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Abstract

Background: Sepsis is a heterogeneous syndrome, and enrollment of more homogeneous patients is essential to improve the
efficiency of clinical trials. Artificial intelligence (AI) has facilitated the identification of homogeneous subgroups, but how to
estimate the uncertainty of the model outputs when applying AI to clinical decision-making remains unknown.

Objective: We aimed to design an AI-based model for purposeful patient enrollment, ensuring that a patient with sepsis recruited
into a trial would still be persistently ill by the time the proposed therapy could impact patient outcome. We also expected that
the model could provide interpretable factors and estimate the uncertainty of the model outputs at a customized confidence level.

Methods: In this retrospective study, 9135 patients with sepsis requiring vasopressor treatment within 24 hours after sepsis
onset were enrolled from Beth Israel Deaconess Medical Center. This cohort was used for model development, and 10-fold
cross-validation with 50 repeats was used for internal validation. In total, 3743 patients with sepsis from the eICU Collaborative
Research Database were used as the external validation cohort. All included patients with sepsis were stratified based on disease
progression trajectories: rapid death, recovery, and persistent ill. A total of 148 variables were selected for predicting the 3
trajectories. Four machine learning algorithms with 3 different setups were used. We estimated the uncertainty of the model
outputs using conformal prediction (CP). The Shapley Additive Explanations method was used to explain the model.

Results: The multiclass gradient boosting machine was identified as the best-performing model with good discrimination and
calibration performance in both validation cohorts. The mean area under the receiver operating characteristic curve with SD was
0.906 (0.018) for rapid death, 0.843 (0.008) for recovery, and 0.807 (0.010) for persistent ill in the internal validation cohort. In
the external validation cohort, the mean area under the receiver operating characteristic curve (SD) was 0.878 (0.003) for rapid
death, 0.764 (0.008) for recovery, and 0.696 (0.007) for persistent ill. The maximum norepinephrine equivalence, total urine
output, Acute Physiology Score III, mean systolic blood pressure, and the coefficient of variation of oxygen saturation contributed
the most. Compared to the model without CP, using the model with CP at a mixed confidence approach reduced overall prediction
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errors by 27.6% (n=62) and 30.7% (n=412) in the internal and external validation cohorts, respectively, as well as enabled the
identification of more potentially persistent ill patients.

Conclusions: The implementation of our model has the potential to reduce heterogeneity and enroll more homogeneous patients
in sepsis clinical trials. The use of CP for estimating the uncertainty of the model outputs allows for a more comprehensive
understanding of the model’s reliability and assists in making informed decisions based on the predicted outcomes.

(J Med Internet Res 2024;26:e54621) doi: 10.2196/54621
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Introduction

Sepsis, defined as a dysregulated immune response to infection
that leads to acute organ dysfunction, persistently stands as one
of the leading causes of mortality worldwide [1,2]. Sepsis is a
heterogeneous syndrome, underscored by various infection sites,
pathogens, and a vast, multidimensional array of clinical and
biological features [3], concomitant with the between-patient
variability in response to treatment, which might account for
the absence of benefit in most randomized controlled trials
(RCTs) assessing various therapies in sepsis [4]. The targeted
inclusion of more homogeneous patient populations shows great
promise and is an emerging trend in clinical trials [5].

Clinical trial enrichment strategies typically encompass
prognostic and predictive enrichment. PaO2/FiO2 ratio has been
used to identify patients with high-risk acute respiratory distress
syndrome or those more likely to respond to prone positioning
[6,7]. Combined variables can enhance the accuracy of patient
stratification, thereby improving the efficacy of clinical trial
enrichment [8]. Several phenotypes of sepsis have been
identified through various combinations of clinical features,
with both prognostic and predictive enrichment [9,10]. However,
these phenotypes brought another layer of complexity due to
their heterogeneity and were not originally conceptualized to
improve the stratification of homogeneous patient groups in
sepsis clinical trials. Patients with sepsis are often accompanied
by circulation dysfunction and require the use of vasopressors.
Tracking how vasopressor administration changes could help
identify those likely to benefit most from treatment. Some may
get worse quickly and die, others might slowly improve, but
some could have a longer disease progression and might gain
more from clinical drug trials. Therefore, developing an artificial
intelligence (AI) model to predict which patients with sepsis
will have a longer course is key to making clinical trials more
effective [11].

