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Abstract

Background: Sepsisis a heterogeneous syndrome, and enrollment of more homogeneous patients is essential to improve the
efficiency of clinical trials. Artificia intelligence (Al) has facilitated the identification of homogeneous subgroups, but how to
estimate the uncertainty of the model outputs when applying Al to clinical decision-making remains unknown.

Objective: Weaimed to design an Al-based model for purposeful patient enrollment, ensuring that a patient with sepsisrecruited
into atrial would still be persistently ill by the time the proposed therapy could impact patient outcome. We also expected that
the model could provideinterpretable factors and estimate the uncertainty of the model outputs at a customized confidence level.

Methods: In this retrospective study, 9135 patients with sepsis requiring vasopressor treatment within 24 hours after sepsis
onset were enrolled from Beth Israel Deaconess Medical Center. This cohort was used for model development, and 10-fold
cross-validation with 50 repeats was used for internal validation. In total, 3743 patients with sepsis from the el CU Collaborative
Research Database were used as the external validation cohort. All included patients with sepsis were stratified based on disease
progression trajectories: rapid death, recovery, and persistent ill. A total of 148 variables were selected for predicting the 3
trajectories. Four machine learning algorithms with 3 different setups were used. We estimated the uncertainty of the model
outputs using conformal prediction (CP). The Shapley Additive Explanations method was used to explain the model.

Results: The multiclass gradient boosting machine was identified as the best-performing model with good discrimination and
calibration performance in both validation cohorts. The mean area under the receiver operating characteristic curve with SD was
0.906 (0.018) for rapid death, 0.843 (0.008) for recovery, and 0.807 (0.010) for persistent ill in the internal validation cohort. In
the external validation cohort, the mean area under the receiver operating characteristic curve (SD) was 0.878 (0.003) for rapid
death, 0.764 (0.008) for recovery, and 0.696 (0.007) for persistent ill. The maximum norepinephrine equivalence, total urine
output, Acute Physiology Scorell11, mean systolic blood pressure, and the coefficient of variation of oxygen saturation contributed
the most. Compared to the model without CP, using the model with CP at amixed confidence approach reduced overall prediction
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errors by 27.6% (n=62) and 30.7% (n=412) in the internal and external validation cohorts, respectively, as well as enabled the

identification of more potentialy persistent ill patients.

Conclusions: Theimplementation of our model hasthe potential to reduce heterogeneity and enroll more homogeneous patients
in sepsis clinical trials. The use of CP for estimating the uncertainty of the model outputs allows for a more comprehensive
understanding of the model’s reliability and assists in making informed decisions based on the predicted outcomes.

(J Med Internet Res 2024;26:€54621) doi: 10.2196/54621
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Introduction

Sepsis, defined as adysregulated immune response to infection
that leads to acute organ dysfunction, persistently standsasone
of the leading causes of mortality worldwide [1,2]. Sepsisisa
heterogeneous syndrome, underscored by variousinfection sites,
pathogens, and a vast, multidimensiona array of clinical and
biological features [3], concomitant with the between-patient
variability in response to treatment, which might account for
the absence of benefit in most randomized controlled trias
(RCTs) assessing various therapies in sepsis [4]. The targeted
inclusion of more homogeneous patient popul ations shows great
promise and is an emerging trend in clinical trials[5].

Clinical tria enrichment strategies typically encompass
prognostic and predictive enrichment. PaO,/FiO, ratio has been
used to identify patientswith high-risk acuterespiratory distress
syndrome or those more likely to respond to prone positioning
[6,7]. Combined variables can enhance the accuracy of patient
stratification, thereby improving the efficacy of clinical trial
enrichment [8]. Several phenotypes of sepsis have been
identified through various combinations of clinical features,
with both prognostic and predictive enrichment [9,10]. However,
these phenotypes brought another layer of complexity due to
their heterogeneity and were not originally conceptualized to
improve the stratification of homogeneous patient groups in
sepsisclinical trials. Patients with sepsis are often accompanied
by circulation dysfunction and require the use of vasopressors.
Tracking how vasopressor administration changes could help
identify those likely to benefit most from treatment. Some may
get worse quickly and die, others might slowly improve, but
some could have a longer disease progression and might gain
morefrom clinical drug trials. Therefore, developing an artificial
intelligence (Al) model to predict which patients with sepsis
will have alonger courseis key to making clinical trials more
effective [11].

Al has now facilitated the identification of homogeneous
subgroups, allowing rapid selection of target patients for
potential enrollment in further RCTs [12]. However, a
significant challenge in Al modeling lies in quantifying the
reliability of themodel predictionsfor new patients, particularly
when data extend beyond the original training domain. In
addition, most Al models provide binary point predictions,
essentially yes or no, without assessing the reliability of these
predictions. However, when implementing Al models in
high-risk environments, it is critical to incorporate uncertainty
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guantification to minimize the occurrence of unanticipated
model failures such as the risk of automation bias[13].

This study aimed to develop and validate a novel data-driven
Al methodology for predicting patients with sepsis who are
likely to have a sufficiently long disease course, enabling the
enrollment of homogeneous patient populationsin clinical trials.
The Al model was expected to provideinterpretablefactorsand
confidence measures to monitor predictions and identify
uncertain predictions at acustomized confidence level for human
review, so asto enroll reliable persistent ill patients.

Methods

Study Design and Setting

This study used data from 2 distinct databases: the Medical
Information Mart for Intensive Care Database-1V (MIMIC-1V)
[14] and the elCU Collaborative Research Database
(elCU-CRD) [15]. MIMIC-1V contained critical care data for
73,181 patients admitted to the ICUs at Beth |srael Deaconess
Medical Center between 2008 and 2019. As alarge multicenter
intensive care unit (ICU) database, el CU-CRD collected more
than 200,000 ICU admissions from 335 units in 208 hospitals
acrossthe United Statesfrom 2014 to 2015. This study followed
the TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individua Prognosis or Diagnosis)
checklist (Multimedia Appendix 1).

Ethical Considerations

TheMIMIC-IV and el CU-CRD, which had been made publicly
accessible, received ethical approval from the institutional
review boards at Beth |srael Deaconess Medical Center and the
Massachusetts Institute of Technology, in alignment with the
principlesoutlined in the Declaration of Helsinki. The approval
also encompassed a waiver of the need for informed consent,
since all protected health information within the databases was
deidentified [14,15]. Access to these databases was provided
after completion of atraining program in human research ethics
and signing of a data use agreement with PhysioNet, earning a
certification number of 27252652.

