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Abstract

Background: Lumbar spinal stenosis (LSS) is a major cause of pain and disability in older individuals worldwide. Although
increasing studies of traditional machine learning (TML) and deep learning (DL) were conducted in the field of diagnosing LSS
and gained prominent results, the performance of these models has not been analyzed systematically.

Objective: This systematic review and meta-analysis aimed to pool the results and evaluate the heterogeneity of the current
studies in using TML or DL models to diagnose LSS, thereby providing more comprehensive information for further clinical
application.

Methods: This review was performed under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines using articles extracted from PubMed, Embase databases, and Cochrane Library databases. Studies that evaluated DL
or TML algorithms assessment value on diagnosing LSS were included, while those with duplicated or unavailable data were
excluded. Quality Assessment of Diagnostic Accuracy Studies 2 was used to estimate the risk of bias in each study. The MIDAS
module and the METAPROP module of Stata (StataCorp) were used for data synthesis and statistical analyses.

Results: A total of 12 studies with 15,044 patients reported the assessment value of TML or DL models for diagnosing LSS.
The risk of bias assessment yielded 4 studies with high risk of bias, 3 with unclear risk of bias, and 5 with completely low risk

of bias. The pooled sensitivity and specificity were 0.84 (95% CI: 0.82-0.86; I2=99.06%) and 0.87 (95% CI 0.84-0.90; I2=98.7%),
respectively. The diagnostic odds ratio was 36 (95% CI 26-49), the positive likelihood ratio (LR+) was 6.6 (95% CI 5.1-8.4), and
the negative likelihood ratio (LR–) was 0.18 (95% CI 0.16-0.21). The summary receiver operating characteristic curves, the area
under the curve of TML or DL models for diagnosing LSS of 0.92 (95% CI 0.89-0.94), indicating a high diagnostic value.

Conclusions: This systematic review and meta-analysis emphasize that despite the generally satisfactory diagnostic performance
of artificial intelligence systems in the experimental stage for the diagnosis of LSS, none of them is reliable and practical enough
to apply in real clinical practice. Further efforts, including optimization of model balance, widely accepted objective reference
standards, multimodal strategy, large dataset for training and testing, external validation, and sufficient and scientific report,
should be made to bridge the distance between current TML or DL models and real-life clinical applications in future studies.

Trial Registration: PROSPERO CRD42024566535; https://tinyurl.com/msx59x8k

(J Med Internet Res 2024;26:e54676) doi: 10.2196/54676
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Introduction

Lumbar spinal stenosis (LSS) is a major cause of pain and
disability in older individuals [1]. LSS has become a worldwide
public health issue as it is estimated that more than 102 million
people are diagnosed with LSS annually, with high incidence
in Europe and the United States of America [2,3]. According
to the clinical guideline developed by the North American Spine
Society, LSS is characterized as a condition of diminished space
available for the neural and vascular elements in the lumbar
spine, secondary to degenerative changes in the spinal canal
[4]. An accurate LSS diagnosis is essential for treatment options
and effectiveness. Currently, clinicians diagnose LSS based on
a comprehensive evaluation combined with the patient’s history,
physical examination, and spinal imaging tests such as x-ray,
computed tomography (CT), and magnetic resonance imaging
(MRI) [1,2]. As a superior radiographic screening tool for soft
tissues, MRI plays a crucial role in detecting the presence,
classification, and grading of LSS [5-7]. However, detailing
numerous information in spinal MRI is time-consuming and
repetitive, which causes laborious clinical workloads [7].
Furthermore, existing LSS grading systems are mainly
qualitative or semiquantitative, which highly depend on
expertise and suffer from high interobserver variations because
of the complexity of the spinal canal and foramen [5,6,8-11].
Therefore, more intelligent radiographic diagnostic and grading
methods of LSS are warranted.