AI has now facilitated the identification of homogeneous
subgroups, allowing rapid selection of target patients for
potential enrollment in further RCTs [12]. However, a
significant challenge in AI modeling lies in quantifying the
reliability of the model predictions for new patients, particularly
when data extend beyond the original training domain. In
addition, most AI models provide binary point predictions,
essentially yes or no, without assessing the reliability of these
predictions. However, when implementing AI models in
high-risk environments, it is critical to incorporate uncertainty

quantification to minimize the occurrence of unanticipated
model failures such as the risk of automation bias [13].

This study aimed to develop and validate a novel data-driven
AI methodology for predicting patients with sepsis who are
likely to have a sufficiently long disease course, enabling the
enrollment of homogeneous patient populations in clinical trials.
The AI model was expected to provide interpretable factors and
confidence measures to monitor predictions and identify
uncertain predictions at a customized confidence level for human
review, so as to enroll reliable persistent ill patients.

Methods

Study Design and Setting
This study used data from 2 distinct databases: the Medical
Information Mart for Intensive Care Database-IV (MIMIC-IV)
[14] and the eICU Collaborative Research Database
(eICU-CRD) [15]. MIMIC-IV contained critical care data for
73,181 patients admitted to the ICUs at Beth Israel Deaconess
Medical Center between 2008 and 2019. As a large multicenter
intensive care unit (ICU) database, eICU-CRD collected more
than 200,000 ICU admissions from 335 units in 208 hospitals
across the United States from 2014 to 2015. This study followed
the TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis)
checklist (Multimedia Appendix 1).

Ethical Considerations
The MIMIC-IV and eICU-CRD, which had been made publicly
accessible, received ethical approval from the institutional
review boards at Beth Israel Deaconess Medical Center and the
Massachusetts Institute of Technology, in alignment with the
principles outlined in the Declaration of Helsinki. The approval
also encompassed a waiver of the need for informed consent,
since all protected health information within the databases was
deidentified [14,15]. Access to these databases was provided
after completion of a training program in human research ethics
and signing of a data use agreement with PhysioNet, earning a
certification number of 27252652.

Study Population
For inclusion in our study, patients were required to meet the
sepsis diagnosis and initiate vasopressor treatment within 24
hours after identifying sepsis. In MIMIC-IV, sepsis was defined
according to the Sepsis-3 criteria, known or suspected infection,
and Sequential Organ Failure Assessment (SOFA) score ≥2
points [1]. The following 2 time points were specified to define
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the onset time of sepsis tsepsis [16]: (1) tsuspicion: clinical suspicion
of infection as determined by the earlier timestamp of
intravenous (IV) antibiotics administration and cultures acquired
within a specific timeframe. If IV antibiotics were given first,
the cultures must have been obtained within 24 hours. If cultures
were obtained first, then antibiotics must have been subsequently
ordered within 72 hours. (2) tSOFA: the occurrence of organ
failure as identified by a 2-point increase in the SOFA score
within a 24-hour period. tsepsis is the earlier of tsuspicion and tSOFA,
as long as tSOFA occurs no more than 24 hours before or 12 hours
after tsuspicion; otherwise, the patient will not be diagnosed as
sepsis. Specifically, if tsuspicion–24 hours≤tSOFA≤tsuspicion+12
hours, then tsepsis=min (tsuspicion, tSOFA). In eICU-CRD, patients
with sepsis were identified based on the admission diagnosis,
with the sepsis identification defined as the time of ICU
admission. To be as close as possible to the sepsis onset defined
in eICU-CRD, only patients with sepsis onset within 24 hours
of ICU admission were included in MIMIC-IV. Exclusion
criteria included patients younger than 18 years, those who died
within the first 24 hours of sepsis onset, or ICU stay of less than
24 hours. For patients with multiple ICU admissions, only the
first admission was considered.

Trajectories of Sepsis and Candidate Predictors
We hypothesized that patients with sepsis were recruited into
RCTs within 24 hours of identification. Following the
enrollment, all patients with sepsis were stratified based on their
disease progression trajectories: “rapid death” included patients
who expired within 48 hours after enrollment, “recovery”
included patients who liberated from vasopressor support within
48 hours after enrollment and maintained for at least 24 hours,

and “persistent ill” included patients who necessitated ongoing
vasopressor support within 48 hours after enrollment.

