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Abstract

Background: Growth hormone deficiency (GHD) and idiopathic short stature (ISS) are the major etiologies of short stature in
children. For the diagnosis of GHD and ISS, meticulous evaluations are required, including growth hormone provocation tests,
which are invasive and burdensome for children. Additionally, sella magnetic resonance imaging (MRI) is necessary for assessing
etiologies of GHD, which cannot evaluate hormonal secretion. Recently, radiomics has emerged as a revolutionary technique
that uses mathematical algorithms to extract various features for the quantitative analysis of medical images.

Objective: This study aimed to develop a machine learning–based model using sella MRI–based radiomics and clinical parameters
to diagnose GHD and ISS.

Methods: A total of 293 children with short stature who underwent sella MRI and growth hormone provocation tests were
included in the training set, and 47 children who met the same inclusion criteria were enrolled in the test set from different hospitals
for this study. A total of 186 radiomic features were extracted from the pituitary glands using a semiautomatic segmentation
process for both the T2-weighted and contrast-enhanced T1-weighted image. The clinical parameters included auxological data,
insulin-like growth factor-I, and bone age. The extreme gradient boosting algorithm was used to train the prediction models.
Internal validation was conducted using 5-fold cross-validation on the training set, and external validation was conducted on the
test set. Model performance was assessed by plotting the area under the receiver operating characteristic curve. The mean absolute
Shapley values were computed to quantify the impact of each parameter.
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Results: The area under the receiver operating characteristic curves (95% CIs) of the clinical, radiomics, and combined models
were 0.684 (0.590-0.778), 0.691 (0.620-0.762), and 0.830 (0.741-0.919), respectively, in the external validation. Among the
clinical parameters, the major contributing factors to prediction were BMI SD score (SDS), chronological age–bone age, weight
SDS, growth velocity, and insulin-like growth factor-I SDS in the clinical model. In the combined model, radiomic features
including maximum probability from a T2-weighted image and run length nonuniformity normalized from a T2-weighted image
added incremental value to the prediction (combined model vs clinical model, P=.03; combined model vs radiomics model,
P=.02). The code for our model is available in a public repository on GitHub.

Conclusions: Our model combining both radiomics and clinical parameters can accurately predict GHD from ISS, which was
also proven in the external validation. These findings highlight the potential of machine learning–based models using radiomics
and clinical parameters for diagnosing GHD and ISS.

(J Med Internet Res 2024;26:e54641) doi: 10.2196/54641
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Introduction

Short stature, a height below the third percentile or more than
2 SDs below the corresponding mean height for those of the
same sex, age, and race, is associated with psychosocial
problems and medical conditions, such as diet, genes, physical
activity, and underlying diseases [1-3]. Although short stature
often represents a normal variation among the general
population, negative social stereotypes associated with short
stature still exist, resulting in poorer psychosocial performance
in short children who are actually healthy [3,4]. As children
with short stature can achieve average height with treatment
with human recombinant growth hormone (GH), proper
assessment and screening of short stature is very important for
the physical and mental well-being of children. Moreover,
proper treatment with human recombinant GH can reduce the
cardiovascular risk of GH deficiency (GHD) [5]. Among
etiologies of short stature, GHD and idiopathic short stature
(ISS) account for the most common causes [2]. GH, a
polypeptide hormone produced by the pituitary gland, stimulates
linear bone growth and cell reproduction. GHD is defined as a
condition induced by insufficient secretion of GH [1,4], whereas
ISS is defined as short stature without evidence of systemic,
endocrine, nutritional, or chromosomal abnormalities [1,4].

For the diagnosis of GHD, meticulous evaluation, including the
measurement of anthropometric data, bone age, insulin-like
growth factor-I (IGF-I), and GH provocation tests, is required,
among which the GH provocation test is considered the gold
standard [6,7]. GHD can be diagnosed in children with short
stature who show insufficient GH levels after at least 2 GH
provocation tests. However, the GH provocation test is
extremely invasive and burdensome to patients and requires
hospitalization and multiple blood samplings; therefore,
investigations on noninvasive screening methods to replace the
GH provocation test are required [8].