Machine learning (ML), a subdiscipline of artificial intelligence
(AI), has shown great advantages in analyzing medical imaging
and predicting outcome decisions [12-14]. ML begins with
algorithms trained with a set of data, such as image features, to
establish the prediction or diagnosis by extracting and
classifying relevant information. More recently, a crucial branch
of ML, named deep learning (DL), was standing out rapidly.
DL algorithms were designed with multiple processing layers,
which can learn more complex image features than traditional
ML methods [15]. Although DL is still challenged by the
demand for large-scale datasets and the difficulty of
interpretation, it owns the incomparable advantage of automatic
feature extraction, minimizing the bias by manual intervention
[12,14]. In 2016, He et al [16] attempted to use traditional ML
(TML) methods based on their newly proposed synchronized
superpixel representation model to recognize the presence of
radiographic lumbar foraminal stenosis (LFS). Subsequently,
increasing studies of TML and DL were conducted in the field
of diagnosing and grading LSS and gained prominent results
[16-34]. However, most of these studies focus either on
algorithm development or clinical validation, causing great
variations in experimental settings and incompleteness of
evaluation parameters of accuracy and reliability. Hence, a
systematic review and meta-analysis were believed to be
necessary to evaluate the heterogeneity and provide
comprehensive results from these studies. However, to our
knowledge, no systematic review and meta-analysis was
previously conducted to address this issue.

Therefore, this systematic review and meta-analysis aimed to
evaluate the heterogeneity and pool the results of the current
studies in using ML or DL models to diagnose LSS, thereby

providing more comprehensive information for further clinical
application.

Methods

Study Design and Registration
This systematic literature review was conducted following the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines and flowchart [35,36] and the
PRISMA diagnostic test accuracy checklist (Multimedia
Appendix 1) [37]. The protocol for this systematic review was
registered in PROSPERO (ID: CRD42024566535). Ethical
approval was not required because this systematic literature
review focused on retrospective studies.

Search Strategy
This review collected the records from 3 major databases up to
October 2023. A second search was performed in February 2024
to complement newly published studies. Those databases include
PubMed, Embase, and the Cochrane Library (CENTRAL),
which are recommended academic search systems for systematic
reviews and meta-analyses [38]. We used the MeSH (Medical
Subject Headings) and Emtree headings in several combinations
and supplemented them with free text to increase sensitivity.
In addition, we searched references contained in the included
studies to supplement the relevant literature. An experienced
librarian designed and implemented the search strategy. The
following MeSH terms were used for PubMed: “Spinal
Stenosis,” “Intervertebral Disc Degeneration,” “Lumbar
Vertebrae,” “Machine Learning,” “Deep Learning,” and “Neural
Networks, Computer*.” The details of the search strategy are
stated in Multimedia Appendix 2.

Inclusion and Exclusion Criteria
We included studies that evaluated the assessment value of DL
or TML algorithms for diagnosing LSS and that were available
in English. The included studies in the meta-analysis should
provide or could be reconstructed as a 2×2 confusion matrix
from sensitivity, specificity, and precision. Applied statistical,
non–artificial intelligence, and general AI methods are not
considered DL or TML. Articles with duplicated or unavailable
data were excluded. Furthermore, abstracts from protocols, case
reports, editorials, and review articles were excluded.

Review Process
A total of 2 reviewers (TW and NF) independently performed
an initial screening of the titles and abstracts of the remaining
articles to determine potential eligibility after removing
duplicates. We reviewed the full texts of the remaining articles
and excluded those that did not meet the inclusion criteria. We
searched and screened a list of references for all relevant studies
and a systematic review of potentially relevant studies.
Disagreements were resolved by discussion and by third-party
adjudication when necessary. For studies enrolled in systematic
review while lack of available data for meta-analysis, an email
was sent to the corresponding authors for acquisition of the
necessary data.
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Data Extraction
A total of 2 reviewers independently extracted, summarized,
and tabulated the following data using a standard form: baseline
characteristics of studies, including the publication year, study
type, model type, algorithms used, LSS classifications, number
of participants, validation strategy, imaging modality, and
diagnosis criteria of LSS. Any discrepancies in the extracted
data were resolved by discussion. For the studies that provided
multiple contingency tables based on different classifier
algorithms, datasets, LSS types, or label strategies, we assumed
these to be independent of each other. For the studies that
provided multiple contingency tables based on different
preprocessing strategies, we selected the best-performing result.
If there was no preprocessing strategy that performed
significantly better than the others, we also enrolled each
strategy as an individual study and collected the corresponding
results. For repeat test results based on the same classifier
algorithms, datasets, and so on, we calculated the average values
of metrics as the final results.

