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Abstract

Background: Despite the emerging application of clinical decision support systems (CDSS) in pregnancy care and the proliferation
of artificial intelligence (AI) over the last decade, it remains understudied regarding the role of AI in CDSS specialized for
pregnancy care.

Objective: To identify and synthesize AI-augmented CDSS in pregnancy care, CDSS functionality, AI methodologies, and
clinical implementation, we reported a systematic review based on empirical studies that examined AI-augmented CDSS in
pregnancy care.

Methods: We retrieved studies that examined AI-augmented CDSS in pregnancy care using database queries involved with
titles, abstracts, keywords, and MeSH (Medical Subject Headings) terms. Bibliographic records from their inception to 2022 were
retrieved from PubMed/MEDLINE (n=206), Embase (n=101), and ACM Digital Library (n=377), followed by eligibility screening
and literature review. The eligibility criteria include empirical studies that (1) developed or tested AI methods, (2) developed or
tested CDSS or CDSS components, and (3) focused on pregnancy care. Data of studies used for review and appraisal include
title, abstract, keywords, MeSH terms, full text, and supplements. Publications with ancillary information or overlapping outcomes
were synthesized as one single study. Reviewers independently reviewed and assessed the quality of selected studies.

Results: We identified 30 distinct studies of 684 studies from their inception to 2022. Topics of clinical applications covered
AI-augmented CDSS from prenatal, early pregnancy, obstetric care, and postpartum care. Topics of CDSS functions include
diagnostic support, clinical prediction, therapeutics recommendation, and knowledge base.

Conclusions: Our review acknowledged recent advances in CDSS studies including early diagnosis of prenatal abnormalities,
cost-effective surveillance, prenatal ultrasound support, and ontology development. To recommend future directions, we also
noted key gaps from existing studies, including (1) decision support in current childbirth deliveries without using observational
data from consequential fetal or maternal outcomes in future pregnancies; (2) scarcity of studies in identifying several high-profile
biases from CDSS, including social determinants of health highlighted by the American College of Obstetricians and Gynecologists;
and (3) chasm between internally validated CDSS models, external validity, and clinical implementation.
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Introduction

In the United States, maternal and newborn outcomes (eg,
maternal and newborn mortality, preterm birth, low birth weight,
congenital abnormalities, and maternal pregnancy
complications) are worse than in any other resource-rich
countries, where most pregnancy-related mortalities were
preventable [1]. Severe maternal mortality and morbidity has
led to significant short- or long-term consequences impacting
not only pregnant individuals but also their families [2]. Across
the health care system in the nation, there remains a limited
number of pregnant individuals who have access to
evidence-based, comprehensive, and continuous maternity care
[1]. Maternity providers often experience insufficient
information and limited guidelines to inform clinical decisions,
in part because studies conducted in small sample sizes and
pregnant and lactating individuals are generally excluded from
clinical trials [3].

To address the chasm, the clinical decision support system
(CDSS) has broad application in pregnancy care. In the clinical
practice guideline provided by the American College of
Obstetricians and Gynecologists, the role of CDSS was
described along the pathway of patient management and was
increasingly exposed within emerging clinical information
systems such as electronic health records (EHRs) [4]. Because
pregnancy care often is characterized by multi-modal (eg,
clinical findings, medical imaging, noninvasive prenatal testing,
and genomics), multi-specialty data (eg, obstetrics,
maternal-fetal medicine, gynecology, reproductive
endocrinology and infertility, and neonatology), and complex
episodes (ie, from preconception, conception, prenatal,
intrapartum, to post partum), precise and timely clinical decision
support requires a very high level of EHR interoperability and
clinical validity. Within the context of this study, pregnancy
care is defined as the health care for mothers and fetus (or
newborn) before, during, and after the pregnancy. In addition
to improving patient care management, CDSS also plays a
critical role in supporting evidence-based medicine and the
pathway toward a learning health system, in which CDS bridges
the gap between the increasingly available digital data and
much-demanded actionable knowledge for therapeutics and
patient care [5,6].

The recent evolution of artificial intelligence (AI) and
biomedical informatics has led to new frontiers in clinical and
translational medicine. Within the scope of this study, we refer
to the definition of AI in health care broadly as the methods and
applications that create computer systems capable of activities
normally associated with cognitive effort during health care [7].
In the field of CDSS, the application of AI has become
increasingly prominent in augmenting knowledge discovery,
diagnostics support, risk prediction and alarming, chronic

disease management, and patient monitoring, to name a few
[8]. In pregnancy care, emerging research has been exploring
how AI-augmented CDSS would help improve clinical workflow
and patient management. However, with the vast number of
clinical guidelines, diverse AI techniques, and different EHR
systems and functional modules, the spectrum of capacities and
characteristics that such AI-augmented CDSS would further
improve pregnancy care remains unclear. Increasing numbers
of AI studies in obstetrics and gynecology have been
documented [9-11]. However, reviews on how AI-augmented
CDSS were specialized in pregnancy care have been missing.