The selection of candidate predictors incorporated both static
and time-varying variables. Time-varying variables were
extracted within the 24-hour period between identification and
enrollment. Any outliers were identified and subsequently
excluded according to the criteria defined in Multimedia
Appendix 2. For time-varying variables with multiple
measurements during the 24-hour duration, we included the
maximum, minimum, median, and coefficient of variation
(SD/mean) values for analysis. This resulted in a total of 148
features.

Predictive Model Development and Explanation
The MIMIC-IV data set was used for model development, and
10-fold cross-validation with 50 repeats was used for internal
validation (Figure 1). The eICU-CRD was used for the
retrospective external validation. A total of 12 combinations of
model architectures and setups were used (Figure 1). The 4
specific architectures evaluated were gradient boosting machine
(GBM) [17], neural decision forest (NDF) [18], random forest
(RF), and logistic regression (LR; Multimedia Appendix 3).
GBM, RF, and LR were constructed with reference to the
research of Schwager et al [11] for predicting acute respiratory
distress syndrome trajectories. In addition, these 3 models were
commonly used in critical illness prediction tasks using
electronic health record (EHR) data [19-21]. However, they
were all traditional machine learning models, so we developed
a deep learning model for comparison, that is the NDF, which
has also been shown to be effective for disease prediction using
EHR data [22].
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Figure 1. Workflow of the study. For the multiple predictions in evaluation, it means that the prediction was uncertain, and the artificial intelligence
model could not distinguish between the possible class labels, thus awaiting the human review in order to result in a single class prediction. APS: Acute
Physiology Score; eICU-CRD: eICU Collaborative Research Database; GBM: gradient boosting machine; GCS: Glasgow Coma Scale; HR: heart rate;
ICU: intensive care unit; IMV: invasive mechanical ventilation; IV: intravenous; LR: logistic regression; MAP: mean arterial pressure; MIMIC-IV:
Medical Information Mart for Intensive Care Database-IV; NDF: neural decision forest; NEE: norepinephrine equivalence; RF: random forest; SBP:
systolic blood pressure; SHAP: Shapley Additive Explanations; UOP: urine output.

These model architectures were used in 3 different setups,
namely, the 2-way (modeling persistent ill and rapid death or
recovery), 3-way nested (first predicting rapid death versus
persistent ill or recovery, then classifying persistent ill or
recovery), and 3-way multiclass (generating probabilities for

each trajectory simultaneously) configurations. For missing
data, a mean imputation method was used for NDF, RF, and
LR, while GBM did not require imputation.

J Med Internet Res 2024 | vol. 26 | e54621 | p. 4https://www.jmir.org/2024/1/e54621
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We used Shapley Additive Explanations [23] values to explain
the best model among the 12 constructed models. In addition,
we examined the performance of the lightweight model using
the feature subset in 3 ways (Multimedia Appendix 3): retraining
the model using only the 15 most important features (measured
by Shapley Additive Explanations), using the Boruta feature
selection method, or using only the maximum norepinephrine
equivalence (NEE), that is, NEE (max).

Conformal Prediction
To estimate the uncertainty of the model outputs, we used the
conformal prediction (CP) framework built on top of the
prediction algorithm (Multimedia Appendix 3). The CP is a
method that can be mathematically guaranteed to make reliable
predictions at a user-specified desired error rate for unknown
samples that differ from the training data [13]. We specifically
implemented a Mondrian CP to handle the prediction tasks with
unbalanced data and worked on a class basis to ensure the
desired error rate within each class. For the 3 trajectories of the
patients with sepsis, the possible prediction sets are single
predictions of {0}, {1}, {2}; multiple predictions of {0, 1}, {0,
2}, {1, 2}, {0, 1, 2}; and the empty prediction of {null}, where
label 0 means rapid death, label 1 means persistent ill, and label
2 means recovery. We further split the development set into a
training set to train the AI models and a calibration set (Figure
1) to develop the Mondrian CP and also to tune the model
hyperparameters using a Bayesian optimizer [24].

Statistical Analysis
Univariate analysis was performed using logistic regression and
was performed by associating each variable with three
trajectories: (1) rapid death versus recovery or persistent ill, (2)
persistent ill versus recovery or rapid death, and (3) recovery
versus rapid death or persistent ill. Coefficients and CIs were
determined on the logit scale and then transformed through
exponentiation to provide estimates and 95% CIs for the odds
ratios.