Quality Assessment
A total of 2 reviewers (TW and NF) used the Quality
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2),
which is a tool for assessing the quality of primary diagnostic
accuracy studies, to independently assess the risk of bias for
each eligible study [39]. The QUADAS-2 criteria assessed the
risk of bias in 4 domains: patient selection, index test, reference
standard, and flow and timing. Any disagreements were resolved
by discussion with a third author.

Statistical Analysis
We used the MIDAS module and the METAPROP module [40]
of Stata (version 17.0; StataCorp) for statistical analysis.
Postestimation procedures for model diagnostic were used to

assess heterogeneity using the I2 statistic. The following metrics
were used: 0%-40% (low heterogeneity), 30%-60% (moderate
heterogeneity), 50%-90% (substantial heterogeneity), and
75%-100% (considerable heterogeneity). Bivariate mixed-effects
logistic regression modeling was conducted, and forest plots

were used to compare the sensitivity and specificity of DL or
TML models for diagnosing LSS. We used summary receiver
operating characteristic (SROC) curves to assess overall
diagnostic accuracy. We used the Fagan nomogram to explore
the relationship between pretest probability, likelihood ratio
(LR), and posttest probability. LR dot plots were divided into
4 quadrants according to the strength of the evidence threshold,
which was used to determine DL or TML model exclusion and
confirmation. Finally, subgroup analyses were performed to
examine whether the estimated sensitivity, specificity, and

associated I2 differed by several moderators when each subgroup
included ≥4 datasets.

Results

Study Selection and Characteristics
The initial search identified 934 titles and abstracts, of which
269 were duplicates. After screening, 567 articles were excluded
following this study’s inclusion and exclusion criteria. In
addition, 98 studies were reviewed for full text, of which 19
and 12 studies were included in the systematic review and
meta-analysis, respectively (Figure 1). Table 1 summarizes the
characteristics of the studies in the systematic review and
meta-analyses, including study type, model type, algorithms
used, LSS classifications, number of participants, validation
strategy, imaging modality, and diagnosis criteria of LSS. The
19 studies included in the systematic review were published
from 2016 to 2024. The 12 studies included in the meta-analysis
were all retrospective and included 21 external tests
[17,25-27,30,32,34] and 35 internal tests
[17,20,22,24,26-28,33,34]. Therefore, the meta-analysis included
56 datasets and completely different data sources. Among the
56 datasets,  32 identified LSS on MRI
[17,20,22,24,25,27,28,30,32], 20 on x-ray [26,34], and 4 on CT
[33]. Furthermore, 29 datasets have developed and internally
tested DL models [17,20,24,26-28,33,34], 6 datasets internally
tested TML models [22,28], and 21 datasets externally tested
the DL models [17,25-27,30,32,34].
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Figure 1. Flowchart depicting PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) search strategy.
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Table 1. Characteristics of the included studies in the systemic review and meta-analysis.

Diagnosis
criteria

Imaging
modali-
ty

Validation strat-
egy

Number of
participants, n

LSSb

type
Algorithms usedaModel

type
Study typeStudy

Lee et al [5]MRIhCross-valida-
tion

110LFSgKNNd and SVMe and LDAfTMLcDevelopment study
and internal test

He et al [16]

No referenceMRIHold-out valida-
tion

2009LCSlCNNj (SpineNetk)DLiDevelopment study
and internal test

Jamaludin et
al [18]

No referenceMRIHold-out valida-
tion

600LCS
and LFS

SVM and Decision TreeTMLDevelopment study
and internal test

Zhang et al
[19]

No referenceMRIHold-out valida-
tion

4075LCS
and LFS

ResNeXt-50DLDevelopment study
and internal test

Lu et al [21]