A systematic review is desperately needed to fill several gaps
in the literature. First, maternal health decisions are
preference-sensitive and have been based on limited
evidence-based guidelines. Such characteristics require the
CDSS to be designed taking into account both the existing
clinical guidelines, carefully selected clinical data, and shared
patient consent or preference data. The dynamic of these CDSS
designing features appears differently in specific episodes and
subspecialty of pregnancy care, which needs to be reviewed
systematically yet no existing reviews have achieved this goal.
Second, recent AI applications on CDSS for pregnancy care
appear to be different from those from one decade ago. Although
the concept of AI remains loosely defined, a systematic review
is desired to update the state-of-the-art AI methodologies applied
to pregnancy-related CDSS, as well as to provide a timely
comparative evaluation against those historical AI technologies.
Third, existing literature reviews of either AI applications or
CDSS in the field of pregnancy care typically focus on the
evaluation of various AI methods and the performance of a
model (eg, prediction, classification, and information retrieval).
No studies have evaluated model performance together with
implementation assessment outcomes of the CDSS in real-world
settings, which has been a missing perspective of the external
validity of CDSS studies.

The objective of this study is to provide a systematic review of
empirical studies that examined AI-augmented CDSS in
pregnancy care and inform challenges and opportunities with
respect to how findings from these emerging studies would
improve pregnancy care using the framework of participants,
interventions, comparisons, outcomes, and study design as
reference. Specifically, we sought to (1) identify specific
maternal care domains where AI-augmented CDSS plays a role,
(2) characterize the current state of CDSS functions, and (3)
identify limitations, challenges, and future opportunities.

Methods

The literature review follows the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) [12]. The
PRISMA checklist can be found in Multimedia Appendix 1.
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Bibliographic Database
We searched 3 electronic bibliographic databases:
PubMed/MEDLINE (including MEDLINE and PubMed Central
[PMC]), Embase, and ACM Digital Library.
PubMed/MEDLINE is a bibliographic database of life sciences
and biomedical topics established by the US National Library
of Medicine at the National Institutes of Health in 1996. PMC
was launched in 2000 as a digital counterpart to the National
Library of Medicine’s extensive print full-text journal collection
of biomedical and life sciences. Some PMC journals are
cross-indexed as MEDLINE journals. Embase is a bibliographic
database focused on pharmacovigilance. The ACM Digital
Library is a comprehensive database of full-text studies and
bibliographic literature covering computing and information
technology including biomedical informatics and digital health.
Licenses for accessing Embase and ACM Digital Library are
obtained by the University of South Carolina.

Search Strategy
In the PubMed/MEDLINE database, we searched strings in the
field of “text word,” which includes “title, abstract, other
abstract, Medical Subject Headings (MeSH) terms, MeSH
subheadings, publication types, substance names, personal name
as subject, corporate author, secondary source, comment or
correction notes, and other terms.” To supply topics
mis-captured or were not precisely captured by “text word,” we
also searched string in [MeSH Major Topic]. We adjusted the
search strategy used for PubMed/MEDLINE in Embase and
ACM Digital Library, respectively. We modified the search
fields for Embase and ACM Digital Library because MeSH is
only used in PubMed/MEDLINE and other fields vary in the

three bibliographic databases. For all databases, the time of
publications was constrained to be including and before 2022.
No language restrictions were applied. The search strings mainly
incorporated pregnancy procedures, pregnancy outcomes, CDSS
models, CDSS methods, and AI methodologies (see Multimedia
Appendix 2 for search strings and criteria). All electronic
reference database searches were completed in January 2023.
The search strategy was developed by two authors (CL and TL)
with consolidated suggestions received from other authors. The
search was performed by NG.

Assessment of Eligibility and Biases
One author (NG) removed duplicates when comparing results
from each database. In this process, PubMed Identifier, titles,
publications, and authors are used to identify unique
publications. To perform the eligibility assessment, we used the
following inclusion criteria: empirical studies that (1) developed
or tested AI methods, (2) developed or tested CDSS or CDSS
components, and (3) focused on pregnancy care. Quality and
biases of studies were assessed based on several criteria adopted
from the Risk of Bias 2 tool [13], which include (1) whether an
empirical study, (2) concentration of “pregnancy care,” “CDSS,”
and “AI” in the study, and (3) completeness, clarify, and validity
of methods, results, and conclusion as reported in the
publications. Full-text manuscripts of potentially relevant studies
were reviewed for final inclusion. Following these criteria, two
reviewers (TL and NG) independently inspected the candidate
publications for inclusion and quality. Discrepancies between
the two reviewers were resolved through discussion with a
senior reviewer (CL) and then, corrected and finalized. Finally,
there were 30 studies selected for review (see Figure 1 for the
study selection process).
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Figure 1. PRISMA flowchart. AI: artificial intelligence; PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses. Note: Under
“Reports excluded,” exclusion reasons #1, #2, and #3 are not mutually exclusive.