Study Population

For inclusion in our study, patients were required to meet the
sepsis diagnosis and initiate vasopressor treatment within 24
hours after identifying sepsis. In MIMIC-1V, sepsiswas defined
according to the Sepsis-3 criteria, known or suspected infection,
and Sequential Organ Failure Assessment (SOFA) score =2
points[1]. Thefollowing 2 time points were specified to define
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the onset time of SepSiStengs [16]: (1) typicion: Clinical suspicion
of infection as determined by the earlier timestamp of
intravenous (1) antibiotics administration and cultures acquired
within a specific timeframe. If IV antibiotics were given first,
the cultures must have been obtained within 24 hours. If cultures
were obtained first, then antibiotics must have been subsequently
ordered within 72 hours. (2) tsoea: the occurrence of organ
failure as identified by a 2-point increase in the SOFA score
withina24-hour period. teygsisthe earlier of tyqcion aNd tsopa,
aslong astgopa 0ccurs no more than 24 hours before or 12 hours
after tgqicions Otherwise, the patient will not be diagnosed as
sepsis. Specificaly, if tygicion24 hoursstgopa<tygiciont12
hours, then tepgs=min (tgspicion: tsora)- 1N €/CU-CRD, patients
with sepsis were identified based on the admission diagnosis,
with the sepsis identification defined as the time of ICU
admission. To be as close as possible to the sepsis onset defined
in el CU-CRD, only patients with sepsis onset within 24 hours
of ICU admission were included in MIMIC-IV. Exclusion
criteriaincluded patients younger than 18 years, thosewho died
within thefirst 24 hours of sepsisonset, or ICU stay of lessthan
24 hours. For patients with multiple ICU admissions, only the
first admission was considered.

Trajectories of Sepsisand Candidate Predictors

We hypothesized that patients with sepsis were recruited into
RCTs within 24 hours of identification. Following the
enrollment, all patientswith sepsiswere stratified based on their
disease progression trajectories: “rapid death” included patients
who expired within 48 hours after enrollment, “recovery”
included patientswho liberated from vasopressor support within
48 hours after enrollment and maintained for at least 24 hours,
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and “persistent ill” included patients who necessitated ongoing
vasopressor support within 48 hours after enrollment.

The selection of candidate predictors incorporated both static
and time-varying variables. Time-varying variables were
extracted within the 24-hour period between identification and
enrollment. Any outliers were identified and subsequently
excluded according to the criteria defined in Multimedia
Appendix 2. For time-varying variables with multiple
measurements during the 24-hour duration, we included the
maximum, minimum, median, and coefficient of variation
(SD/mean) values for analysis. This resulted in atotal of 148
features.

Predictive Model Development and Explanation

The MIMIC-1V data set was used for model development, and
10-fold cross-validation with 50 repeats was used for internal
validation (Figure 1). The elCU-CRD was used for the
retrospective external validation. A total of 12 combinations of
model architectures and setups were used (Figure 1). The 4
specific architectures eval uated were gradi ent boosting machine
(GBM) [17], neural decision forest (NDF) [18], random forest
(RF), and logistic regression (LR; Multimedia Appendix 3).
GBM, RF, and LR were constructed with reference to the
research of Schwager et a [11] for predicting acute respiratory
distress syndrometrajectories. In addition, these 3 modelswere
commonly used in critica illness prediction tasks using
electronic health record (EHR) data [19-21]. However, they
were all traditional machine learning models, so we devel oped
adeep learning model for comparison, that is the NDF, which
has al so been shown to be effective for disease prediction using
EHR data[22].
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Figure 1. Workflow of the study. For the multiple predictions in evaluation, it means that the prediction was uncertain, and the artificial intelligence
model could not distinguish between the possible class |abels, thus awaiting the human review in order to result in asingle class prediction. APS: Acute
Physiology Score; el CU-CRD: el CU Collaborative Research Database; GBM: gradient boosting machine; GCS: Glasgow Coma Scale; HR: heart rate;
ICU: intensive care unit; IMV: invasive mechanical ventilation; 1V: intravenous; LR: logistic regression; MAP: mean arterial pressure; MIMIC-1V:
Medical Information Mart for Intensive Care Database-1V; NDF: neural decision forest; NEE: norepinephrine equivalence; RF: random forest; SBP:

systolic blood pressure; SHAP: Shapley Additive Explanations; UOP: urine output.
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These model architectures were used in 3 different setups,

namely, the 2-way (modeling persistent ill and rapid death or
recovery), 3-way nested (first predicting rapid death versus
persistent ill or recovery, then classifying persistent ill or
recovery), and 3-way multiclass (generating probabilities for
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each trgectory simultaneously) configurations. For missing
data, a mean imputation method was used for NDF, RF, and
LR, while GBM did not require imputation.
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We used Shapley Additive Explanations [23] valuesto explain
the best model among the 12 constructed models. In addition,
we examined the performance of the lightweight model using
thefeature subset in 3 ways (Multimedia Appendix 3): retraining
the model using only the 15 most important features (measured
by Shapley Additive Explanations), using the Boruta feature
selection method, or using only the maximum norepinephrine
equivalence (NEE), that is, NEE (max).

Conformal Prediction

To estimate the uncertainty of the model outputs, we used the
conformal prediction (CP) framework built on top of the
prediction algorithm (Multimedia Appendix 3). The CP is a
method that can be mathematically guaranteed to makereliable
predictions at a user-specified desired error rate for unknown
samples that differ from the training data [13]. We specifically
implemented a M ondrian CP to handl e the prediction tasks with
unbalanced data and worked on a class basis to ensure the
desired error rate within each class. For the 3 trgjectories of the
patients with sepsis, the possible prediction sets are single
predictionsof {0}, {1}, {2}; multiple predictions of {0, 1}, {0,
2},{1,2},{0, 1, 2}; and the empty prediction of { null}, where
label 0 meansrapid death, label 1 means persistent ill, and label
2 means recovery. We further split the development set into a
training set to train the Al models and a calibration set (Figure
1) to develop the Mondrian CP and also to tune the model
hyperparameters using a Bayesian optimizer [24].

Statistical Analysis

Univariate analysiswas performed using logistic regression and
was performed by associating each variable with three
trajectories: (1) rapid death versusrecovery or persistent ill, (2)
persistent ill versus recovery or rapid death, and (3) recovery
versus rapid death or persistent ill. Coefficients and Cls were
determined on the logit scale and then transformed through
exponentiation to provide estimates and 95% Cls for the odds
ratios.

The discrimination performance of the model was assessed
using the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve.

https://www.jmir.org/2024/1/e54621
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Calibration was performed using calibration curves and the
Brier score. We mainly used the AUROC value to identify the
model architecture and setup with the best performance for
predicting persistent ill. Metrics such astrue positiverate (TPR),
positive predictive value (PPV), and the F-0.5 score (a
composite of TPR and PPV that gives more weight to PPV)
were also calculated. Cutoff values were chosen to maximize
the F-0.5 score for the 2-way and 3-way nested setup. For the
multiclass setup, the predicted outcome was obtained with the
class that had the highest probability. These metrics were
reported as mean (SD) for both the internal validation and
external validation.