Lee et al [5]MRICross-valida-
tion

253LFSCNN and FCN and SegNet
and DeepLabv3+ and U-Net

DLDevelopment study
and internal test

Han et al

[20]m

Lee et al [9]
and Schizas
et al [6]

MRICross-valida-
tion

82LCSDecision TreeTMLDevelopment study
and internal test

Huber et al

[22]m

Lurie et al
[8]

MRIHold-out valida-
tion

971LCSCNN (SpineNetk)DLReplication study and
internal test

Ishimoto et
al [23]

Schizas et al
[5]

MRICross-valida-
tion

542LCSVGGDLDevelopment study
and internal test

Won et al

[24]m

Lurie et al
[8] and

Bartynski
and Lin [10]

MRIHold-out valida-
tion

446/100LCS
and

LRSn

and LFS

CNNDLDevelopment study
and internal test and
external test

Hallinan et

al [17]m

Lee et al [9]MRI—o146LCSCNN (CoLumbok)DLExternal testLehnen et al

[25]m

Lurie et al
[8]

MRI—882LCSCNN (SpineNetk)DLExternal testGrob et al

[30]m

Lee et al [9]X-RayCross-valida-
tion

4644/199LCSVGG19 and VGG16 and
ResNet50 and Efficient1

DLDevelopment study
and internal test and
external test

Kim et al

[26]m

Lee et al [9]
and Park et
al [11]

MRIHold-out valida-
tion

1015/100LCSResNet-50DLDevelopment study
and internal test and
external test

Su et al

[27]m

No referenceMRICross-valida-
tion

1030LSSRF and SVM and VGG16
and ResNet and MobileNet
and InceptionNet

TML
and DL

Development study
and internal test

Altun et al

[28]m

Schizas et al
[6] and Lee
et al [5]

MRIHold-out valida-
tion

200LCS
and LFS

Decision Tree and BiTCNNTML
and DL

Development study
and internal test

Bharadwaj et
al [29]

Schizas et al
[6]

MRI—1635/150LCS
and
LRS
and LFS

RegNetY32GFDLDevelopment study
and external test

Tumko et al

[32]m

No referenceMRICross-valida-
tion

515LRS
and LFS

CNNDLDevelopment study
and internal test

Shahzadi et
al [31]

Lurie et al
[8] and Bar-

CTHold-out valida-
tion

236LCS
and
LRS

VGG11 and ResNet-18DLDevelopment study
and internal test

Li et al

[33]m

tynski and
Lin [10]

No referenceX-RayCross-valida-
tion (validation)

3831/199/100LCSResNet50 and VGG19 and
VGG16 and EfficientNet-B1

DLDevelopment study
and internal test and
extra-internal test and
external test

Park et al

[34]a

and Hold-out
validation (Inter-
nal test)
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aAlgorithms for only classifiers.
bLSS: lumbar spinal stenosis.
cTML: traditional machine learning.
dKNN: k-nearest neighbors.
eSVM: support vector machine.
fLDA: linear discriminant analysis.
gLFS: lumbar foraminal stenosis.
hMRI: magnetic resonance imaging.
iDL: deep learning.
jCNN: convolutional neural network.
kName of software.
lLCS: lumbar central stenosis.
mStudies included in meta-analysis (confusion matrix available or can be reconstructed).
nLRS: lateral recess stenosis.
oNot applicable.

Methodological Quality
Regarding the QUADAS-2 risk of bias assessment (Figure 2
[17,20,22,24-28,30,32-34]), we revealed 4 studies with a high
risk of bias [26,28,30,33], 3 with an unclear risk of bias
[20,25,34], and 5 with a completely low risk of bias
[17,22,24,27,32]. In particular, 2 of the included studies reported
no details of patient selection [26,28], causing a high bias in

patient selection. Furthermore, 1 study provided unclear
information on how to perform the index test [28], thereby
causing an unclear risk of bias. Furthermore, 1 study used the
improper reference standard, which was not likely to correctly
classify the target condition [30], causing a high risk of bias in
the reference standard. Besides, 1 study showed a high risk of
bias with regard to flow and timing issues [33].
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Figure 2. Methodological assessment by Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). (A) The proportion of risk of bias for
all domains and proportion of applicability concerns in three domains. (B) Summary of the risk of bias for each study. Green, yellow, and red circles
indicate low, unclear, and high risk of bias, respectively [8,20,22,24-28,30,32-34].