Data Synthesis
When authors reported ancillary information (eg, pilot study),
or overlapping outcomes of a study reported from different
publications, we grouped such publications as one single unit
of publications. Two independent coders (CL and TL) extracted
the following study information: authors and year, study
objectives, pregnancy care applications, CDSS functionality,
data source, study population, AI methods, CDSS performance,
validation, and implementation. Pregnancy care applications
included three categories: prenatal and early pregnancy care,
obstetric care, and postpartum care. In the context of this review,

obstetric complications include maternal (eg, perinatal
hemorrhage, ectopic pregnancy, eclampsia, and gestational
diabetes), fetal (eg, miscarriage, stillbirth, and preterm birth),
and neonatal (eg, bradycardia and tachyarrhythmia) adverse
events. In the context of this review, obstetric complications
include maternal (eg, perinatal hemorrhage, ectopic pregnancy,
eclampsia, and gestational diabetes), fetal (eg, miscarriage,
stillbirth, and preterm birth), and neonatal (eg, bradycardia and
tachyarrhythmia) adverse events. Of note, these three categories
are not mutually exclusive. With respect to CDSS functionality,
the definition of clinical prediction refers to the prediction of
adverse clinical events, outcomes, prognosis, and identification
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of at-risk individuals with adverse events. With respect to types
of validation, internal validation refers to the process of
validating the performance of CDSS models inside the context
of the study, by which the context of the study means the model
training set and testing set are partitioned from the same data
set that has a high degree of homogeneity (eg, from the same
clinical site and same patient cohort). Internal validation
emphasizes on validity of model accuracy, as well as the sample
size. External validation refers to the process of validating the
performance of CDSS outside the context of the study, which
empathizes with the generalizability of the internally validated
CDSS to and across other contexts (eg, clinical sites, patient
cohorts, times, and data quality).

Results

Study Selection and Synthesis of Results
We included 206 studies from PubMed/MEDLINE, 101 studies
from Embase, and 377 studies from ACM Digital Library.
Removal of studies hit by exclusion criteria and duplicates
resulted in 30 distinct studies that met the eligibility criteria
(Figure 1). We analyzed the 30 studies and characterized
findings into structured themes, summarized in Table 1. Over
time, the number of relevant studies has increased except for a
dip in 2013-2014 (Figure 2).

J Med Internet Res 2024 | vol. 26 | e54737 | p. 5https://www.jmir.org/2024/1/e54737
(page number not for citation purposes)

Lin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Summary of reviewed studies.

Implementa-
tionValidationPerformanceAIc methodsSampleData source

CDSSb func-
tions

Study objec-

tivesaStudy

NoExternalACCd 53%-
88%

Expert system,
machine learn-
ing

18,890 casesRegistry (multi-
ple sites, United
States)

Risk predictionExpert system
for preterm
birth risk assess-
ment.

Woolery and
Grzymala-
Busse (1994)
[14]

NoInternalN/AeLogistic trans-
formations,

2174 sam-
ples

Scalp blood
samples (single,
England)

Risk predictionDevelop an ex-
pert system for
the interpreta-
tion of fetal

Mongelli et al
(1997) [15]

back-propaga-
tion networks,
decision treescalp acid-base

status.

NoInternalCustomized

(AUCg 0.75)

Rule induction,
logistic regres-
sion, neural net-
work

19,970 pa-
tients

EHRf (single,
United States)

Risk predictionPredict preterm
birth.

Goodwin et al
(2000) [16]

NoInternalROCi 0.73ANNh48,000 casesRegistry (37
sites, Canada)

Risk predictionObstetrical out-
come estima-
tions in low-risk

Catley et al
(2006) [17]

maternal popula-
tions.

YesInternalAUC >0.9ANN, multiple
layer regression

183 infantsEHR (single,
United States)

Risk predictionIdentify predic-
tors to opti-
mizeextubation

Mueller et al
(2006) [18]

decisions for
premature in-
fants.

NoInternalACC 82.5Decision tree200 casesSynthetic casesRisk predictionPredict pregnan-
cy risk based on

Gorthi et al
(2009) [19]

patterns from
clinical parame-
ters.

NoInternalACC 99.3%SVMj1831 sam-
ples

Cardiotocogram
(single, United
States)

Risk predictionAssess fetal
well-being.

Ocak (2013)
[20]

NoInternalACC
91.62%

LS-SVMk2126 sam-
ples

Cardiotocogram
(single, United
States)

Risk predictionDetermine the
fetal state using
cardiotocogram
data.

Yılmaz and
Kılıkçıer (2013)
[21]

NoInternalN/ALatent class
analysis

634 samplesCardiotocogram
(single, United
States)

Diagnostic sup-
port

Examine car-
diotocogram
and support de-
cision-making

Spilka et al
(2014) [22]

(outcomes: diag-
nostics and
risk).

ConceptualInternalANN (ACC
0.79)

Logistic regres-
sion, naïve
bayes, SVM,
ANN

1880 womenRegistry (7
sites, Spain)

Risk predictionDetect the post-
partum depres-
sion during 1st
week after
childbirth. To-

Jiménez-Serra-
no et al (2015)
[23]

ward a mobile
health app.

NoExternalACC
93.61%

Ensemble: k-

NNl, SVM,

2126 sam-
ples

Cardiotocogram
(single, United
States)

Risk predictionAssess fetal
well-being.

Ravindran et al
(2015) [24]

Bayesian net-
work, and

ELMm
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Implementa-
tionValidationPerformanceAIc methodsSampleData source

CDSSb func-
tions

Study objec-

tivesaStudy

ConceptualInternalMLP (ACC
0.91)

MLPn, RBFo149 pregnant
women

EHR (single,
Iran)

Risk predictionPredict pregnan-
cy outcomes
among systemic
lupus erythe-
matosus-affect-
ed pregnant
women.

Paydar et al
(2017) [25]

NoInternalPrecision
0.83

Ontology, NLP4260 recordsUltrasound (sin-
gle, England)

Knowledge rep-
resentation

Develop a
knowledge base
for ectopic
pregnancy.