Sincethe conformal predictor could generate multiple or empty
predictions, we could not calculate the TPR and PPV of the
conformal predictor directly. To evaluate the effectiveness of
the conformal predictor and assessits performance, we randomly
select 1 model with the optimal architecture from the 10-fold
cross-validation with 50 repeats as an example. We evaluated
efficiency, which measuresthe proportion of al predictionsthat
yield a single correct prediction, and the validity (error rate),
representing the proportion of al predictionsthat did not surpass
the predetermined significance level [13].

Results

Study Population

Inthe MIMIC-IV, 9135 patients met theinclusion and exclusion
criteria. In the el CU-CRD, 3743 patients with sepsis were
identified and classified as external validation cohort
(Multimedia Appendix 4). The clinical characteristics of
included patients are described in Table 1. In the MIMIC-1V,
the median agewas 68 (IQR 58-78) years, with amedian SOFA
score of 4 (IQR 3-5). Themedian NEE was0.12 (IQR 0.07-0.25)
pg/kg/minute, and thein-hospital mortality was 16.4% (n=1501).
For the el CU-CRD, the median NEE was 0.15 (IQR 0.07-0.34)
ug/kg/minute, and the in-hospital mortality was 22.9% (n=857).
Univariate analysis was used to characterize the factors
distinguishing the subpopulations of the 3 traectories
(Multimedia Appendix 5).
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Table 1. Characterization of cohorts.
Characteristics MIMIC-1V2 (n=9135) el CU-CRDP (n=3743) P value
Age (years), median (IQR) 68 (58-78) 68 (58-79) 48
Male, n (%) 5482 (60) 1887 (50.4) <.001
BMI (kg/m?), median (IQR) 27.7 (24.1-32.7) 27.3(23.0-33.1) <.001
Emergency admission, n (%) 4635 (50.7) 2426 (64.8) <.001
Pulmonary infection, n (%) 3643 (39.9) 1308 (34.9) <.001
Charlson comorbidity index, median (IQR) 6 (4-8) _c —
SOFAY score, median (IQR) 4(35) 7(5-10) <.001
NEE® (max) (ug/kg/min), median (IQR) 0.12 (0.07-0.25) 0.15 (0.07-0.34) <.001
Use of CRRT', n (%) 515 (5.6) 80 (2.1) <.001
Trajectories of sepsis, n (%) <.001
Recovery 5835 (63.9) 2151 (57.5)
Persistent ill 2937 (32.1) 1283 (34.3)
Rapid death 363 (4) 309 (8.2)
In-hospital mortality, n (%) 1501 (16.4) 857 (22.9) <.001
28-day mortality, n (%) 1386 (15.2) — —

AMIMIC-IV: Medical Information Mart for Intensive Care Database-1V.
Pel CU-CRD: el CU Collaborative Research Database.

®Not available.

ISOFA: Sequential Organ Failure Assessment.

®NEE: norepinephrine equivalence.

fCRRT: continuous renal replacement therapy.

Trajectories of Sepsis

Patients in the MIMIC-1V exhibited the following outcomes
within a48-hour period after enrollment: 5835 (63.9%) patients
experienced recovery, 2937 (32.1%) patientsremained persistent
ill, and 363 (4%) patients experienced rapid death. In the
external validation cohort, that is, el CU-CRD, 2151 (57.5%)
patients experienced recovery, 1283 (34.3%) patients remained
persistent ill, and 309 (8.2%) patients experienced rapid death.

In patients who recovered, the in-hospital mortality ratesin the
MIMIC-IV and elCU-CRD were 5.8% (n=338) and 8.5%
(n=183), respectively. For patients with persistent ill, the
in-hospital mortality rates in the MIMIC-1V and el CU-CRD
were 27.2% (n=800) and 28.4% (n=365), respectively (Figure
2). Compared to patientswith recovery or persistent ill, patients
with rapid death had sustained high NEE, high heart rate, and
low systolic blood pressure (SBP; Figure 3).

Figure2. Trajectoriesof patients with sepsis. el CU-CRD: el CU Collaborative Research Database; MIMIC-1V: Medical Information Mart for Intensive

Care Database-I V.
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Figure 3. Trends of typical parameters over time according to sepsis trajectories 24 hours after identification. Points represent the median parameter
valuesin an hourly interval. Theintervals represent the 25th and 75th percentiles of the parameter values. Cubic polynomia smoothing splines highlight

trends. NEE: norepinephrine equivalence; SBP: systolic blood pressure.
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Predictive Per for mance of Al Model

Of the 4 machine learning architectures in 3 model setups for
predicting persistent ill on internal validation, GBM had the
highest consistent performance of mean AUROC (SD) ranging
from 0.806 (0.010) to 0.807 (0.010) compared to NDF ranging
from 0.779 (0.013) to 0.802 (0.011), RF ranging from 0.791
(0.013) t0 0.795 (0.010), and LR ranging from 0.719 (0.031) to
0.790 (0.007; Multimedia Appendix 6). Of the 3 model setups,
the 3-way multiclass with GBM performed best with the mean
AUROC of 0.807 (SD 0.010). In addition, the multiclass setup
could also provide a probability risk score for each trajectory,
with amean AUROC (SD) of 0.906 (0.018) for rapid death and

https://www.jmir.org/2024/1/e54621

0.843 (0.008) for recovery. In the external validation cohort,
the mean AUROCSs (SDs) were 0.878 (0.003) for rapid death,
0.764 (0.008) for recovery, and 0.696 (0.007) for persistent ill
(Multimedia Appendix 7).