The discrimination performance of the model was assessed
using the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve.

Calibration was performed using calibration curves and the
Brier score. We mainly used the AUROC value to identify the
model architecture and setup with the best performance for
predicting persistent ill. Metrics such as true positive rate (TPR),
positive predictive value (PPV), and the F-0.5 score (a
composite of TPR and PPV that gives more weight to PPV)
were also calculated. Cutoff values were chosen to maximize
the F-0.5 score for the 2-way and 3-way nested setup. For the
multiclass setup, the predicted outcome was obtained with the
class that had the highest probability. These metrics were
reported as mean (SD) for both the internal validation and
external validation.

Since the conformal predictor could generate multiple or empty
predictions, we could not calculate the TPR and PPV of the
conformal predictor directly. To evaluate the effectiveness of
the conformal predictor and assess its performance, we randomly
select 1 model with the optimal architecture from the 10-fold
cross-validation with 50 repeats as an example. We evaluated
efficiency, which measures the proportion of all predictions that
yield a single correct prediction, and the validity (error rate),
representing the proportion of all predictions that did not surpass
the predetermined significance level [13].

Results

Study Population
In the MIMIC-IV, 9135 patients met the inclusion and exclusion
criteria. In the eICU-CRD, 3743 patients with sepsis were
identified and classified as external validation cohort
(Multimedia Appendix 4). The clinical characteristics of
included patients are described in Table 1. In the MIMIC-IV,
the median age was 68 (IQR 58-78) years, with a median SOFA
score of 4 (IQR 3-5). The median NEE was 0.12 (IQR 0.07-0.25)
μg/kg/minute, and the in-hospital mortality was 16.4% (n=1501).
For the eICU-CRD, the median NEE was 0.15 (IQR 0.07-0.34)
μg/kg/minute, and the in-hospital mortality was 22.9% (n=857).
Univariate analysis was used to characterize the factors
distinguishing the subpopulations of the 3 trajectories
(Multimedia Appendix 5).
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Table 1. Characterization of cohorts.

P valueeICU-CRDb (n=3743)MIMIC-IVa (n=9135)Characteristics

.4868 (58-79)68 (58-78)Age (years), median (IQR)

<.0011887 (50.4)5482 (60)Male, n (%)

<.00127.3 (23.0-33.1)27.7 (24.1-32.7)BMI (kg/m2), median (IQR)

<.0012426 (64.8)4635 (50.7)Emergency admission, n (%)

<.0011308 (34.9)3643 (39.9)Pulmonary infection, n (%)

——c6 (4-8)Charlson comorbidity index, median (IQR)

<.0017 (5-10)4 (3-5)SOFAd score, median (IQR)

<.0010.15 (0.07-0.34)0.12 (0.07-0.25)NEEe (max) (μg/kg/min), median (IQR)

<.00180 (2.1)515 (5.6)Use of CRRTf, n (%)

<.001Trajectories of sepsis, n (%)

2151 (57.5)5835 (63.9)Recovery

1283 (34.3)2937 (32.1)Persistent ill

309 (8.2)363 (4)Rapid death

<.001857 (22.9)1501 (16.4)In-hospital mortality, n (%)

——1386 (15.2)28-day mortality, n (%)

aMIMIC-IV: Medical Information Mart for Intensive Care Database-IV.
beICU-CRD: eICU Collaborative Research Database.
cNot available.
dSOFA: Sequential Organ Failure Assessment.
eNEE: norepinephrine equivalence.
fCRRT: continuous renal replacement therapy.

Trajectories of Sepsis
Patients in the MIMIC-IV exhibited the following outcomes
within a 48-hour period after enrollment: 5835 (63.9%) patients
experienced recovery, 2937 (32.1%) patients remained persistent
ill, and 363 (4%) patients experienced rapid death. In the
external validation cohort, that is, eICU-CRD, 2151 (57.5%)
patients experienced recovery, 1283 (34.3%) patients remained
persistent ill, and 309 (8.2%) patients experienced rapid death.

In patients who recovered, the in-hospital mortality rates in the
MIMIC-IV and eICU-CRD were 5.8% (n=338) and 8.5%
(n=183), respectively. For patients with persistent ill, the
in-hospital mortality rates in the MIMIC-IV and eICU-CRD
were 27.2% (n=800) and 28.4% (n=365), respectively (Figure
2). Compared to patients with recovery or persistent ill, patients
with rapid death had sustained high NEE, high heart rate, and
low systolic blood pressure (SBP; Figure 3).