Performance of TML and DL Models for LSS
A total of 12 studies with 15,044 patients reported the
assessment value of TML or DL models for diagnosing LSS.

The pooled sensitivity was 0.84 (95% CI 0.82-0.86; I2=99.06%),

and specificity was 0.87 (95% CI 0.84-0.90; I2=98.7%; Figure
3). The diagnostic odds ratio was 36 (95% CI 26-49). The SROC
curve (Figure 4) revealed that the area under the curve of TML
or DL models for diagnosing LSS was 0.92 (95% CI 0.89-0.94),
indicating a high diagnostic value.
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Figure 3. Forest plots in sensitivity and specificity of traditional machine learning (TML) or deep learning (DL) models. The pooled sensitivity and
specificity were 0.84 (95% CI 0.82-0.86) and 0.87 (95% CI 0.84-0.90), respectively.
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Figure 4. The SROC graph for the studies. The AUC of summary receiver operating characteristic (TML) or deep learning (DL) models for diagnosing
LSS was 0.92 (95% CI 0.89-0.94). SROC: summary receiver operating characteristic; AUC: area under the curve; SENS: sensitivity; SPEC: specificity.

We set the pretest probability to 50% based on the pretest
probability of disease. At this point, true positives accounted
for 87% when patients were diagnosed with LSS by the TML
or DL model, and false negatives accounted for 15% when the
diagnosis was not LSS (Figure 5). Furthermore, the models
showed a positive likelihood ratio (LR+) of 6.6 (95% CI 5.1-8.4)
and a negative likelihood ratio (LR–) of 0.18 (95% CI
0.16-0.21), respectively (Figure 5). However, the summary

likelihood ratio plot of TML or DL models was in the right
lower quadrant (LR+<10 and LR–>0.1: no exclusion or
confirmation), and the individual plots were scattered and
distributed (Figure 6). The results indicated that although the
TML or DL models achieved an acceptable performance
generally, it was still insufficient enough for diagnosing or
excluding LSS, and the current models suffered from certain
performance variations.
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Figure 5. Fagan nomogram of traditional machine learning (TML) or deep learning (DL) models for diagnosing lumbar spinal stenosis (LSS). The
first column of this nomogram represents the pretest probability, the second column represents the likelihood ratio, and the third shows the posttest
probability.
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Figure 6. Likelihood ratio (LR) dot plot of traditional machine learning (TML) or deep learning (DL) prediction models. The summary point of TML
or DL models was in the right lower quadrant (LR+<10 and LR–>0.1: no exclusion or confirmation). LRN: negative likelihood ratio; LRP: positive
likelihood ratio; LUQ: left upper quadrant; RLQ: right lower quadrant; RUQ: right upper quadrant.

In total, 4 studies [17,23,29,32] simultaneously provided the
performance of reliability both of observers and TML or DL
models, including 3 studies [17,29,32] that performed a direct

comparison between their reliabilities based on the same
assessment datasets (Table 2).
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Table 2. Characteristics of the studies available for the agreement between models and observers and reference standard.

Control group
results

Model
results

LSSa

type

Type of

classification

Model
type

Control groupAgreement assessment
strategy

Number of
participants, n

Study

0.98/0.980.96LCScBinaryDLb2 radiologistsGwet ĸ446Hallinan et al [17]

0.92/0.950.92LRSdBinaryDL2 radiologistsGwet ĸ446Hallinan et al [17]

0.94/0.950.89LFSeBinaryDL2 radiologistsGwet ĸ446Hallinan et al [17]

0.89/0.890.82LCSMultigradingDL2 radiologistsGwet ĸ446Hallinan et al [17]