Dhombres et al
(2017) [26]

NoInternalF 0.71Ontology, NLPN/APubMed (sin-
gle, United
Kingdom)

Knowledge rep-
resentation

Develop a new
knowledge base
intelligent sys-
tem for ultra-
sound imaging.

Maurice et al
(2017) [27]

NoInternalEnsemble
(AUC 0.96)

Ensemble: RF,
SVM, decision
tree, ANN, de-
ferred accep-
tance

552 pregnan-
cies

Registry (sin-
gle, Czechia)

Risk predictionClassify cesare-
an section and
vaginal deliv-
ery. 

Fergus et al
(2018) [28]

NoN/AN/AArden syntaxN/AN/AKnowledge rep-
resentation

Arden Syntax
as medical
knowledge rep-
resentation and
processing lan-
guage in obstet-
rics.

Seitinger et al
(2018) [29]

NoInternalSVM (ACC
0.96)

Multilayer per-
ception, deci-
sion rule, SVM,
Naïve Bayes

406 tubal ec-
topic preg-
nancies

EHR (single,
Spain)

Treatment rec-
ommendation

Develop a deci-
sion support
system to make
suggestions for
early treatment
for ectopic
pregnancy.

De Ramón Fer-
nández et al
(2019) [30]

NoInternalSVM (AUC
0.79)

Logistic regres-
sion, SVM, deci-
sion tree, Naïve

Bayes, XGBp,

RFq

179,980
pregnancies

EHR (single,
United States)

Risk predictionDevelop a post-
partum depres-
sion prediction
model using
EHR.

Wang et al
(2019) [31]

NoExternalAUC 0.67Logistic regres-

sion, LSTMr
65,276 wom-
en

Mobile appDiagnostic sup-
port

Predict pregnan-
cies.

Liu et al (2019)
[32]

NoInternalGBDTu

(AUC 0.74,
95% CI
0.71-0.76)

Gradient Boost-
ing Decision
Tree, Ad-
aBoost, Light-
GBM, logistic
regression, vot-
ing, XGB, deci-
sion tree, RF,
logistic regres-

siont

22,242 sin-
glet pregnan-
cies

EHR (single,
China)

Risk predictionPredict GDMs

and compare
their perfor-
mance with that
of logistic re-
gressions.

Ye et al (2020)
[33]

NoNoN/AOntologyN/AN/AKnowledge rep-
resentation

Develop read-
able and mini-
mal syntax for a
web CDSS for
antenatal care
guidelines.

Silva et al
(2020) [34]
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Implementa-
tionValidationPerformanceAIc methodsSampleData source

CDSSb func-
tions

Study objec-

tivesaStudy

NoExternal
(multi-site,
multi-time)

XGB (C
statistic0.93;
95% CI
0.92-0.93)

RF, XGB, logis-

tic regressiont,
lasso regres-

siont

228,438 de-
liveries

EHR (Consor-
tium on Safe
Labor, United
States)

Risk predictionPredict the risk
of postpartum
hemorrhage at
labor admis-
sion.

Venkatesh et al
(2021) [35]

NoInternalKRALv (F
0.76)

Machine learn-
ing, ontology
embedding

4676 preg-
nancies

EHR (InfoS-
aude, Brazil)

Risk predictionTest embedding
strategies in
performing risk
assessment of
miscarriage be-
fore or during
pregnancy.

Tissot and
Pedebos (2021)
[36]

NoExternalGradient
boosted
(AUC
0.786) 

Gradient boost-
ed, logistic re-

gressiont

303,678 de-
liveries

EHR (15 sites,
United States)

Risk predictionPredict risk of
maternal, fetal,
and neonatal
events.

Escobar et al
(2021) [37]

NoInternalHybrid
LSTM

(MREy 5.65
± 0.4)

LSTM, CNNw,
RF, SVM,

BPNNx, logistic
regression

5759 preg-
nant women 

EHR (single,
China)

Risk predictionConstruct a hy-
brid birth
weight predict-
ing classifier.

Tao et al (2021)
[38]

NoInternalRF (MCCz

0.63)

RF53,000 deliv-
eries

Registry (2
sites, Sweden)

Risk predictionExamine RF to
predict the oc-
currence of hy-
poxic-ischemic
encephalopathy

Mooney et al
(2021) [39]

NoInternalSVM (AUC
0.79)

XBG, Ad-
aBoost, SVM,
RF, logistic re-
gression

565 womenRegistry (sin-
gle, Ireland)

Risk predictionPredict gesta-
tional diabetes
mellitus.

Du et al (2022)
[40]

NoInternalGBTree
(AUC 0.81)

Gradient Boost-
ing Decision
Tree, RF

1647 pa-
tients

Ultrasound (sin-
gle, Germany)

Risk predictionPredict adverse
outcomes in pa-
tients with sus-
pected
preeclampsia

Schmidt et al
(2022) [41]

NoInternalACC >90MLP, RF, SVM10,565
records

Registry (sin-
gle, Spain)

Risk predictionPredict mode of
delivery: cesare-
an section, euto-
cia vaginal de-
livery, instru-
mental vaginal
delivery.