When evaluating the discrimination performance of the
multiclass GBM under 4 feature subsetsin identifying persistent
ill patients, on theinternal validation cohort, the results showed
that the model achieved AUROC:Ss of 0.664-0.807 from using
NEE (max) only to using all 148 features (Figure 4A). When
applied to the external validation data set, the results were
AUROCs of 0.561-0.696. Figure 4B showsthe calibration plot.
The full metric results in different feature subsets of all 3
trajectories are presented in Multimedia Appendix 8.
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Figure 4. Performance results of the 3-way multiclass gradient boosting machine model. (A) Receiver operating characteristic curves for the model
across different feature subsets in predicting persistent ill. (B) Calibration plots of each outcome for the model using all the features. The predicted
probabilities were binned into deciles, and the mean and 95% Cl were shown in each decile. AUROC: area under the receiver operating characteristic

curve; NEE: norepinephrine equivalence.
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The global feature importance for the multiclass GBM model
using all the featuresis shown in Multimedia Appendix 9. The
visible, individually interpretable summary of the impact of
features across pati ents showed that oliguria, higher NEE (max),
unstable oxygen saturation, higher lactate, and lower SBP were
associated with ahigher risk of rapid death; higher NEE (max),
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higher Acute Physiology Score IIl score, more IV fluid
administrated, pulmonary infection, and lower SBP were
associated with a higher risk of persistent illness. In contrast,
patients with lower NEE (max), lower Acute Physiology Score
[1l, higher SBP, more urine output, and less IV fluid
administrated were more likely to recover (Figure 5A). For the
example of explaining the individual prediction for different
trajectories, see Figures 5B-5D.
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Figure5. Model explanations. (A) Individual explanation summary of the top 15 clinical features for each trajectory. Beeswax plots show the feature
importance across patients for the top 15 features, where each dot represents the feature importance value for 1 patient sample. Where multiple points
fall on the same x position, they are stacked to show density. Features with positive impact values push risk up, while negative impact values push risk
down. Long tailsindicate features that are extremely important for some patients. Explanation of the output of the risk score for (B) a patient who did
not survive, (C) a patient whose trajectory was persistent ill, and (D) a patient who recovered. APS: Acute Physiology Score; aPTT: activated partial
thromboplastin time; BUN: blood urea nitrogen; GCS: Glasgow Coma Scale; HCT: hematocrit; IV: intravenous; MAP: mean arteria pressure; NEE:
norepinephrine equivalence; PT: prothrombin time; SBP: systolic blood pressure; SHAP: Shapley Additive Explanations; SpO2: oxygen saturation;

UOP: urine output; vr: variation; WBC: white blood cell.
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Conformal Prediction

The calibration curves of the observed prediction error were
analyzed at different significance levels (1—confidence), ranging
from 0% to 100% (Figure 6). When the model was evaluated
using amixed confidence approach, with a confidence level of
85% for recovery and aconfidence level of 75% for rapid death
and persistent ill, the model with CP reduced overall prediction

https://www.jmir.org/2024/1/e54621
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RenderX

NEE(max)=0.05

Bicarbonate (vr)=0.13 aPTT (vr)=0.01 Pa0, (mean)=127.3

errors by 27.6% (n=62) and 30.7% (n=412) in the internal and
external validation cohorts, respectively, compared with the
model without CP (Table 2). Specifically for the predictionsin
persistent ill patients, it made 69 (23.5%) errorsin the internal
validation cohort (compared with n=122, 41.5% errors without
CP). In the external validation, it still produced significantly
lower error rates compared with the model without CP (n=398,
31% vs n=689, 53.7%).
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Figure 6. Plots of conformal prediction for the 2 validation cohorts. (A and B) The calibration curves depict the relationship between the observed
prediction error (which representsthe fraction of truelabels not encompassed within the prediction region) on the y-axis and the prespecified significance
level (the tolerated error rate) on the x-axis. The conformal predictor was well-calibrated for internal validation, while the calibration curve for external
populations deviated from the ideal diagonal line but was relatively good for the persistent ill when the significance level was below 0.25. (C and D)
Label distribution plotsat different prespecified significance levels, with the model incorporating more multiple predictions at lower significance (higher
confidence) levels. The blue dotted line indicates the corresponding significance level that produces the highest number of single-label predictions. The
black dotted line indicates the corresponding significance level that first produces no multiple predictions. Single predictions output { rapid death} or
{persistent ill} or {recovery}, multiple predictions output { rapid death, persistent ill}, {rapid death, recovery} or { persistent ill, recovery} or {rapid
death, persistent ill, recovery}, and empty means {null}. el CU-CRD: elCU Collaborative Research Database; MIMIC-1V: Medica Information Mart
for Intensive Care Database-1V.
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Table 2. Prediction regions on theinternal validation and external validation cohort.
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P_rediction re-  Interna validation cohort External validation cohort
gion
Rapid death  Persistentill ~ Recovery Overall Rapid death ~ Persistentill ~ Recovery Overall
(n=36), n (n=294), n (n=584), n (n=914), n (n=309), n (n=1283), n (n=2151),n(%) (n=3743),n
(%) (%) (%) %) %) %) (%)
Confidence level: 90%
Empty 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Error 6(16.7) 20 (6.8) 57 (9.8) 83(9.1) 9(2.9) 83 (6.5) 292 (13.6) 384 (10.3)
Single 3(8.3) 48(16.3) 312 (53.4) 363 (39.7) 12 (3.9) 28(2.2) 537 (25) 577 (15.4)
Multiple 27 (75) 226 (76.9) 215 (36.8) 468 (51.2) 288 (93.2) 1172(91.3) 1322 (61.5) 2782 (74.3)
Confidence level: 85%
Empty 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Error 8(22.2) 35(11.9) 84 (14.4) 127 (13.9) 34(11) 163 (12.7) 474 (22) 671 (17.9)
Single 4(11.1) 107 (36.4) 369 (63.2) 480 (52.5) 31(10) 184 (14.3) 853 (39.7) 1068 (28.5)
Multiple  24(66.7) 152 (51.7) 131 (22.4) 307 (33.6) 244 (79) 936 (73) 824 (38.3) 2004 (53.5)
Confidence level: 80%
Empty 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Error 10(27.8)  48(16.3) 114 (19.5) 172 (18.8) 58 (18.8) 259 (20.2) 696 (32.4) 1013 (27.1)
Single 7(19.4) 160 (54.4) 410(70.2) 577 (63.1) 53 (17.2) 402 (31.3) 1053 (49) 1508 (40.3)
Multiple 19 (52.8) 86 (29.3) 60 (10.3) 165 (18.1) 198 (64.1) 622 (48.5) 402 (18.7) 1222 (32.6)
Confidence level: 75%
Empty 0(0) 1(0.3) 2(0.3) 3(0.3) 1(0.3) 11(0.9) 16 (0.7) 28(0.7)
Error 10(27.8)  68(23.1) 132 (22.6) 210 (23) 57 (18.4) 387(30.2) 839 (39) 1283 (34.3)
Single 10 (27.8) 178 (60.5) 448 (76.7) 636 (69.6) 85 (27.5) 488 (38) 1263 (58.7) 1836 (49.1)
Multiple  16(44.4) 47 (16) 2(0.3) 65 (7.1) 166 (53.7) 397 (30.9) 33(15) 506 (15.9)
Mixed confidence level?
Empty 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Error 10 (27.8) 69 (23.4) 84 (14.4) 163 (17.8) 58 (18.8) 308 (31) 474 (22) 930 (24.8)
Single 9 (25) 134 (45.6) 450 (77) 593 (64.9) 76 (24.6) 294 (22.9) 1279 (59.5) 1649 (44.1)
Multiple 17 (47.2) 91 (31) 50 (8.6) 158 (17.3) 175 (56.6) 591 (46.1) 398 (18.5) 1164 (31.1)
AP point prediction
Error 22 (61.1) 122 (41.5) 81(13.9) 225 (24.6) 198 (64.1) 689 (53.7) 455 (21.2) 1342 (35.9)
Correct 14 (38.9) 172 (58.5) 503 (86.1) 689 (75.4) 111 (35.9) 504 (46.3) 1696 (78.8) 2401 (64.1)

385% for recovery, 75% for rapid death and persistent ill. The model demonstrates relatively improved performance in recognizing recovery due to a
number of training examplesfor this class. Asaresult, when applying the conformal predictor, we can assign higher confidence levels within this class
without generating excessively broad and uninformative prediction intervals.