Figure 2. Trajectories of patients with sepsis. eICU-CRD: eICU Collaborative Research Database; MIMIC-IV: Medical Information Mart for Intensive
Care Database-IV.
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Figure 3. Trends of typical parameters over time according to sepsis trajectories 24 hours after identification. Points represent the median parameter
values in an hourly interval. The intervals represent the 25th and 75th percentiles of the parameter values. Cubic polynomial smoothing splines highlight
trends. NEE: norepinephrine equivalence; SBP: systolic blood pressure.

Predictive Performance of AI Model
Of the 4 machine learning architectures in 3 model setups for
predicting persistent ill on internal validation, GBM had the
highest consistent performance of mean AUROC (SD) ranging
from 0.806 (0.010) to 0.807 (0.010) compared to NDF ranging
from 0.779 (0.013) to 0.802 (0.011), RF ranging from 0.791
(0.013) to 0.795 (0.010), and LR ranging from 0.719 (0.031) to
0.790 (0.007; Multimedia Appendix 6). Of the 3 model setups,
the 3-way multiclass with GBM performed best with the mean
AUROC of 0.807 (SD 0.010). In addition, the multiclass setup
could also provide a probability risk score for each trajectory,
with a mean AUROC (SD) of 0.906 (0.018) for rapid death and

0.843 (0.008) for recovery. In the external validation cohort,
the mean AUROCs (SDs) were 0.878 (0.003) for rapid death,
0.764 (0.008) for recovery, and 0.696 (0.007) for persistent ill
(Multimedia Appendix 7).

When evaluating the discrimination performance of the
multiclass GBM under 4 feature subsets in identifying persistent
ill patients, on the internal validation cohort, the results showed
that the model achieved AUROCs of 0.664-0.807 from using
NEE (max) only to using all 148 features (Figure 4A). When
applied to the external validation data set, the results were
AUROCs of 0.561-0.696. Figure 4B shows the calibration plot.
The full metric results in different feature subsets of all 3
trajectories are presented in Multimedia Appendix 8.
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Figure 4. Performance results of the 3-way multiclass gradient boosting machine model. (A) Receiver operating characteristic curves for the model
across different feature subsets in predicting persistent ill. (B) Calibration plots of each outcome for the model using all the features. The predicted
probabilities were binned into deciles, and the mean and 95% CI were shown in each decile. AUROC: area under the receiver operating characteristic
curve; NEE: norepinephrine equivalence.

Model Explanation
The global feature importance for the multiclass GBM model
using all the features is shown in Multimedia Appendix 9. The
visible, individually interpretable summary of the impact of
features across patients showed that oliguria, higher NEE (max),
unstable oxygen saturation, higher lactate, and lower SBP were
associated with a higher risk of rapid death; higher NEE (max),

higher Acute Physiology Score III score, more IV fluid
administrated, pulmonary infection, and lower SBP were
associated with a higher risk of persistent illness. In contrast,
patients with lower NEE (max), lower Acute Physiology Score
III, higher SBP, more urine output, and less IV fluid
administrated were more likely to recover (Figure 5A). For the
example of explaining the individual prediction for different
trajectories, see Figures 5B-5D.
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Figure 5. Model explanations. (A) Individual explanation summary of the top 15 clinical features for each trajectory. Beeswax plots show the feature
importance across patients for the top 15 features, where each dot represents the feature importance value for 1 patient sample. Where multiple points
fall on the same x position, they are stacked to show density. Features with positive impact values push risk up, while negative impact values push risk
down. Long tails indicate features that are extremely important for some patients. Explanation of the output of the risk score for (B) a patient who did
not survive, (C) a patient whose trajectory was persistent ill, and (D) a patient who recovered. APS: Acute Physiology Score; aPTT: activated partial
thromboplastin time; BUN: blood urea nitrogen; GCS: Glasgow Coma Scale; HCT: hematocrit; IV: intravenous; MAP: mean arterial pressure; NEE:
norepinephrine equivalence; PT: prothrombin time; SBP: systolic blood pressure; SHAP: Shapley Additive Explanations; SpO2: oxygen saturation;
UOP: urine output; vr: variation; WBC: white blood cell.