De Ramón Fer-
nández et al
(2022) [42]
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Implementa-
tionValidationPerformanceAIc methodsSampleData source

CDSSb func-
tions

Study objec-

tivesaStudy

NoInternalAUC 0.75SVM2390 womenSurveys,
biospecimen
(10 centers)

Risk predictionPredict sponta-
neous preterm
birth.

Hershey et al
(2022) [43]

aThe outcomes of a CDSS model are given in italics.
bCDSS: clinical decision support system.
cAI: artificial intelligence.
dACC: accuracy.
eNot applicable.
fEHR: electronic health record.
gAUC: area under the receiver operating characteristic curve.
hANN: artificial neural network.
iROC: receiver operating characteristic curve.
jSVM: support vector machine.
kLS-SVM: least-squares support vector machine.
lk-NN: k-nearest neighbors.
mELM: extreme learning machine.
nMLP: multilayer perceptron neural network.
oRBF: radial basis functions neural network.
pXGB: XGBoost.
qRF: random forest.
rLSTM: long-short term memory.
sGDM: gestational diabetes.
tBenchmark algorithm
uGBDT: gradient-boosted decision tree.
vKRAL: knowledge representation and artificial learning.
wCNN: convolutional neural network.
xBPNN: back propagation neural network.
yMRE: mean relative error.
zMCC: Matthew’s correlation coefficient.
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Figure 2. Trends in reviewed studies. Top-left: trends in studies by applications in pregnancy care. Top-right: trends in studies by CDSS function.
Bottom-left: trends in studies by AI methods. Bottom-right: trends in studies by implementation. AI: artificial intelligence; CDSS: clinical decision
support system.

Risk of Bias of Included Studies
Among the 109 studies screened and retrieved, we excluded 22
studies that are not empirically based, 37 studies that pregnancy
care is not the primary focus, and 22 studies that do not develop
or apply AI methods even though AI-related terms are widely
used in the publications. This appraisal process resulted in 30

included studies that have reached a full agreement of quality
between the two reviewers (TL and NG) after discussing with
the third reviewer (CL). See Figure 1 for the numbers of
included and excluded studies from every step. Following the
PRISMA guidelines for assessing the risk of bias of included
studies, we summarized the assessment outcome in Figure 3.

J Med Internet Res 2024 | vol. 26 | e54737 | p. 10https://www.jmir.org/2024/1/e54737
(page number not for citation purposes)

Lin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Traffic light plot for risk-of-bias assessment of included studies.

Study Characteristics: Applications in Pregnancy Care

Prenatal and Early Pregnancy Care
Detection of maternal and fetal risk factors and abnormalities
during prenatal care is most imperative for timely prevention
and intervention (n=17, 57%). Studies using CDSS include the
prediction of gestational diabetes mellitus [33,40], miscarriage
[25,36], and adverse outcomes resulting from preeclampsia [41]
using data from medical history and prenatal care visits. Another

use case of CDSS has applied to ectopic pregnancy which is a
highly risky condition that often leads to maternal morbidity
and mortality [30]. Upon diagnosis, choosing adequate treatment
is an important clinical decision process to avoid further
complications. Machine learning–based CDSS has been tested
to aid providers and patients in better-informed clinical
decision-making following ectopic pregnancy [30].
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Obstetrical Care
As the number of delivering individuals who experience
morbidity and mortality remains high and growing in the United
States and many countries [44], an increasing volume of CDSS
studies have been focusing on developing predictive models
for early detection of adverse events and among at-risk
individuals to be used for timely prevention and intervention
(n=10, 33%). For example, the identification of individuals with
risks of preterm birth can inform advanced medical care
planning at the prenatal and perinatal stages [14,17,43]. These
studies generally included analyses of risk factors contributing
to adverse events, in which machine learning–based studies rely
on feature ranking methods for the identification of data highly
suggestive of adverse outcomes. Another example is
computer-assisted cardiotocography (CTG) trace interpretation
to be used before or at labor and delivery to assist
decision-making [21,22,28].

Postpartum Care
CDSS has been used for estimating the risk of postpartum
hemorrhage at labor and delivery admission (n=3, 30%).
Postpartum hemorrhage has been a major source of maternal
morbidity and mortality, accounting for nearly one-third of
deaths of birthing individuals [45]. Risk estimation used in
clinical practice has been based on stratification of risk factors
documented in individuals’ medical records using parametric
statistic models. In recent CDSS studies, researchers have
attempted to incorporate nuances beyond known risk factors
[35], which may better interpret individual variance, and reduce
possible biases from traditional guidelines and theoretical
frameworks. Another example is risk assessment and screening
of postpartum depression, which is a prevalent postpartum
disorder but is often underdiagnosed [23,31].

Study Characteristics: Functionality of CDSSs

Diagnostic Support
Diagnostic support is a classic function known since early stage
CDSS (n=2, 7%) [46]. In pregnancy care, this function has been
used to assist the interpretation of CTG [21,22,28] because CTG
interpretation is known to be challenging due to a great
interreviewer variability and accurate interpretation of CTG is
important for making proper clinical decisions during prenatal
care and labor and delivery (eg, cesarean vs vaginal delivery).
Diagnostic support has also been applied for the identification
of pregnancy using data collected from mobile devices [32],
which may have value for family planning and preventive care.