BAI: artificial intelligence.

Although the number of accurately predicted persistent ill cases
(efficiency) was lower compared to the conventional model
without CP (n=134, 45.6% vs n=172, 58.5% in the internal
cohort and n=294, 22.9% vs n=594, 46.3% in the externa
cohort), focusing on patientswith multiple predictions of { rapid

https://www.jmir.org/2024/1/e54621

RenderX

death, persistent ill} proved beneficial. Because among these
predictions, 46 of 62 (74.2%) predictions were persistent ill in
the internal validation cohort, and 351 of 496 (70.8%)
predictions were persistent ill in the external validation cohort
(Table 3).
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Table 3. Multiple prediction analysis when set the mixed confidence level.
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Multiplepredic- Internal validation cohort External validation cohort

tion?
Rapid Persistentill  Recovery Total (n=158), Rapid death Persistent ill Recovery Total (n=1164),
death (n=91), n (%) (n=50),n (%) n (%) (n=175), n (n=591), n (%) (n=398), n n (%)
(n=17),n (%) (%)
(%)

{0, 1} 16 (25.8) 46(74.2) _b 62 (39.2) 145 (29.2) 351 (70.8) — 496 (42.6)

{0, 2} 1(33.3) — 2(66.7) 3(1.9) 15(23.1) — 50 (76.9) 65 (5.6)

{1, 2} — 44 (48.9) 46 (51.1) 90 (57) — 194 (40) 291 (60) 485 (41.7)

{0,1,2} 0(0) 1(33.3) 2(66.7) 3(1.9) 15 (12.7) 46 (39) 57 (48.3) 118 (10.1)

M ultiple prediction means that the prediction is uncertain, and the model could not distinguish between the possible class labels, thus awaiting the
human review. Label 0 means rapid death, label 1 means persistent ill, and label 2 means recovery.

BNot applicable.

Additionally, a web calculator was developed to enable users
to visually understand the outputs of our Al model (Figure 7).
Thisweb-based calculator isinternally deployed and iscurrently
being updated at the Department of Critical Care Medicine,
Zhongda Hospital. The web calculator is only accessible using
aprivate URL by clinicianswithin the hospital and isconnecting
to the hospital’s EHR system. After a patient is identified as
having sepsisand successfully collects 24-hour data after sepsis
onset, the calculator would include this patient in the list. The

https://www.jmir.org/2024/1/e54621

users can then select 1 patient and view the relevant features
that are calculated automatically based on data sourced from
the hospital’s EHR system. After that, users can view the risk
score predicted by this calculator and enter the confidence level
to get a reliable prediction. The confidence level could be
adjusted according to the model performance and workload, as
anumber of uncertain predictions can lead to an unmanageable
situation.
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Figure 7. User interface of the web-based calculator. (A) Users can view the characteristics of the selected patient with sepsis and 24-hour collected
feature values. (B) Generate risk scoresfor each sepsistrajectory by pressing the “ Predict the trajectory” button. Then, pressthe“Conformal prediction”
button, enter the confidence level for each sepsistrajectory, and pressthe “ Confirm” button to output the final prediction under the conformal prediction
framework. If the result was a multiple prediction, the users could press the “More information” button to go back to the original hospital electronic
health record system to get more information for making afurther decision, as the multiple prediction meansthat the prediction is uncertain as the model
could not distinguish between the possible class labels and thus await human review. Users could also press “Quit” to leave the system. Al: artificial
intelligence; APS: Acute Physiology Score; |V: intravenous; MAP: mean arterial pressure; NEE: norepinephrine equivalence; SBP: systolic blood
pressure; SpO2: oxygen saturation; UOP: urine output.

A Al-based Sepsis Trajectory Calculator

A novel data-driven Al methodology for predicting septic patients who are likely

o have a sufficiently long disease course, enabling

the enrollment of hamogeneous patient populations in clinical trials. The Al model using conformal prediction was expected to

provide confidence measures to monitor predictions and identify uncertain predictions at a customized confidence level for human

review, so as to enroll reliable persistent ill patients

Patient characteristics

Medical record number Gender Age ICU admission date

2023** Female 68 **f02/2023

24 hour collected data after sepsis onset

MNEE {max) (pg/kg/min) UCOP (mL) APS N SEP (mean) (mm Hg)
0.27 590 88 110

IV fluid administrated (mL) Age (years) Lactate (min) (mmal/L) Spo (vr)
4800 68 3 0.04

Heart rate (max) (bpm) Spod (mean) (%) Pulmonary infection (0/1) MAP (mean) (mm Hg)
98 96 1 a7

Respiratory rate (mean) (bpm) Serum calcium (vr) Bicarbonate (vr)
29 0.5 0.13

Predict the trajectory

B Predict the trajectory
Rapid death Persistent ill Recovery

0.41 0.46 013

The Al model could generate probabilities for each trajectory simultaneously.

Conformal prediction

Please specify the confidence level (Cl) (0.50-1.00) for each sepsis trajectory.

Cl for rapid death Cl for persistent ill Cl for recovery Press for the final output

0.75 0.75 0.85 Confirm
The patient's trajectory prediction is:
{Persistent ill, rapid death}

Conformal prediction can generate prediction sets when given the user-specified error rate € (e = significance level = 1 - confidence level). In words, the
probability that the prediction set contains the correct label would be 1 - . For the three stratifications of the septic patients, the possible prediction sets are:
-- Single predictions of {rapid death}, {persistent ill}, {recavery};

-- Multiple predictions of {rapid death, persistent ill}, {rapid death, recovery}, {persistent ill, recovery), {rapid death, persistent ill, recovery};

-- Empty set of {null};

More information m

-- Press the button More information when the prediction is uncertain, as the model could net distinguish between the possible class labels and thus
awaiting the human review, the user needs to go back to the original clinical EHR system for more information
-- Press the button Quit to leave the system
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Discussion

Principal Findings

We developed anovel Al-based model to predict patients with
sepsis likely to have a long disease course. Such a model
improves the homogeneity of patients with sepsis enrolled in
clinical trialsand ensuresthat a patient recruited into atrial will
still be persistently ill by the time the proposed therapy can
impact patient outcome. Furthermore, we used CP to estimate
the uncertainty of the model outputs, which allows for amore
comprehensive understanding of the model’s reliability and
assists in making informed decisions based on the predicted
outcomes. |n addition, the devel oped web-based cal culator may
assist clinicians in comprehending the relationship between
input data and predicted output. This could facilitate feedback
from the clinicians and help improve the model predictions,
which may be more effectively trandated into medical practice
for clinical decision-making.