Etiologies of GHD include pathological causes, such as brain
tumors and hypoxic brain damage; therefore, sella magnetic
resonance imaging (MRI) is required for the evaluation of GHD
[2]. Several studies investigated the difference in pituitary
volume in sella MRI according to etiologies of short stature,
and Kessler et al [9] reported that pituitary volume is different
between children with GHD and ISS and that it increases with

older age [10-12]. However, the SD score (SDS) of height,
diameter, and volume of the pituitary gland was not different
between GHD and ISS among Korean children in our previous
study [12]. Moreover, hormonal secretion cannot be assessed
in sella MRI.

Meanwhile, artificial intelligence (AI) is increasingly being
leveraged as a novel approach in medical imaging research and
diagnosis. Supervised machine learning serves as the cornerstone
of radiological AI, wherein algorithms undergo training to
identify pathologies, such as tumors, in computed tomography
or MRI scans based on the gold standard [13,14]. These
algorithms refine their diagnostic capabilities by learning from
numerous cases and subsequently applying this acquired
knowledge to identify such markers within new test cohorts
containing unseen images. However, traditional AI in imaging
analysis presents limitations, with diagnostic information often
remaining obscured within the computational “black box,”
offering merely simplistic outcomes, such as the presence of a
lesion [15].

Thus, radiomics, a method that extracts various features using
mathematical algorithms, has emerged as a revolutionary
technique addressing these shortcomings by offering a
quantitative image analysis framework [14,16]. Radiomics can
be used to determine molecular profiles and disease
characteristics that cannot be detected by the human eye [15,17].
Based on the concept of information in biomedical images that
reflects the underlying pathophysiology, radiomics converts
digital medical images into mineable high-dimensional data
[15]. Although quantitative analyses of medical images have
been performed in adults as numerous radiomic features can be
extracted and analyzed using radiomics, investigations of the
pituitary gland using radiomics in pediatrics are limited
[15,18,19].

Notably, clinical parameters associated with GHD diagnosis
have been investigated in several studies that included
anthropometric data, such as height and BMI, and laboratory
tests, such as IGF-1 [20-23]. In addition, a prediction model for
the screening of GHD and ISS was suggested in a few studies
[22,24]. However, the predictability of the previous studies
using clinical parameters was limited. Moreover, literature
regarding prediction models for the differential diagnosis of
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GHD and ISS using both radiomics and clinical parameters or
validation with the external set is lacking.

Recently, there has been a lot of research in the medical field
that uses machine learning to create models to aid in clinical
diagnosis. Neural networks, such as graph neural networks, are
being used to diagnose Alzheimer disease by using structural
MRI and positron emission tomography scans [25-27]. There
are also studies on diagnosing respiratory diseases, such as
COVID-19 and interstitial lung diseases, by converting
respiratory or pulmonary sounds into spectrograms and
classifying them with neural networks [28,29]. In contrast to
unstructured data, such as medical images and sounds,
gradient-boosting machines have been mainly used for structured
data, such as electronic health records and vital signs. Oh et al
[30] showed that extreme gradient boosting (XGBoost) can
precisely estimate low-density lipoprotein cholesterol, a
therapeutic target for dyslipidemia, using large-scale electronic
health records. A light gradient boosting machine could predict
cardiac arrest within 24 hours by training on heart rate variability
calculated from electrocardiograms in the intensive care unit
[31]. In the field of pediatrics, various machine learning models,
such as random forests and support vector machines, have been
used to predict early neonatal early-onset sepsis [32], and
XGBoost has been used to identify children with Kawasaki
disease in the pediatric emergency department [33]. However,
there are not yet many studies in pediatrics that use machine
learning models that consider both structured and unstructured
data to aid in diagnosis.

Therefore, we aimed to develop a machine learning–based
prediction model for the diagnosis of GHD and ISS using
radiomics and clinical parameters, thereby overcoming the
limitation of the clinical model with radiomics feature. In
addition, we aimed to increase the reliability of the model with
external validation. Our objectives were to (1) extract radiomic
features using a T2-weighted image (T2WI) and
contrast-enhanced T1-weighted image (T1C) in sella MRI; (2)
develop a prediction model using both radiomic features and
clinical parameters; (3) compare predictability among the models

using radiomics, clinical parameters, and both parameters; (4)
estimate the accuracy of the predictive models with external
validation; and (5) evaluate the contribution of each clinical
parameter and radiomic feature from the prediction models. To
achieve this goal, we investigated the following contents: (1)
baseline characteristics of the participants; (2) receiver operating
characteristic (ROC) curve analyses of clinical, radiomics, and
combined models; and (3) Shapley value of clinical parameters
and radiomic features.