Clinical Risk Prediction
Clinical prediction as a CDSS function was not prevalent at the
inception of CDSS and has started to emerge in pregnancy care
recently (n=22, 73%). In pregnancy care, risk prediction tools
were broadly used for early detection of adverse maternal and
fetal events. Such CDSS applications have been centered around
making the prediction of adverse events that may benefit from
early detection of abnormalities for timely prevention and
intervention, such as eclampsia or preeclampsia [37,41],
gestational diabetes [33,40], preterm birth [14,17], miscarriage
[25,36], perinatal hemorrhage [35,37,41], hypoxic-ischemic
encephalopathy [39], low birth weight [38], and postpartum

depression [23,31]. EHR and medical images were often used
for training predictive models. A few studies used data from
mobile apps [23,32].

Therapeutics Recommendation
Mode of delivery is one of the critical clinical decisions to make
during obstetric care (n=2, 7%). Over the last decades, cesarean
delivery has been increasing and was found to be associated
with increased adverse fetal outcomes, as well as adverse
maternal outcomes in subsequential childbirth deliveries [47].
CDSS studies have tested the feasibility of using machine
learning to make suggestions out of three delivery modes:
cesarean section, eutocic vaginal delivery, and instrumental
vaginal delivery [42].

Knowledge Base
CDSS can be categorized as those built on top of a knowledge
base and those independent of a knowledge base (n=4, 13%).
Several studies reported the design and construction of a
knowledge base that can underpin CDSS specialized for
pregnancy care. Among these studies, forms of knowledge base
include Arden syntax and ontology that have been widely used
for formal representation of clinical guidelines and graph-based
medical knowledge, as well as XML as a markdown language
for web and mobile-based CDSS applications. Specifically, in
support of diagnostics and therapeutics recommendations for
ectopic pregnancy, ontology has been used for supporting the
annotation of medical images (eg, ultrasound images for
obstetrics) [26,27]. Arden syntax was used to formalize obstetric
clinical guidelines into a knowledge base that supports CDSS
functions for obstetrics [29]. XML was used for encoding a
knowledge base that underpins mobile app–based CDSS for
prenatal care [34].

Study Characteristics: AI Methodologies and
Applications

Algorithms
Knowledge-base–independent CDSS typically rely on
computational algorithms for learning about decision boundaries,
whereas supervised algorithms (eg, classification, prediction,
and association rules learning) require human-annotated data
as a gold-standard sample whereas unsupervised algorithms
(eg, clustering) find decision boundaries without a gold standard.
In this review, regression-based algorithms were widely used
as benchmark algorithms for clinical prediction tools, diagnostic
support, and therapeutants recommendation. Some of the studies
used parametric linear statistical models as benchmarks [35].
Among supervised machine learning algorithms, support vector
machine, random forest, and gradient boosting algorithms (eg,
XGBoost) have been increasingly adopted and have revealed
outstanding performance. Simple neural networks (eg, multilayer
perceptron and artificial neural networks) have been tested as
well especially when the feature space of the model is not overly
large in dimensionality and complex [17,18,30]. To incorporate
domain-specific medical knowledge and human-curated clinical
guidelines into machine learning models, the embedding of
ontology was also used in the field of pregnancy care [36].
Additionally, there was the application of deep learning
algorithms (eg, convolutional neural network and recurrent
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neural network) in the field which has resulted in trained models
outperforming other algorithms in comparison [38].

Knowledge-base–dependent CDSS typically rely on rules (eg,
if-then and fuzzy logic) or semantic relations (eg, semantic
properties defined by ontology). For example, natural language
processing (NLP) tasks (eg, named entity recognition and
semantic reasoning) were applied in conjunction with the
ontology-based knowledge base for the annotation of medical
images [26,27]. Studies of rule-based algorithm applications
also demonstrated feasibility and robust clinical interpretability
[16]. With respect to knowledge base design in these CDSS
studies, ontology was commonly used to construct a knowledge
base (n=2, 7%) [26,27].

Performance Evaluation
The majority of the studies (n=28, 93%) have tested internal
validation to some degree. Validation frameworks used in
reviewed studies included hold-out, n-fold cross-validation, and
bootstrap or cross-validation. Evaluation metrics used include
metrics derived from the theory of information retrieval such
as precision, recall, F measure, area under the receiver operating
characteristics curve [48]; metrics based on probabilistic
statistics such as mean squared prediction error, Matthew’s
correlation coefficient, chi-square, and c-index; metrics based
on descriptive statistics such as accuracy; and customized
accuracy measures. A few studies used a validation design that
allowed for the computing of confidence intervals [33,35], which
enhanced the interpretative capability of validation. There were
5 (16%) studies that included external validation
[14,24,32,35,37]. These studies generally tested CDSS on
separate data sets including those from different clinical sites.

Treatment With Possible Bias
Biases in data sampling, data processing (eg, tackling missing
data and data normalization), machine learning model training,
validation, and algorithm design could lead to deviated
performance and actionable clinical decisions resulting from
CDSS. Arguably, because clinical decisions are driven by
untrained data, ill-sampled training and validation data are seen
to bias the AI-augmented systems, with which CDSS could be
one example yet such an issue has not been addressed in the
existing studies. Without recognizing or understanding biases
in samples, appropriate imputation methods could also omit or
amplify biases. Upon review, we did not find comprehensive
treatment and discussion for remediating possible biases during
the design and development of CDSS.

