discrepancy
between the model prediction and the physician’s judgment,
the physician should first adopt a conservative treatment strategy
to ensure patient safety. For example, patients whose model
predictions are at low risk of recurrence but whom physicians
believe are at higher risk should continue to be closely
monitored and followed up. The physician can then compare
the model predictions with the patient’s actual treatment results
and feed this information back to the model developer. Through
continuous data feedback and model optimization, the predictive

accuracy and generalization ability of the model can be
improved. For now, ML models are only supplementary tools,
and physicians should always make the final decision in
conjunction with their own expertise and experience.

To realize the effective application of predictive models in
clinical practice, we need to establish a stable and reliable data
pipeline. First, we need to collect clinical data from patients
with CSDH, including radiomic features, medical record
information, and surgical records. Then, we need to preprocess
and feature extract the data to feed it into a predictive model.
Next, we need to train and validate the model using ML
algorithms to ensure its predictive accuracy and reliability.
Finally, we need to integrate the predictive model into an
existing health care information system so that it can
automatically receive and process patients’ clinical data and
generate predictions. During the establishment of the data
pipeline, we need to consider the quality, integrity, and security
of the data. We need to ensure the accuracy and consistency of
the data to avoid adverse effects on the predicted outcomes. At
the same time, we need to ensure data security and privacy to
protect patients’ privacy rights.

While our findings hold considerable clinical utility and
prospective applicability, it is imperative to acknowledge the
following limitations of the study: Assumed input and output
data formats—the ML model used in this study is based on a
specific input data format (eg, radiological features and clinical
data extracted via 3D Slicer software) and assumes that these
data are fully representative of the patient’s health status and
subdural hematoma characteristics. However, this assumption
may omit other important biomarkers or unquantified clinical
parameters [19,20], which may have an impact on the predictive
power of the model. The output data format is assumed to be
measured in terms of specific predictive accuracy metrics (eg,
accuracy, AUC, and recall), which may not adequately reflect
the utility and sensitivity of the model in different clinical
settings. Potential pitfalls in interpreting the model—although
the SVM model showed good performance in this study, SVMs
and other ML models are often considered “black-box” models,
in which the model’s decision-making process may not be
transparent, and this lack of interpretability may produce a lack
of trust in settings where the model is used to guide clinical
decision-making. Potential bias of the data used in
modeling—the study was conducted based on a retrospective
data set from a specific health care organization, which may be
subject to selection bias (eg, only patients who received surgical
treatments were included) and informational bias (data records
may not be completely accurate). In addition, due to the
relatively small sample size (133 patients), the complex
relationship between CSDH recurrence and multiple underlying
factors may not have been adequately captured, which may have
affected the model’s ability to generalize and predict accuracy.
Generalizability of the data—although the study was externally
validated, the validation set consisted of only 20 patients from
another health care facility, which may not be sufficient to
comprehensively assess the ability of the model to generalize
across populations and geographical regions. Patient populations
in different regions may have different clinical characteristics,
such as different treatment modalities and different health care
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resources, all of which may affect the generalizability and
accuracy of the model.

Our subsequent research will work to address the above issues.

Conclusions
In this study, we constructed 4 models to predict postoperative
recurrence in patients with CSDH, using ML algorithms and
an amalgamated data set comprising both radiomics attributes
and clinical variables. Comparative evaluation revealed that the

SVM model, using this integrated data set, demonstrated
superior predictive accuracy. The model not only outperforms
previously established methods but also provides a more specific
and comprehensive framework for predicting outcomes. These
predictive findings enable health care teams to refine clinical
decision-making and offer individualized treatment plans.
Moreover, patients can engage in proactive follow-up and
informed participation in their treatment protocols based on
these results. The developed method offers the advantage of
real-time updates and holds considerable clinical implications.
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