Conformal Prediction
The calibration curves of the observed prediction error were
analyzed at different significance levels (1–confidence), ranging
from 0% to 100% (Figure 6). When the model was evaluated
using a mixed confidence approach, with a confidence level of
85% for recovery and a confidence level of 75% for rapid death
and persistent ill, the model with CP reduced overall prediction

errors by 27.6% (n=62) and 30.7% (n=412) in the internal and
external validation cohorts, respectively, compared with the
model without CP (Table 2). Specifically for the predictions in
persistent ill patients, it made 69 (23.5%) errors in the internal
validation cohort (compared with n=122, 41.5% errors without
CP). In the external validation, it still produced significantly
lower error rates compared with the model without CP (n=398,
31% vs n=689, 53.7%).
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Figure 6. Plots of conformal prediction for the 2 validation cohorts. (A and B) The calibration curves depict the relationship between the observed
prediction error (which represents the fraction of true labels not encompassed within the prediction region) on the y-axis and the prespecified significance
level (the tolerated error rate) on the x-axis. The conformal predictor was well-calibrated for internal validation, while the calibration curve for external
populations deviated from the ideal diagonal line but was relatively good for the persistent ill when the significance level was below 0.25. (C and D)
Label distribution plots at different prespecified significance levels, with the model incorporating more multiple predictions at lower significance (higher
confidence) levels. The blue dotted line indicates the corresponding significance level that produces the highest number of single-label predictions. The
black dotted line indicates the corresponding significance level that first produces no multiple predictions. Single predictions output {rapid death} or
{persistent ill} or {recovery}, multiple predictions output {rapid death, persistent ill}, {rapid death, recovery} or {persistent ill, recovery} or {rapid
death, persistent ill, recovery}, and empty means {null}. eICU-CRD: eICU Collaborative Research Database; MIMIC-IV: Medical Information Mart
for Intensive Care Database-IV.
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Table 2. Prediction regions on the internal validation and external validation cohort.

External validation cohortInternal validation cohortPrediction re-
gion

Overall
(n=3743), n
(%)

Recovery
(n=2151), n (%)

Persistent ill
(n=1283), n
(%)

Rapid death
(n=309), n
(%)

Overall
(n=914), n
(%)

Recovery
(n=584), n
(%)

Persistent ill
(n=294), n
(%)

Rapid death
(n=36), n
(%)

Confidence level: 90%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

384 (10.3)292 (13.6)83 (6.5)9 (2.9)83 (9.1)57 (9.8)20 (6.8)6 (16.7)Error

577 (15.4)537 (25)28 (2.2)12 (3.9)363 (39.7)312 (53.4)48 (16.3)3 (8.3)Single

2782 (74.3)1322 (61.5)1172 (91.3)288 (93.2)468 (51.2)215 (36.8)226 (76.9)27 (75)Multiple

Confidence level: 85%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

671 (17.9)474 (22)163 (12.7)34 (11)127 (13.9)84 (14.4)35 (11.9)8 (22.2)Error

1068 (28.5)853 (39.7)184 (14.3)31 (10)480 (52.5)369 (63.2)107 (36.4)4 (11.1)Single

2004 (53.5)824 (38.3)936 (73)244 (79)307 (33.6)131 (22.4)152 (51.7)24 (66.7)Multiple

Confidence level: 80%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

1013 (27.1)696 (32.4)259 (20.2)58 (18.8)172 (18.8)114 (19.5)48 (16.3)10 (27.8)Error

1508 (40.3)1053 (49)402 (31.3)53 (17.2)577 (63.1)410 (70.2)160 (54.4)7 (19.4)Single

1222 (32.6)402 (18.7)622 (48.5)198 (64.1)165 (18.1)60 (10.3)86 (29.3)19 (52.8)Multiple

Confidence level: 75%

28 (0.7)16 (0.7)11 (0.9)1 (0.3)3 (0.3)2 (0.3)1 (0.3)0 (0)Empty

1283 (34.3)839 (39)387 (30.2)57 (18.4)210 (23)132 (22.6)68 (23.1)10 (27.8)Error

1836 (49.1)1263 (58.7)488 (38)85 (27.5)636 (69.6)448 (76.7)178 (60.5)10 (27.8)Single