Study Characteristics: CDSS Implementation
Implementation of CDSS is the final step to incorporate research
findings into routine practice. Only a few studies have discussed
the conceptual ideas or pilot study design of clinical
implementation of reported CDSS (n=3, 10%) [18,23,25]. For
implementation studies in a clinical setting, web-based data
entry and graphical result presentation were developed for CDSS
implementation [18,25]. One study demonstrated the interface
of CDSS based on an Android system [23]. We did not see a
comprehensive CDSS implementation study design (eg, usability
testing) among the reviewed studies.

Discussion

Principal Findings
Over the last decades, we have seen the proliferation of AI
applications in clinical and translational medicine. However,
AI-augmented CDSS has not been systematically reviewed in
the field of obstetrics and gynecology. In this study, we assessed
related studies by their health care applications, CDSS
functionality, AI methodology, and clinical implementation
with the goal of providing the state of the art of studies, as well
as summarizing advantages, limitations, and possible future
directions. Overall, we have identified 30 related studies
published between 1994 and 2022 with an upward trend. There
was a notable increase starting in 2021. All studies used data
from EHR, registry, and mobile devices, except for those
focusing on developing knowledge bases for CDSS. In the field
of pregnancy care, functions of existing CDSS include
diagnostic support (ie, imaging support), clinical prediction,
therapeutics recommendation, and knowledge base. A list of
traditional CDSS functions was not seen in the field of
pregnancy care, including patient safety (eg, alarms for
drug-drug reactions and allergies and computerized provider
order entry support), clinical management (eg, point-of-care
alters, info button, prompts for vaccination, outreach, and
referral), and administrative management (eg, assisted medical
coding and documentation) [49-51]. Architectures of CDSS
include both knowledge-based dependent and independent, in
which ontology remains a primary form for constructing a
computerizable knowledge base and was often used jointly with
NLP methods (eg, named-entity recognition and semantic
reasoning). For CDSS that do not rely on a knowledge base,
machine learning algorithms (primarily supervised algorithms
including simple neural networks and deep learning) were
widely used for learning from empirical data and producing or
replicating actionable clinical knowledge. Existing studies
confirmed that machine learning, ontology, and NLP have been
increasingly applied for modern CDSS in the field of pregnancy
care.

Clinical Implication
In the review of the potentials and challenges for adopting
existing AI-augmented CDSS for pregnancy care, there are a
few aspects. First, well-performed model in individual
pregnancy episodes. Existing CDSS have been designed to assist
prenatal care, obstetrics, and postpartum care. The majority of
the CDSS studies in prenatal care are focused on assisting in
the prediction of risks such as miscarriage [36], ectopic
pregnancy [26,30], gestational diabetes [33,40], preterm birth
[14,16,17], and severe maternal mortality and morbidity events
during the prenatal episode [41]. Among predictive models of
these CDSS studies, reported predictive performance is generally
well. However, we noticed it is often misinterpreted in these
studies with respect to how early before an adverse event a
CDSS can reliably detect the risk and offer clinical decisions,
which is an obvious obstacle before these CDSS models can be
used for real-world practice. For obstetrics, CDSS studies have
explored ways to assist in making choices of delivery mode
[28,42], extubating decisions for preterm infants [18], and
diagnostics during birth and delivery [22]. These applications
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appear to have the potential to be tested, improved, and adopted
in clinical settings. In postpartum care, CDSS applications have
performed well in assisting postpartum hemorrhage [52] and
depression risk detection [23,31]. When tested and adopted in
the real-world scenario, effective data collection could be
challenging because of limited patient encounters and access
to mobile apps post partum.

Second, model interoperability. Aside from the model
performance, interoperability is critically important as it
determines the degree clinicians can interpret the model output
and make sense of contributing factors and nuances a clinical
decision is driven. The knowledge base of CDSS is the most
interpretable because any knowledge piece is traceable and can
be reasoned in different semantic logics in the knowledge base.
Our review has found four studies that used biomedical ontology
and semantic web techniques to develop the knowledge base
for pregnancy risk, antenatal guidelines, ultrasound imaging,
and ectopic pregnancy [26,27,34,36]. With respect to CDSS
that function as predictive models, two categories were found
among the reviewed studies. Parametric models, including
regression models [16,18,23,31-33,37,38,40,52], decision trees
[15,19,28,31,33,41], shallow neural networks
[17,18,23-25,28,30,42], and expert systems [14,15] can easily
reveal decision logic, determinants of a decision, as well as their
odds to clinicians. Nonparametric models and deep neural
networks [20,21,28,30,38,42,43] have the advantage of taking
large and high-dimensional data but have limited capability of
making the decision mechanism explicit for clinicians.

In addition to the performance and use-case scenario and clinical
interpretability of the CDSS, we noticed that data availability
and quality have been a pertinent hurdle for developing CDSS
for pregnancy care. The reasons are in part unique for pregnancy
care in that during prenatal care data are often generated from
either a hospital, outpatient obstetrics group, or outpatient
laboratory, where different laboratory technologies and protocols
of data entry are the norm. Different initiation time and
frequency of prenatal care is another cause of unevenly collected
patient data for CDSS training, in which individuals with late
initiation and low frequency are generally associated with worse
outcomes [53], yet this inequality is underestimated in the
experimental phase of CDSS design and testing leading to
possible bias when adopting CDSS for real-world practice.