The chapters of this paper are organized as follows. First, the
Methods chapter describes the study population and
corresponding dataset, data preprocessing, machine learning
methods, and interpretation. In the Results chapter, we describe
the baseline characteristics of the study population, the
performance of the machine learning models in diagnosing
GHD and ISS, and our interpretation of the results. We then
discuss the implications and limitations of our findings and
finally summarize our findings in the Discussion chapter.

Methods

Study Population
Figure 1 shows the flowchart of this retrospective study. To
develop a prediction model for the diagnosis of GHD and ISS,
electronic records of children aged 18 years or younger with
short stature who underwent GH provocation test and sella MRI
between March 2011 and July 2020 were retrieved from the
Clinical Data Repository System of Severance Hospital. Among
these, participants with endocrinological or systemic pathology
or those with pituitary lesions were excluded from the final
derivation set. For the external validation set, electronic records
of children aged 18 years or younger with short stature who
underwent GH provocation test and sella MRI between
September 2020 and November 2022 were retrieved from the
Clinical Data Repository System of Yongin Severance Hospital.
The exclusion criteria for the final external validation set were
the same as those for the derivation set. Finally, a total of 293
children with MRI findings in the training set and 47 children
in the test set from different hospitals were enrolled.
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Figure 1. Study flowchart. *Endocrinological or systemic pathology: hypopituitarism; adrenal insufficiency; hyperthyroidism or hypothyroidism except
euthyroid state; skeletal dysplasia; small for gestational age; genetic disease including chromosomal abnormalities; Russel-Silver syndrome; Prader-Willi
syndrome; and chronic diseases, including a history of brain irradiation, congenital heart disease, and systemic lupus erythematosus. **Pituitary lesion:
pituitary tumor or empty sella. EHR: electronic health record; GH: growth hormone; GHD: growth hormone deficiency; ISS: idiopathic short stature;
MRI: magnetic resonance imaging.

Ethical Considerations
This study conformed to the ethical guidelines of the 1975
Declaration of Helsinki and was approved by the Institutional
Review Board of Yonsei University Severance Hospital
(4-2022-1258), which waived the requirement for informed
consent due to strict measures were implemented to protect the
privacy and confidentiality of the research participants. All
personal identifiers were removed from the dataset prior to
analysis, ensuring that all data used were anonymized and
deidentified. No compensation was provided to participants
involved in this study as it involved minimal risk and was
primarily based on the analysis of existing medical records and
imaging data. Additionally, no identifiable images of participants
are included in the study or supplementary materials.

Definition of GHD and ISS
GHD was defined as follows: (1) height below the third
percentile for age, sex, and race based on the 2017 Korean
National Growth Charts [34]; (2) peak GH level below 10 ng/mL
after stimulation in two types of GH provocation tests using
insulin, arginine, or L-dopa; and (3) children without genetic,
endocrine, or systemic abnormalities [2,35].

ISS was defined as height below the third percentile for
individuals of the same age, sex, and race, with no other
identifiable causes, including genetic, endocrine, or systemic
pathologies [2,34,35].

Clinical Parameters
Height was recorded with an accuracy of 0.1 cm, whereas body
weight was measured using an electronic load with a precision
of 0.01 kg. BMI was calculated by dividing body weight in

kilograms by the square of height in meters (kg/m2). Height,
weight, and BMI were expressed as SDS using the 2017 Korean
National Growth Charts [34]. Children were categorized based
on their BMI into 3 groups: normal (<85th percentile),

overweight (85th-95th percentile), or obese (≥95th percentile).
Midparental height (MPH) was determined by calculating the
average height of the parents and adjusting it by subtracting 6.5
cm for girls and adding 6.5 cm for boys. Puberty was considered
at any pubertal development with Tanner stage ≥2 [36,37].

The detailed method of laboratory evaluation is provided in
Multimedia Appendix 1.