0.71/0.790.72LRSMultigradingDL2 radiologistsGwet ĸ446Hallinan et al [17]

0.80/0.870.75LFSMultigradingDL2 radiologistsGwet ĸ446Hallinan et al [17]

0.80/0.860.54LCSMultigradingDL2 radiologistsCohen ĸ200Bharadwaj et al [29]

0.80/0.860.80LCSMultigradingTMLf2 radiologistsCohen ĸ200Bharadwaj et al [29]

Average 0.3720.431LCSBinaryDL7 radiologistsCohen ĸ150Tumko et al [32]

Average 0.3230.315LRSBinaryDL7 radiologistsCohen ĸ150Tumko et al [32]

Average 0.5960.672LFSBinaryDL7 radiologistsCohen ĸ150Tumko et al [32]

Average 0.3760.310LCSMultigradingDL7 radiologistsCohen ĸ150Tumko et al [32]

Average 0.3590.199LRSMultigradingDL7 radiologistsCohen ĸ150Tumko et al [32]

Average 0.6200.637LFSMultigradingDL7 radiologistsCohen ĸ150Tumko et al [32]

aLSS: lumbar spinal stenosis.
bDL: deep learning.
cLCS: lumbar central stenosis.
dLRS: lateral recess stenosis.
eLFS: lumbar foraminal stenosis.
fTML: traditional machine learning.

Subgroup Analysis
We conducted the subgroup analyses in 3 areas, including data
partition (internal test or external test), model networks (TML
or DL), and image (MRI or x-ray), to effectively understand
how the 3 different types affected the performance of the
algorithm for LSS assessment (Table 3). The internal test group

demonstrated a lower sensitivity (P<.01) yet higher specificity
(P<.01) than the external test group. Besides, the MRI group
showed a lower sensitivity (P<.01) yet higher specificity (P<.01)
than the x-ray group. The sensitivity in the DL group achieved
0.85, which was significantly higher than that (0.80) in the TML
group (P<.01). Meanwhile, the DL group showed a more stable
performance on specificity than the TML group (P=.04).

Table 3. Results of subgroup analysis.

P value (HBG of specificity)Specificity (95% CI)P value (HBGb of sensitivity)Sensitivity (95% CIa)Studies, nCategories

<.001<.001Data partition

0.89 (0.85-0.92)0.83 (0.80-0.86)35Internal test

0.85 (0.79-0.91)0.86 (0.82-0.90)21External test

.04<.001Model networks

0.87 (0.77-0.97)0.80 (0.72-0.89)6TMLc

0.87 (0.84-0.91)0.85 (0.82-0.87)50DLd

<.001<.001Image

0.91 (0.88-0.93)0.83 (0.79-0.86)32MRI

0.77 (0.70-0.84)0.85 (0.82-0.89)20X-ray

aCI: confidence interval.
bHBG: heterogeneity between groups.
cTML: traditional machine learning.
dDL: deep learning.
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Discussion

Principal Findings
In recent years, there has been a boom in assessing the diagnosis
and grading of LSS by TML or DL methods. After systemically
reviewing the available evidence, we revealed that all related
studies were published after 2016 and increased annually. It can
also be said that TML and DL algorithms have been showing
promising potential in this field. To the best of our knowledge,
this is the first systematic review and meta-analysis for
addressing this issue. Our pooled results showed an overall
sensitivity of 0.84 and a specificity of 0.87 for diagnosing LSS
by TML or DL models. The area under the SROC was 0.92,
indicating a high diagnostic value. Subgroup analysis revealed
a better diagnostic performance in internal validation than in
external validation, while DL algorithms demonstrated higher
sensitivity and specificity than TML algorithms. However, 37%
of studies enrolled in the systemic review were unavailable in
the meta-analysis, which may have caused a discrepancy
between pooled results and reality. Therefore, the results should
be interpreted with caution.