Strengths, Limitations, and Future Directions of
Reviewed Studies

Overview
Our review has revealed several strengths of CDSS design in
pregnancy care. However, because the application of
AI-augmented CDSS in the field remains in its infancy, we also
identified a handful of limitations followed by suggestions and
future directions.

Toward Robustness in Internal Validation Design
The review of existing studies exhibited several strengths in
study design. (1) Existing CDSS experiments were generally
based on real-world EHR, registry, and mobile device data, in
which several studies have used data from multiple clinical
centers [14,17,23,37,39,43]. While the majority of studies have

sufficient sample sizes, a few studies used relatively small
samples (n=100~300, see Table 1). (2) The majority of the
studies (n=19, 73%), excluding knowledge base studies, have
tested multiple AI algorithms for comparison with a selected
benchmark. (3) Cross-validation or hold-out methods were
generally used for internal validation. (4) Majority of studies
measured F score (including precision and recall), area under
the receiver operating characteristics curve, and metrics derived
from probabilistic statistics for model performance. A few
studies used accuracy alone, which may not be sufficient for a
fair performance validation. Overall, reported model
performance is acceptable (see Table 1).

Clinical Plausibility
(1) The majority of studies explicitly stated the clinical use
scenarios for the reported CDSS, where the capability of early
detection of abnormalities, at-risk pregnancies, and risk factors
was generally recognized as the core clinical significance of
CDSS. Yet, due to the scarcity of prenatal data and difficulties
in integrating longitudinal and cross-specialty medical records,
early diagnosis and prediction have been limited by data. (2)
Existing studies also reflected the challenges of diagnostics and
therapeutics recommendations unique to pregnancy care. Such
examples include the interpretation of CTG and choosing a
delivery mode. However, medical interpretation, such as CTG,
historically has shown great variance in interrater reliability,
which warrants repeated evaluations for CDSS design.
Additionally, there have been controversial discussions
pertaining to how the choice of cesarean delivery would
adversely affect the fetus and maternal outcomes for
subsequential pregnancies [47]. No CDSS studies have
considered fetal outcomes or maternal outcomes of subsequential
pregnancies for choosing delivery mode in the present
pregnancy, limiting the clinical value of this line of applications.
With respect to clinical scenarios where AI-augmented CDSS
has been applied, we noticed a dearth of research and testing
sites in emergency care, which could be interesting to explore
in the future.

Possible Biases
The use of CDSS could introduce biases on several occasions.
(1) Similar to AI algorithms applied in general clinical practice,
bias could be from sampling the data to be used for training and
testing CDSS. (2) Racial and ethnic disparities have been well
documented in a wide spectrum of maternal mortality and
morbidity [54]. For example, using patients sampled from
wealthy (or poor) neighborhoods to train a CDSS would
introduce bias in their behavior or clinical decision prediction.
To mediate, design and clinical implementation of CDSS used
for pregnancy care should consider targeted populations and
their social determinants of health (SDOH). American College
of Obstetricians and Gynecologists has made recommendations
for patient screenings to enhance the inclusion of SDOH, avoid
stereotyping, acknowledge various forms of racial or ethnic
discrimination, and improve clinical decision-making that
addresses SDOH [55]. However, existing studies have not
included the aforementioned considerations and strategies to
reduce biases, which are warranted to be set as future directions.
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External Validation and Implementation
Despite brief discussions around conceptual ideas, external
validation and implementation were rare in the reviewed CDSS
studies. Without external validation, the clinical usability of
these CDSS when generalized to different patient cohorts, health
care systems, and times remains undertested. Challenges for
external validation and implementation include substandard
interoperability of CDSS models and clinical information
systems where a CDSS could be implemented. Additionally,
the implementation of CDSS would require organizational
commitment, localized workflow, usability testing, and staff
training to be successful [56]. Because of the proliferation of
machine learning for CDSS, the generalizability of machine
learning models has become a new challenge. Future directions
are suggested to address these identified knowledge gaps and
challenges.

Limitations of This Study
This review has limitations. Our search strategy is mainly based
on keywords and MeSH terms, which may not be comprehensive
for capturing CDSS studies that did not explicitly use
CDSS-related terminologies. Because the notion of CDSS is
often loosely defined, we recognize it as a limitation to eligibility
criteria in this review. Despite limitations, our results are timely

and pertinent which could be used to guide evidence-based
clinical practice and future directions for CDSS studies in the
field of pregnancy care. This review study also adheres to the
PRISMA guidelines and employed two independent reviewers
for study selection and evaluation.

Conclusions
This review summarized state-of-the-art AI-augmented CDSS
methods and applications in the field of pregnancy care. This
review highlights the proliferation of machine learning-based
clinical predictive models and computer-aided diagnostics and
therapeutics with acceptable internal validity tested. Recent
advances in this line of research include (1) CDSS design
targeted for early diagnosis of prenatal abnormalities and early
detection of at-risk pregnancies for timely prevention and
intervention; (2) challenging medical image interpretation and
decision-making that could use the assistance of CDSS; and (3)
several knowledge bases needed for specific domains of
pregnancy care including, but not limited to, image annotation,
adverse events, and clinical guidelines. Future directions are
suggested to address possible biases introduced by using AI
and CDSS, comprehensive study on external validity and clinical
implementation, and continued improvement of clinical
plausibility of CDSS.
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