SDS values of IGF-Ⅰ and IGF binding protein 3 (IGFBP-3)
were calculated based on reference data for the Korean
population [38]. Bone age was assessed according to the
Greulich-Pyle method by experienced pediatric endocrinologists
[39]. In addition, we calculated chronological age–bone age
(CA-BA).

Image Acquisition
The detailed image acquisition parameters from both the training
and test sets are provided in Multimedia Appendix 2.

Image Processing and Radiomic Feature Extraction
The T2WI and T1C from the sella MRI were examined, and
the entire pituitary gland was identified within the region of
interest. The outermost boundary of the sliced pituitary gland
was outlined.

Following the conversion of the T2WI and T1C from the sella
MRI, which were in Digital Imaging and Communication in
Medicine format, into NIfTI files, the images were resampled
to a resolution of 1×1×1 mm. Additionally, a correction for
low-frequency intensity nonuniformity was applied using N4
bias correction [40]. The images were performed by a radiologist
(BS) with 10 years of experience, who was unaware of the
participants’ clinical information. An open-source software
(Medical Image Processing, Analysis, and Visualization; Center
for Information Technology, National Institutes of Health) was
used for the analysis. Segmentation of the pituitary gland in
each image slice was performed semiautomatically using
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techniques such as region growing, signal intensity thresholding,
and edge detection. To ensure the reliability of the segmentation,
another radiologist (CJP) with 10 years of experience
independently conducted the segmentation of 10% of the final
images selected from the dataset, which were chosen randomly.
The Dice coefficient was calculated to assess the agreement
between the segmentation masks generated by the two
radiologists. Next, the radiomic features were extracted using
Pyradiomics 2.1.0 with 128 fixed bin counts [41,42]. In total,
14 shapes, 18 first-order, 24 gray-level co-occurrence matrix
(GLCM), 16 gray-level run length matrix (GLRLM), 16
gray-level size zone matrix (GLSZM), and 5 neighborhood gray
tone difference matrix were extracted from the region of interests
on T2WI and T1C, constituting a total of 186 radiomic features.

Machine Learning and Statistical Analysis
Figure 2 shows the machine learning pipeline. We trained and
compared 3 models that classified GHD and ISS according to
the following parameters: radiomic features, clinical parameters,
and both of these parameters. This comprehensive approach
aimed to assess the combined predictive ability of radiomics

and clinical parameters for diagnosis [43,44]. The XGBoost
algorithm was used to train the models. XGBoost is an ensemble
of decision trees with high predictive and explanatory ability
[45]. In particular, XGBoost can learn datasets with missing
values. The XGBoost hyperparameters were optimized using
Bayesian optimization with the Gaussian process. Internal
validation was conducted using repeated 5-fold cross-validation.
The stability of the model increased by repeating the
cross-validation multiple times. Tuned hyperparameters and
corresponding candidates are described in Multimedia Appendix
3. Through Bayesian optimization, we found the best
hyperparameter sets for XGBoost models with clinical
parameters, radiomics features, and all features, as represented
in Multimedia Appendix 4. The evaluation metrics used were
accuracy, sensitivity, specificity, precision, and area under the
ROC curve (AUC). The bootstrap method was used for pairwise
comparison of the AUC, and the prediction models were
externally validated using the Yongin Severance Hospital
dataset. All analyses were performed using Python (version 3.9;
Python Software Foundation). Significance was determined as
P<.05.
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Figure 2. Machine learning pipeline. ROC: receiver operating characteristics; T1C: contrast-enhanced T1-weighted image; T2WI: T2-weighted image;
SHAP: Shapley additive explanations; XGBoost: extreme gradient boosting.

Model Interpretability with Shapley Additive
Explanations
Shapley additive explanations (SHAP) was used to interpret
and evaluate the significance of each clinical parameter and
radiomic feature from the prediction models [46]. SHAP
measured the contribution of each feature, called the Shapley
value, to the prediction of GHD. This analysis allowed us to
visualize and understand the significance of each feature in
contributing to the performance of the model. This study used
three perspectives to interpret the models: feature importance
plots, dot summary plots, and waterfall plots. Importance was
calculated by averaging the Shapley values per feature. The dot
summary plot is a scatter plot of the feature importance based
on the magnitude of each feature value. The waterfall plot shows

the impact of the features on the machine-learning models for
each case. This study sampled true-positive and true-negative
cases for GHD classification and examined a machine-learning
model using waterfall plots.