To identify innovative pharmacological treatments for sepsis,
enrolling patients who are most likely to benefit is essential.
The enrichment strategy in this study differed from the prior
prognostic and predi ctive enrichment strategies. In the Efficacy
of Xuebijing Injection in Patients With SepsisRCT, considering
that the mortality rate was 74.3% in patients with a SOFA score
of more than 13 in the Chinese population, Liu et a [25] used
a prognostic enrichment strategy to enroll patients with sepsis
with a SOFA score of 2 to 13 to evaluate the treatment effect
of Xuehijing injection on 28-day mortality. However, this
approach fails to consider patients with rapid recovery
trgjectories who may not derive significant benefits from
Xuehijing injection treatment. Whether the targeted SOFA score
can be effectively generalized in other trials remains uncertain.
Oneimportant constraint with the predictive enrichment strategy
is that different therapeutics necessitate different populations
[26,27], and welack the prior knowledgeto accurately determine
which patients are most likely to benefit from a specific therapy.
Moreover, the limited availability of point-of-care devices for
the identification of targeted patients, coupled with the lengthy
measurement turnaround time, creates considerable obstacles
for clinical trial enrichment [28]. These challenges are further
exacerbated by the rapidly changing nature of diseases observed
within clinical trials. From another perspective, we stratified
patients based on the disease course of sepsis and suggested
that future sepsis clinical trials should prioritize including
patients with persistent ill, who would have a sufficiently long
disease course to benefit from a therapy. Additionally, the
current enrichment strategy does not necessarily take into
account the different infection sites, pathogens, and
pharmacological interventions.

Using real-time eHealth data, we devel oped an Al-based model
for patient enrollment in sepsisclinical trials. Of the 12 machine
learning models tested, a multiclass GBM model performed
best and was able to provide a probability risk for each
trgjectory. Thelightweight model using thetop 15 features also
showed acceptable performance and could be more suitable for
future clinical applications. In addition, this model overcame
the challenges of aheterogeneous patient population and tailored

https://www.jmir.org/2024/1/e54621
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patient stratification to the needs of aparticular drug candidate.
Meanwhile, the predictive window, defined as the period
between identification and enrollment, was 24 hoursfor the Al
model, which was consistent with the previous sepsis RCTs
[29]. It is reasonable to predict the disease course of patients
within 24 hours after the identification of sepsisonset in future
trials.

To mitigatetherisk of automation biasin Al and evaluate model
uncertainty, we implemented a CP framework on top of the
prediction algorithm. This framework enabled the model to
generate confidence measures, allowing for the monitoring of
predictions and identification of uncertain outcomes based on
adjustable confidence levels for human review. This is
particularly crucial in different clinical scenarios where the Al
system should be capabl e of acknowledging its limitations and
saying“l don’t know” [30]. Thiscould help to reduce prediction
errors, especially in external validation, where the model
performance could not be guaranteed, as well as in internal
validation due to factors such as population heterogeneity and
differences in clinical practice [31]. In addition, this study
demonstrated that flagging the multiple (uncertain) predictions
that the model could not classify for human review proved
valuable, as it enabled the identification of more potentially
persistent ill patientswhile simultaneously identifying high-risk
individuals. In this case, the initial screening of patients could
be achieved, allowing clinicians to avoid having to manually
screen each patient for eigibility inthetrial. Instead, they only
need to review and assess the uncertain results of the model.
Asdiscussed by Goodman et a [32], clinicians were supposed
to integrate their clinical experience with Al model outputs for
clinical decision-making, thus avoiding inappropriate reliance
on algorithms alone.

Limitations

Our study faces some limitations. First, athough this
retrospective study demonstrates that the proposed Al-based
enrichment strategy is effectivein reducing patient heterogeneity
in the design of sepsis clinical trials, we still need to include
more patientsto perform further prospective external validation
using the devel oped web-based cal culator. Second, the definition
of sepsis onset was different between MIMIC-IV and
€l CU-CRD since the onset time of infection and organ failure
in elCU-CRD were missing. Third, considering that our
Al-based model needed a 24-hour predictive window after
identifying sepsis onset, this model is not available for the
mandated emergency therapies for sepsis, including the
administration of antibiotics and 1V fluid. The final limitation
arises from the absence of criteria for balancing the trade-off
between generating single-label and multiple predictions.
Avoiding an excessive number of multiple (uncertain)
predictions is important, as this can lead to an unmanageable
situation.

Conclusions

Our interpretable Al-based model using clinical dataaccurately
identifies patients with different disease courses, which can
reduce the heterogeneity of patientswith sepsisin futureclinical
trials. Additionally, we estimate the uncertainty of the model
outputs and enabl e the performance of the model using amixed
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confidence approach. Application of this model can identify pharmacological treatments for sepsistrials.
more homogeneous patient populations and precision
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Results of the of multiclass gradient boosting machine in different feature selections in predicting different outcomes.
[DOCX File, 35 KB-Multimedia Appendix 8]

Multimedia Appendix 9

The overall global feature importance for the model using all the features.
[DOCX File, 121 KB-Multimedia Appendix 9]

References

1.  Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et a. The third international consensus
definitions for sepsis and septic shock (sepsis-3). AMA. 2016;315(8):801-810. [FREE Full text] [doi:
10.1001/jama.2016.0287] [Medline: 26903338]

2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et a. Global, regional, and national sepsis
incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200-211.
[EREE Full text] [doi: 10.1016/S0140-6736(19)32989-7] [Medline: 31954465]

3. Reddy K, Sinha P, O'Kane CM, Gordon AC, Calfee CS, McAuley DF. Subphenotypesin critical care: translation into
clinical practice. Lancet Respir Med. 2020;8(6):631-643. [doi: 10.1016/S2213-2600(20)30124-7] [Medline: 32526190]

4.  Santacruz CA, Pereira AJ, CelisE, Vincent JL. Which multicenter randomized controlled trialsin critical care medicine
have shown reduced mortality? A systematic review. Crit Care Med. 2019;47(12):1680-1691. [doi:
10.1097/CCM.0000000000004000] [Medline: 31567349]