A permanent debate focuses on whether the diagnostic
performance of ML or DL algorithms surpassed that of
clinicians. High-level evidence showed that the performance of
AI diagnostic systems is equivalent to health care professionals,
and AI-assistance systems improve clinician diagnostic
performance [41-43]. However, in the field of LSS, there were
few studies designed to directly compare the performance of
additional radiologists or orthopedic surgeons with ML or DL
algorithms in the same dataset. Hallinan et al [17] developed a
DL method for diagnosing different LSS and compared the
sensitivity and specificity of the DL model with 2 independent
clinicians (a neuroradiologist and a musculoskeletal radiologist)
with less than 10 years of experience. The study revealed that
the sensitivity of DL in detecting LSS was on par with clinicians
in general, with even slightly higher in lumbar central stenosis
(LCS) and lateral recess stenosis (LRS), but with lower
specificity of DL. It is reasonable because pursuing sensitivity
to reduce false-negative results on the premise of maximizing
the accuracy and AUC may be an alternative and beneficial
method for clinical demands [44]. Compared with the complete
replacement of clinicians, AI diagnostic systems are more
expected to be assisted screening tools to use in areas with poor
medical resources without experts or to reduce the workload of
clinicians and missed diagnoses, followed by high-level medical
team screening of image marked positive by the automatic
diagnosis [45].

Although the general performance of diagnostic models was
satisfactory, it was still insufficient enough for diagnosing or
excluding LSS according to the summary likelihood ratio plot.
Besides, our systemic review and meta-analysis found that ML
or DL models showed similar, even slightly lower, sensitivity
compared with specificity in general, especially in the MRI
modality. There may be several reasons. First, the complexity
and variety of pathological structures in individuals with LSS
result in no broadly accepted quantitative radiologic evidence
for diagnosis, even in expert evaluation [46], which makes

automatic detection by MRI difficult. Furthermore, we cannot
exclude that the results may be influenced by heterogeneity.
Consideration should be taken for developers to optimize models
prone to higher sensitivity than specificity for diagnosis and
grading of LSS, which may be more beneficial to clinical
workflow.

Notably, a consensus of reference standards in determining ML
or DL performance for diagnosing LSS has not been reached
till now. The reference standards in almost all included studies
were labeled by qualitative or semiquantitative expert
evaluation, which suffered from considerable heterogeneity due
to the different amount, specialties, and years of experience of
experts. Huber et al [22] combined texture analysis and decision
trees to detect LSS based on the cross-sectional area (CSA) as

a quantitative reference standard. However, a CSA of <130mm2

was not a widely accepted criterion, and it is only appropriate
for LCS, while quantitative radiological criteria remain
unavailable for diagnosing LRS or LFS [46,47]. More
comprehensive and rigorous criteria for reference standards
should be developed in future work. In addition, the diagnosis
of LSS should combine the imaging findings with history and
clinical presentation because LSS is a clinical syndrome, and
solely radiographic LSS may be symptom-free [2]. However,
the diagnosis criteria in all reviewed studies were only based
on radiographic criteria or reports, which means that the current
TML or DL models were developed for the diagnosis of
radiographic LSS objectively. Yet, it is not said that radiographic
evaluation is valueless for LSS. On the one hand, it can provide
details in pathological anatomy, which guides further treatment
options and surgical approaches. On the other hand, a potentially
imperceptible relationship between radiographic characters and
clinical LSS may be explored with the help of AI models.
Therefore, we suggest attempting to label the data by clinical
LSS as golden standards on the premise of model interpretability
and eliminating confounding factors. Furthermore, developers
can set multiple data types, such as crucial details of patient’s
history, physical examination, and imaging tests, as inputs to
build a multimodal to improve the clinical value of LSS
diagnosis and grading by AI approaches [48].