Results

Baseline Characteristics of the Participants
Table 1 summarizes the baseline characteristics of the study
participants according to the etiology of their short stature. BMI
and the proportions of underweight, overweight, and obese
participants were higher in participants with GHD than in those
with ISS. IGF-Ⅰ and IGF-Ⅰ SDS were lower in participants
with GHD than in those with ISS, whereas CA-BA was higher
in those with GHD.
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Table 1. Baseline characteristics of participants according to etiology of short staturea.

P valuedISSc (n=96)GHDb (n=248)

.3753 (55)150 (60.5)Sex (male), n (%)

.927.21 (2.73)7.24 (2.81)Age (years), mean (SD)

.63111.68 (14.34)112.53 (14.88)Height (cm), mean (SD)

.08–2.67 (0.67)–2.54 (0.56)Height SDSe, mean (SD)

.0719.37 (6.17)20.94 (7.73)Weight (kg), mean (SD)

.20–2.42 (1.02)–2.10 (2.31)Weight SDS, mean (SD)

.00115.16 (1.72)16.06 (2.50)BMI (kg/m2), mean (SD)

.22–1.05 (1.00)–0.73 (2.53)BMI SDS, mean (SD)

.02BMI percentile, n (%)

69 (72)189 (76.2)Underweight

24 (25)40 (16.1)Normal

2 (2)11 (4.4)Overweight

1 (1)8 (3.2)Obesity

.254.21 (1.56)4.44 (1.63)Growth velocity (cm/year), mean (SD)

.29Pubertal status, n (%)

78 (81)213 (85.9)Prepuberty

18 (19)35 (14.1)Puberty

.51–0.09 (0.09)–0.09 (0.08)MPHf SDS, mean (SD)

.082.76 (0.67)2.63 (0.57)MPH SDS—height SDS, mean (SD)

.03153.58 (70.16)137.55 (58.38)IGF-Ⅰg (ng/mL), mean (SD)

.02–0.69 (0.71)–0.79 (0.63)IGF-Ⅰ SDS, mean (SD)

.322159.60 (786.76)2344.02 (1127.25)IGFBP-3h (ng/mL), mean (SD)

.0010.68 (0.76)0.82 (0.83)IGFBP-3 SDS, mean (SD)

.946.72 (2.72)6.69 (2.76)Bone age (years), mean (SD)

.030.34 (0.97)0.61 (0.95)CA-BAi (years), mean (SD)

aContinuous variables are presented as mean (SD) and categorical variables as numbers (percentages).
bGHD: growth hormone deficiency.
cISS: idiopathic short stature.
dP value was assessed using an independent 2-tailed t test for continuous variables and the chi-square test for categorical variables.
eSDS: SD score.
fMPH: midparental height.
gIGF-Ⅰ: insulin-like growth factor-Ⅰ.
hIGFBP-3: insulin-like growth factor binding protein-3.
iCA-BA: chronological age–bone age.

Regarding the baseline characteristics of participants in the
training and test sets, the proportions of boys, underweight,
prepuberty, and ISS were higher in the training set than in the
test set (Multimedia Appendix 5). Age, height, MPH SDS, and
BA were higher in the test set than in the training set, whereas
the MPH SDS—height, SDS, and CA-BA were higher in the
training set.

Among the training set, MPH, CA-BA, and proportion of the
participants with underweight were higher in the GHD group
compared to the ISS group (Multimedia Appendix 6). Among

the test set, MPH and IGFBP-3 were lower in the GHD group
compared to those in the ISS group.

ROC Curve Analyses of Clinical, Radiomics, and
Combined Models
Table 2 and Figure 3 summarize the results of the ROC curve
analyses and present the AUCs with corresponding 95% CIs
for GHD prediction using the clinical, radiomics, and combined
models. Among the clinical parameters, age, sex, height SDS,
weight SDS, BMI SDS, growth velocity, pubertal state, MPH
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SDS, MPH SDS—height SDS, IGF-I SDS, and CA-BA were
assessed using clinical and combined models. IGFBP-3 was
excluded from the parameters as the value was substantially

different between the two centers owing to different assays and
reagents.