5.  Masove DM, Tang B, Shankar-Hari M, Lawler PR, Angus DC, Baillie K, et a. Redefining critical illness. Nat Med.
2022;28(6):1141-1148. [doi: 10.1038/s41591-022-01843-X] [Medline: 35715504]

6. Papazian L, Forel IM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et a. Neuromuscular blockersin early acute
respiratory distress syndrome. N Engl JMed. 2010;363(12):1107-1116. [doi: 10.1056/NEJM 0a1005372] [Medline: 20843245]

7. Villar J, Ferrando C, Martinez D, Ambros A, Mufioz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory
distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267-276. [doi:
10.1016/S2213-2600(19)30417-5] [Medline: 32043986]

8.  Villar J, AmbrosA, Mosteiro F, Martinez D, Fernandez L, Ferrando C, et a. A prognostic enrichment strategy for selection
of patients with acute respiratory distress syndromein clinical trials. Crit Care Med. 2019;47(3):377-385. [doi:
10.1097/CCM.0000000000003624] [Medline: 30624279]

9.  Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment
implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003-2017. [FREE Full text] [doi:
10.1001/jama.2019.5791] [Medline: 31104070]

10. Bhavani SV, Semler M, Qian ET, Verhoef PA, Robichaux C, Churpek MM, et al. Development and validation of novel
sepsis subphenotypes using trajectories of vital signs. Intensive Care Med. 2022;48(11):1582-1592. [FREE Full text] [doi:
10.1007/s00134-022-06890-z] [Medline: 36152041]

11. Schwager E, Jansson K, Rahman A, Schiffer S, Chang Y, Boverman G, et al. Utilizing machinelearning to improveclinical
trial design for acute respiratory distress syndrome. NPJ Digit Med. 2021;4(1):133. [FREE Full text] [doi:
10.1038/s41746-021-00505-5] [Medline: 34504281]

12. Maddali MV, Churpek M, Pham T, Rezoagli E, Zhuo H, Zhao W, et al. Validation and utility of ARDS subphenotypes
identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet
Respir Med. 2022;10(4):367-377. [EREE Full text] [doi: 10.1016/S2213-2600(21)00461-6] [Medline: 35026177]

13. Olsson H, Kartasalo K, Mulligi N, Capuccini M, Ruusuvuori P, Samaratunga H, et al. Estimating diagnostic uncertainty
in artificial intelligence assisted pathology using conformal prediction. Nat Commun. 2022;13(1):7761. [FREE Full text]
[doi: 10.1038/s41467-022-34945-8] [Medline: 36522311]

14. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-1V, afreely accessible electronic
health record dataset. Sci Data. 2023;10(1):1. [EREE Full text] [doi: 10.1038/s41597-022-01899-x] [Medline: 36596836]

15. Pollard TJ, Johnson AEW, RaffaJD, Celi LA, Mark RG, Badawi O. The el CU Collaborative Research Database, afreely
available multi-center database for critical care research. Sci Data. 2018;5:180178. [FREE Full text] [doi:
10.1038/sdata.2018.178] [Medline: 30204154]

16. ReynaMA, Josef CS, Jeter R, Shashikumar SP, Westover MB, Nemati S, et al. Early prediction of sepsisfrom clinical
data: the PhysioNet/Computing in Cardiology Challenge 2019. Crit Care Med. 2020;48(2):210-217. [FREE Full text] [doi:
10.1097/CCM.0000000000004145] [Medline: 31939789]

17. ChenT, Guestrin C. XGBoost: a scalable tree boosting system. 2016. Presented at: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining; August 13-17, 2016:785-794; San Francisco, CA,
United States. [doi: 10.1145/2939672.2939785]

18. Kontschieder P, Fiterau M, Criminisi A, Buldo SR. Deep neural decision forests. 2015. Presented at: | EEE |nternational
Conference on Computer Vision (ICCV); December 7, 2015:7-13; Santiago, Chile. [doi: 10.1109/iccv.2015.172]

https://www.jmir.org/2024/1/e54621 JMed Internet Res 2024 | vol. 26 | €54621 | p. 16
(page number not for citation purposes)


https://jmir.org/api/download?alt_name=jmir_v26i1e54621_app8.docx&filename=ef043446aa4a3a6fd9deabf09f3ad93e.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e54621_app8.docx&filename=ef043446aa4a3a6fd9deabf09f3ad93e.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e54621_app9.docx&filename=3ee9d2543bf3d9e2db6b8759695c3081.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e54621_app9.docx&filename=3ee9d2543bf3d9e2db6b8759695c3081.docx
https://europepmc.org/abstract/MED/26903338
http://dx.doi.org/10.1001/jama.2016.0287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26903338&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(19)32989-7
http://dx.doi.org/10.1016/S0140-6736(19)32989-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31954465&dopt=Abstract
http://dx.doi.org/10.1016/S2213-2600(20)30124-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32526190&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000004000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31567349&dopt=Abstract
http://dx.doi.org/10.1038/s41591-022-01843-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35715504&dopt=Abstract
http://dx.doi.org/10.1056/NEJMoa1005372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20843245&dopt=Abstract
http://dx.doi.org/10.1016/S2213-2600(19)30417-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32043986&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000003624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30624279&dopt=Abstract
https://europepmc.org/abstract/MED/31104070
http://dx.doi.org/10.1001/jama.2019.5791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31104070&dopt=Abstract
https://europepmc.org/abstract/MED/36152041
http://dx.doi.org/10.1007/s00134-022-06890-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36152041&dopt=Abstract
https://doi.org/10.1038/s41746-021-00505-5
http://dx.doi.org/10.1038/s41746-021-00505-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34504281&dopt=Abstract
https://europepmc.org/abstract/MED/35026177
http://dx.doi.org/10.1016/S2213-2600(21)00461-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35026177&dopt=Abstract
https://doi.org/10.1038/s41467-022-34945-8
http://dx.doi.org/10.1038/s41467-022-34945-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36522311&dopt=Abstract
https://doi.org/10.1038/s41597-022-01899-x
http://dx.doi.org/10.1038/s41597-022-01899-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36596836&dopt=Abstract
https://doi.org/10.1038/sdata.2018.178
http://dx.doi.org/10.1038/sdata.2018.178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30204154&dopt=Abstract
https://europepmc.org/abstract/MED/31939789
http://dx.doi.org/10.1097/CCM.0000000000004145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31939789&dopt=Abstract
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1109/iccv.2015.172
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Yang et al