Overall, our meta-analysis revealed a better performance for
diagnosing LSS in DL than in TML. Whereas results should be
interpreted with caution because of the limited number of
enrolled studies on TML in meta-analysis. Only 2 included
studies in the systemic review designed a direct comparison of
the capability of DL and TML models for diagnosing LSS, yet
showed contradictory results. Altun et al [28] found that VGG16
and 3 other DL techniques performed better in addressing the
issue of binary LSS classification compared with random forest
and support vector machines. Conversely, Bharadwaj et al [29]
combined segmentation with DL and TML classifiers to conduct
multiclass and binary LSS grading. Both accuracy, AUC, and
reproducibility were higher in the TML group [29]. The
inconsistency may be attributed to the scale of training data.
DL was generally acknowledged as the most outstanding ML
technique for automatic medical image analysis [49]. However,
DL is restricted to a stronger data dependency compared with
any other ML, as it is designed with a more complex architecture
[14,15,50]. In particular, there is an extreme need for DL to be
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trained with a sufficiently large sample set, particularly
considering the complexity of spinal MRI. In the 2 studies
above, the scales of training samples were more than 5 times
higher in the study of Altun et al [28] than that of Bharadwaj
et al [29] (927 vs 170). Hence, we recommend that a larger scale
dataset for training both TML and DL models is beneficial for
exploring their capabilities in diagnosing and grading LSS in
order to reduce data overfitting and improve the performance
of models.

Any AI diagnostic systems should be clinically oriented instead
of technically oriented. This poses a challenge for developers
in developing ML or DL models more appropriately for clinical
practice rather than more technically challenging. Currently,
although promising results in exactitude (accuracy, sensitivity,
etc) have been widely reported, other aspects of great clinical
significance, like reliability, usability, and safety, were rarely
assessed. A good agreement between the model and reference
standard can verify the validity and reliability of the model.
However, only 3 included studies performed a direct comparison
of reliabilities between models and observers [17,29,32], and
a generally higher consistency of diagnosis was achieved by
clinicians than that of ML or DL systems. Besides, external
validation is a valuable approach to validate the generalizability
of ML or DL algorithms, testing their capabilities for adapting
the differences between initial settings of data collection,
imaging tests, and imaging processing with replication or
real-world settings [45]. Inspiringly, this meta-analysis showed
the performances of external validation were generally on par
with that of the internal validation, with better sensitivity but
worse specificity. However, the results may be inconclusive
because only 37% of studies (7/19) enrolled in this systemic
review tested the models by external validation (separate
datasets for model validation only) [17,25-27,30,32,34].

Anyway, a gap remains between current ML or DL algorithms
for diagnosing and grading LSS with real clinical applications.
A recent review highlighted the importance of large-scale and
mixed-source datasets, clinician collaboration, and a clear

statement of data collection to facilitate DL in clinical
applications [15]. Furthermore, only a few software, such as
SpineNet (University of Oxford) [18,23,30] and CoLumbo
(SmartSoft Ltd) [25], were introduced into public view despite
several AI models having been developed in this field. We urged
that the exploration of software design may be beneficial to
extend the application of AI diagnostic models.

Limitations
Several limitations exist in this systematic review and
meta-analysis. First, most of the enrolled studies were conducted
under small sample sizes, and only 6 studies (32%) had a sample
size >1000 [18,21,26,27,32,34]. However, a large-scale dataset
is warranted for both training and validation in AI diagnostic
algorithms, especially for DL algorithms [14,15,50]. Second,
few models performed external validation to test the
reproducibility and extensibility. Thus, the reported performance
should be interpreted with caution. Third, only a few studies
provided a contingency table, while the incompleteness of
reported performance metrics made it difficult to conduct a
comprehensive meta-analysis, which a recent systematic review
and meta-analysis in the spine field also mentioned [51]. This
may cause a discrepancy between pooled results and reality.
Finally, the risk of bias in this study was identified by the
QUADAS-2, which is more suitable for traditional diagnostic
models [52]. A more specific and practical guideline for
diagnostic AI models remains under development [53].

Conclusions
This systematic review and meta-analysis emphasize that despite
the generally satisfactory diagnostic performance of artificial
intelligence systems in the experimental stage for the diagnosis
of LSS, none of them is reliable and practical enough to apply
in real clinical practice. Further efforts, including optimization
of model balance, widely accepted objective reference standards,
multimodal strategy, large dataset for training and testing,
external validation, and sufficient and scientific report, should
be made to bridge the distance between current TML or DL
models and real-life clinical applications in future studies.
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