Table 2. AUCsa of each model for predicting GHDb,c.

AUC (95% CI)PrecisionSpecificitySensitivityAccuracy

Clinical model

0.690 (0.628-0.753)0.8380.6670.7380.717Internal validation

0.684 (0.590-0.778)0.9360.6670.7070.702External validation

Radiomics model

0.674 (0.609-0.738)0.5780.6850.6910.678Internal validation

0.691 (0.620-0.762)0.8310.6670.6430.698External validation

Combined model

0.835 (0.776-0.896)0.8780.7220.8570.817Internal validation

0.830 (0.741-0.919)0.9710.8330.8100.813External validation

aAUC: area under the receiver operating characteristics curve.
bGHD: growth hormone deficiency.
cP value was determined using the receiver operating characteristics curve for AUC.

Figure 3. ROC curves from the clinical model, radiomics model, and combined model. (A) ROC curves of the clinical, radiomics, and combined models
for internal validation. (B) ROC curves of the clinical, radiomic, and combined models for external validation. AUC: area under the receiver operating
characteristic curve; ROC: receiver operating characteristics.

The accuracy and AUC (95% CI) of the clinical model were
0.717 and 0.690 (0.628-0.753) and 0.702 and 0.684
(0.590-0.778) for internal and external validations, respectively.
In the radiomics model, the corresponding values were 0.668

and 0.674 (0.609-0.738) for internal validation and 0.698 and
0.691 (0.620-0.762) for external validation. In the combined
model, the corresponding values were 0.817 and 0.835
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(0.776-0.896) for internal validation and 0.813 and 0.830
(0.741-0.919) for external validation.

In pairwise comparison, the combined model was significantly
superior to both the clinical and radiomics models in internal
validation (combined model vs clinical model, P=.01; combined
model vs radiomic model, P=.03) and external validation
(combined model vs clinical model, P=.03; combined model
vs radiomic model, P=0.02; Multimedia Appendix 7). The AUC
was not statistically different between the clinical and radiomics
models.

Shapley Value of Clinical Parameters and Radiomics
Features
We computed the mean absolute Shapley values for each clinical
variable and radiomics feature to illustrate their importance in

the predictive models for external validation. Among the clinical
parameters, the SHAP value of BMI SDS was the highest,
followed by those of CA-BA, weight SDS, growth velocity,
IGF-I SDS, MPH SDS, and height SDS (Figure 4A). Among
the radiomics features, the SHAP value of inverse variance from
T2WI (GLCM) was the highest, followed by energy from T1C
(first order) and sum entropy from T2WI (GLCM; Figure 4B).
In the combined model, the SHAP value of CA-BA was the
highest, followed by weighted SDS, maximum probability from
T2WI (GLCM), and run length nonuniformity normalized from
T2WI (GLRLM; Figure 4C).
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Figure 4. Feature importance according to mean absolute SHAP values in the prediction models for the diagnosis of GHD from external validation.
(A) Mean absolute SHAP values in the clinical model. (B) Mean absolute SHAP values in the radiomics model. (C) Mean absolute SHAP values in the
combined model. CA-BA: chronological age–bone age; GHD: growth hormone deficiency; IGF-Ⅰ: insulin-like growth factor-I; MPH: midparental
height; SDS: SD score; SHAP: Shapley additive explanations.

Analysis of the dot summary plots revealed that high CA-BA
values and low value of IGF-Ⅰ SDS values influenced the
prediction of GHD in the clinical model (Figure S1 in
Multimedia Appendix 8). In the radiomics model, the high value
of inverse variance from T2WI (GLCM) influenced the
prediction of the ISS, and low values of sum entropy from T2WI
(GLCM) and small area low gray level emphasis from T2WI

(GLSZM) influenced the prediction of GHD (Figure S2 in
Multimedia Appendix 8). In the combined model, low values
of the CA-BA influenced the prediction of GHD, whereas
weight SDS, maximum probability from T2WI (GLCM), and
run length nonuniformity normalized from T2WI (GLRLM)
contributed highly to the model (Figure S3 in Multimedia
Appendix 8).
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By conducting SHAP analysis, waterfall plots were generated
for each patient, and an example of such a waterfall plot using
the clinical model is shown in Figure S1 in Multimedia
Appendix 9. The clinical model predicted the participant with
ISS as ISS. In this case, the contribution of the CA-BA was the
highest, followed by the BMI SDS and IGF-I SDS. Figure S2
in Multimedia Appendix 9 shows a waterfall plot in which the
combined model predicts a participant with GHD as having
GHD. In this case, the contribution of CA-BA was the highest,
followed by T1C GLSZM.