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

Hyland SL, Faltys M, Huser M, Lyu X, Gumbsch T, Esteban C, et al. Early prediction of circulatory failure in the intensive
care unit using machine learning. Nat Med. 2020;26(3):364-373. [doi: 10.1038/s41591-020-0789-4] [Medline: 32152583]
Giannini HM, Ginestra JC, Chivers C, Draugelis M, Hanish A, Schweickert WD, et a. A machine learning algorithm to
predict severe sepsis and septic shock: development, implementation, and impact on clinical practice. Crit Care Med.
2019;47(11):1485-1492. [FREE Full text] [doi: 10.1097/CCM.0000000000003891] [Medline: 31389839]

Yang M, Liu C, Wang X, Li Y, Gao H, Liu X, et al. An explainable artificial intelligence predictor for early detection of
sepsis. Crit Care Med. 2020;48(11):€1091-e1096. [doi: 10.1097/CCM.0000000000004550] [Medline: 32885937]

Li J, TianY, Li R, Zhou T, Li J, Ding K, et a. Improving prediction for medical institution with limited patient data:
leveraging hospital-specific data based on multicenter collaborative research network. Artif Intell Med. 2021;113:102024.
[doi: 10.1016/j.artmed.2021.102024] [Medline: 33685587]

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanationsto global understanding
with explainable Al for trees. Nat Mach Intell. 2020;2(1):56-67. [FREE Full text] [doi: 10.1038/s42256-019-0138-9]
[Medline: 32607472]

Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. Taking the human out of the loop: areview of Bayesian
optimization. Proc |EEE. 2016;104(1):148-175. [doi: 10.1109/jproc.2015.2494218]

LiuS, Yao C, Xie J, LiuH, Wang H, Lin Z, et a. Effect of an herbal-based injection on 28-day mortality in patients with
sepsis: the EXIT-SEP randomized clinical trial. JAMA Intern Med. 2023;183(7):647-655. [FREE Full text] [doi:
10.1001/jamainternmed.2023.0780] [Medline: 37126332]

Meyer NJ, Reilly JP, Anderson BJ, Palakshappa JA, Jones TK, Dunn TG, et a. Mortality benefit of recombinant human
interleukin-1 receptor antagonist for sepsis varies by initial interleukin-1 receptor antagonist plasma concentration. Crit
Care Med. 2018;46(1):21-28. [FREE Full text] [doi: 10.1097/CCM.0000000000002749] [Medline: 28991823]

Panacek EA, Marshall JC, Albertson TE, Johnson DH, Johnson S, MacArthur RD, et al. Efficacy and safety of the monoclonal
anti-tumor necrosis factor antibody F(ab')2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6
levels. Crit Care Med. 2004;32(11):2173-2182. [doi: 10.1097/01.ccm.0000145229.59014.6¢] [Medline: 15640628]
Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX. Toward smarter lumping and smarter splitting: rethinking
strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am J Respir Crit Care Med.
2016;194(2):147-155. [FREE Full text] [doi: 10.1164/rccm.201512-2544CP] [Medline: 27244481]

Sevransky JE, Rothman RE, Hager DN, Bernard GR, Brown SM, Buchman TG, et al. Effect of vitamin C, thiamine, and
hydrocortisone on ventilator- and vasopressor-free days in patients with sepsis: the VICTAS randomized clinical trial.
JAMA. 2021;325(8):742-750. [FREE Full text] [doi: 10.1001/jama.2020.24505] [Medline: 33620405]

Shashikumar SP, Wardi G, Malhotra A, Nemati S. Artificial intelligence sepsis prediction algorithm learnsto say "I don't
know". NPJ Digit Med. 2021;4(1):134. [FREE Full text] [doi: 10.1038/s41746-021-00504-6] [Medline: 34504260]
YangM, LiuS,Hao T, MaC, ChenH, Li Y, et a. Development and validation of adeep interpretable network for continuous
acutekidney injury predictionincriticaly ill patients. Artif Intell Med. 2024;149:102785. [doi: 10.1016/].artmed.2024.102785]
[Medline: 38462285]

Goodman KE, Rodman AM, Morgan DJ. Preparing physicians for the clinical algorithm era. N Engl JMed.
2023;389(6):483-487. [doi: 10.1056/NEJM p2304839] [Medline: 37548320]

Accessing MIMIC-IV data. Medical Information Mart for Intensive Care. URL : https.//mimic.mit.edu/ [accessed 2022-10-28]
Accessing el CU-CRD data. el CU Collaborative Research Database. URL: http://eicu-crd.mit.edu/ [accessed 2022-10-28]
Accessing open-source code. GitHub. URL : https://github.com/Betapower/Al -based-sepsi s-enrichment-strategy [accessed
2023-11-10]

Abbreviations

Al: artificial intelligence

AUROC: areaunder the receiver operating characteristic curve
CP: conformal prediction

EHR: electronic health record

el CU-CRD: elCU Collaborative Research Database

GBM: gradient boosting machine

ICU: intensive care unit

IV: intravenous

LR: logistic regression

MIMIC-1V: Medical Information Mart for Intensive Care Database-1V
NDF: neural decision forest

NEE: norepinephrine equivalence

PPV: positive predictive value

RCT: randomized controlled trial

RF: random forest

https://www.jmir.org/2024/1/e54621 JMed Internet Res 2024 | vol. 26 | €54621 | p. 17

(page number not for citation purposes)


http://dx.doi.org/10.1038/s41591-020-0789-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32152583&dopt=Abstract
https://europepmc.org/abstract/MED/31389839
http://dx.doi.org/10.1097/CCM.0000000000003891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31389839&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000004550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32885937&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2021.102024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33685587&dopt=Abstract
https://europepmc.org/abstract/MED/32607472
http://dx.doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32607472&dopt=Abstract
http://dx.doi.org/10.1109/jproc.2015.2494218
https://europepmc.org/abstract/MED/37126332
http://dx.doi.org/10.1001/jamainternmed.2023.0780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37126332&dopt=Abstract
https://europepmc.org/abstract/MED/28991823
http://dx.doi.org/10.1097/CCM.0000000000002749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28991823&dopt=Abstract
http://dx.doi.org/10.1097/01.ccm.0000145229.59014.6c
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15640628&dopt=Abstract
https://europepmc.org/abstract/MED/27244481
http://dx.doi.org/10.1164/rccm.201512-2544CP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27244481&dopt=Abstract
https://europepmc.org/abstract/MED/33620405
http://dx.doi.org/10.1001/jama.2020.24505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33620405&dopt=Abstract
https://doi.org/10.1038/s41746-021-00504-6
http://dx.doi.org/10.1038/s41746-021-00504-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34504260&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2024.102785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38462285&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp2304839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37548320&dopt=Abstract
https://mimic.mit.edu/
http://eicu-crd.mit.edu/
https://github.com/Betapower/AI-based-sepsis-enrichment-strategy
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Yang et al

SBP: systolic blood pressure

SOFA: Sequential Organ Failure Assessment

TPR: true positive rate

TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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