Model Code
The code for our model is available in a public repository on
GitHub [47].

Discussion

Principal Findings
In this study, the combined model using both clinical parameters
and radiomic features accurately predicted GHD. The combined
model was superior to the clinical and radiomics models. Among
the clinical parameters, the BMI SDS, CA-BA, weight SDS,
and growth velocity were the major contributing factors to the
clinical model. Among the radiomics features, inverse variance
from T2WI and energy from T1C were the major factors
contributing to the radiomics model. In the combined model,
CA-BA, weighted SDS, maximum probability from T2WI, and
run length nonuniformity normalized from T2WI were the major
contributing factors.

Owing to the invasiveness and limitations of the GH provocation
test, some studies have investigated the prediction models using
clinical parameters for GHD diagnosis. A single-center study
from Argentina assessed clinical parameters including pituitary
abnormalities, such as pituitary dysgenesis, midline
abnormalities, and pituitary hormone deficiencies, in children
and developed a GHD prediction model using a decision tree
with internal validation only [22]. The sensitivity, specificity,
and accuracy of the validation model were 55.6%, 99.2%, and
89.4%, respectively. However, that study focused on children
with brain pathology. A study from China developed a predictive
model of GHD and ISS using clinical parameters, including
IGF-1 and IGFBP-3, and MRI texture [24]. The AUC of the
clinical and MRI texture predictive models were 0.607 and
0.852, respectively, although only limited clinical parameters
and T1-weighted images were considered and external validation
was not performed. We aimed to develop a clinical model for
diagnosing GHD in children without pituitary abnormalities,
systemic pathology, or endocrinological pathology, excluding
GHD and ISS. We assessed various clinical parameters that can
be easily obtained in local clinics and developed a
machine-learning model with external validation; the results
were significant. Therefore, this model can be used to assess
the etiology of short stature in real-world clinical settings.

To date, investigations of radiomics models in pediatric
endocrinology including the diagnosis of short stature have been
limited. A Chinese study attempted to predict central precocious
puberty using radiomics in a relatively small number of patients,
reporting an AUC of 0.759 [48]. Another technical study focused

on the details of computer-aided diagnosis and proved its
predictive potential that it can predict GHD; however, the study
lacked clinical information [49]. Our previous study analyzed
T2-weighted sella MRI images of children with short stature
and developed a radiomics-based model to differentiate between
GHD and ISS with internal validation, in which the AUC and
accuracy were 0.705 and 70.6%, respectively [17]. However,
clinical parameters were not considered, and only a single series
of MRIs was analyzed in the study without external validation.
In this study, the accuracy and AUC of the radiomics model
were 0.698 and 0.691, respectively, for external validation. To
improve the predictability of radiomics and clinical models, we
combined both parameters using a machine learning classifier,
XGBoost, to build the prediction models in this study. XGBoost
is well-known for handling numerous features for model
development with good performance, which is suitable for
radiomics studies [50,51]. The pure radiomics model did not
yield high predictive performance in external validation;
however, the combined clinical and radiomics model could
accurately predict GHD with an AUC of 0.830 in external
validation. Furthermore, the combined clinical and radiomics
model yielded superior predictive performance compared with
the clinical model. The added value of radiomics for predicting
GHD was validated using an independent test set. Therefore,
we believe that radiomics may have a predictive potential for
differentiating between GHD and ISS.

To interpret the selected radiomic features and clinical
parameters, we performed a SHAP analysis. SHAP analysis
enables quantification of the impact of radiomic features and
clinical parameters on the prediction of GHD. SHAP estimates
the importance and value of each feature in the built model and
facilitates informed clinical decision-making. We provided
several SHAP plots to visualize the power of each selected
feature on global (in the overall study population) and local
(one patient) levels. This provides an intuitive visualization of
how clinical and radiomic features contribute to the prediction
of GHD. In both the radiomics and combined models, we found
that the radiomic features extracted from both T1C and T2WI
contributed to the prediction. Texture features and first-order
features were used in the radiomics model. In the combined
model, texture features were used for the prediction. Shape
features, including volume, were not used for the prediction,
which is consistent with the fact that distinguishing GHD from
ISS based on simple pituitary gland volume alone was not
successful in previous studies. The maximum probability feature,
a GLCM feature, was the most powerful predictor of GHD
among the radiomic features, followed by the run length
nonuniformity normalized, a GLRLM feature. GLCM measures
the spatial distribution of gray-level intensities within an image,
which is a biomarker for heterogeneity [16]. Particularly, as the
maximum probability represents occurrences of the most
predominant pair of neighboring intensity values [41], it may
capture the different intensities of the pituitary gland between
GHD and ISS, which cannot be detected by visual comparison.
The GLRLM quantifies the gray-level runs, which are defined
as the length of the number of pixels, of consecutive pixels that
have the same gray-level value. A run length nonuniformity
normalized, one of GLRLM features, measures the similarity
of run lengths throughout the image, with a lower value
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indicating more homogeneity among run lengths in the image
[41]. As higher values of run length nonuniformity normalized
showed a significant association with GHD in this study, we
can infer that more heterogeneous pituitary glands can be
observed in GHD than in ISS.

Among the clinical parameters, BMI SDS, CA-BA, weight SDS,
growth velocity, IGF-I SDS, MPH SDS, and height SDS were
the major contributing factors to the prediction model in this
study. This result is consistent with those of previous studies.
The clinical parameters related to the diagnosis of GHD have
been investigated in several studies. A retrospective study
reported that height velocity and IGF-1 could be used for
screening GHD [52]. A cohort study reported that BMI was
negatively related to peak GH level on the GH provocation test
[21]. In addition, pubertal maturation is delayed in children with
GHD, which is associated with delayed bone age [53,54]. In a
cohort study, bone age delay was higher in children with GHD
than in those with ISS [35]. In a cohort study, MPH was
different according to the etiologies of short stature [2].
Summary Statement of the Growth Hormone Research Society
recommends considering height SDS and height velocity when
deciding whether or not to perform a GH provocation test [1].

Limitations
This study had some limitations. First, this was a retrospective
study limited to a single ethnicity. Second, we could not consider
IGFBP-3 since the values from both centers were significantly
different owing to the different methods and reagents used.
Third, a genetic evaluation was not performed. Fourth, the
hypothalamus was not included in this analysis since sella MRI
focuses on pituitary glands. As the MRI protocol centers the
field of view on the sella or suprasellar area, T2WI often fails
to include the entire hypothalamus. In addition, the pituitary

gland has relatively clear anatomical boundaries, making
segmentation an easy task. However, the hypothalamus lacks
clear anatomical boundaries, leading to difficulties in setting
the region of interest. Consequently, the segmentation process
itself is likely to be biased. MRI is still burdensome for children
although it is less burdensome than the GH provocation test,
which requires multiple sampling and hospitalization. As sella
MRI is performed for patients who have endocrinological
problems, further studies investigating radiomics using various
protocols of brain MRI are required for the incrementing
practical value of radiomics for the prediction of GHD and ISS.

Conclusions
In conclusion, our research strongly emphasizes the potential
of combining radiomics-based diagnostic models with clinical
parameters for the differentiation between GHD and ISS in
children. This study meticulously analyzed both T2WI and T1C
in sella MRI, alongside a comprehensive range of clinical
parameters, such as puberty status and bone age, and scrutinized
the individual contributions of these parameters to the predictive
model. Our model combining both radiomics and clinical
parameters can accurately predict GHD from ISS, which was
also proven in the external validation, thereby proving its
predictive potential. Subsequently, we may expect an
individualized treatment strategy with our radiomics model
combined with machine learning. The code for our model can
be assessed in a public repository on GitHub [47]. Further
studies with larger samples, including various ethnicities and
various brain MRI series, are required to overcome the
limitations of this study. In addition, we hope to develop a robust
model using genetic information, as well as radiomics and
clinical parameters, to replace the GH provocation test in the
future.
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