596 (15.9)33 (1.5)397 (30.9)166 (53.7)65 (7.1)2 (0.3)47 (16)16 (44.4)Multiple

Mixed confidence levela

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

930 (24.8)474 (22)398 (31)58 (18.8)163 (17.8)84 (14.4)69 (23.4)10 (27.8)Error

1649 (44.1)1279 (59.5)294 (22.9)76 (24.6)593 (64.9)450 (77)134 (45.6)9 (25)Single

1164 (31.1)398 (18.5)591 (46.1)175 (56.6)158 (17.3)50 (8.6)91 (31)17 (47.2)Multiple

AIb point prediction

1342 (35.9)455 (21.2)689 (53.7)198 (64.1)225 (24.6)81 (13.9)122 (41.5)22 (61.1)Error

2401 (64.1)1696 (78.8)594 (46.3)111 (35.9)689 (75.4)503 (86.1)172 (58.5)14 (38.9)Correct

a85% for recovery, 75% for rapid death and persistent ill. The model demonstrates relatively improved performance in recognizing recovery due to a
number of training examples for this class. As a result, when applying the conformal predictor, we can assign higher confidence levels within this class
without generating excessively broad and uninformative prediction intervals.
bAI: artificial intelligence.

Although the number of accurately predicted persistent ill cases
(efficiency) was lower compared to the conventional model
without CP (n=134, 45.6% vs n=172, 58.5% in the internal
cohort and n=294, 22.9% vs n=594, 46.3% in the external
cohort), focusing on patients with multiple predictions of {rapid

death, persistent ill} proved beneficial. Because among these
predictions, 46 of 62 (74.2%) predictions were persistent ill in
the internal validation cohort, and 351 of 496 (70.8%)
predictions were persistent ill in the external validation cohort
(Table 3).
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Table 3. Multiple prediction analysis when set the mixed confidence level.

External validation cohortInternal validation cohortMultiple predic-

tiona

Total (n=1164),
n (%)

Recovery
(n=398), n
(%)

Persistent ill
(n=591), n (%)

Rapid death
(n=175), n
(%)

Total (n=158),
n (%)

Recovery
(n=50), n (%)

Persistent ill
(n=91), n (%)

Rapid
death
(n=17), n
(%)

496 (42.6)—351 (70.8)145 (29.2)62 (39.2)—b46 (74.2)16 (25.8){0, 1}

65 (5.6)50 (76.9)—15 (23.1)3 (1.9)2 (66.7)—1 (33.3){0, 2}

485 (41.7)291 (60)194 (40)—90 (57)46 (51.1)44 (48.9)—{1, 2}

118 (10.1)57 (48.3)46 (39)15 (12.7)3 (1.9)2 (66.7)1 (33.3)0 (0){0, 1, 2}

aMultiple prediction means that the prediction is uncertain, and the model could not distinguish between the possible class labels, thus awaiting the
human review. Label 0 means rapid death, label 1 means persistent ill, and label 2 means recovery.
bNot applicable.

Additionally, a web calculator was developed to enable users
to visually understand the outputs of our AI model (Figure 7).
This web-based calculator is internally deployed and is currently
being updated at the Department of Critical Care Medicine,
Zhongda Hospital. The web calculator is only accessible using
a private URL by clinicians within the hospital and is connecting
to the hospital’s EHR system. After a patient is identified as
having sepsis and successfully collects 24-hour data after sepsis
onset, the calculator would include this patient in the list. The

users can then select 1 patient and view the relevant features
that are calculated automatically based on data sourced from
the hospital’s EHR system. After that, users can view the risk
score predicted by this calculator and enter the confidence level
to get a reliable prediction. The confidence level could be
adjusted according to the model performance and workload, as
a number of uncertain predictions can lead to an unmanageable
situation.
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Figure 7. User interface of the web-based calculator. (A) Users can view the characteristics of the selected patient with sepsis and 24-hour collected
feature values. (B) Generate risk scores for each sepsis trajectory by pressing the “Predict the trajectory” button. Then, press the “Conformal prediction”
button, enter the confidence level for each sepsis trajectory, and press the “Confirm” button to output the final prediction under the conformal prediction
framework. If the result was a multiple prediction, the users could press the “More information” button to go back to the original hospital electronic
health record system to get more information for making a further decision, as the multiple prediction means that the prediction is uncertain as the model
could not distinguish between the possible class labels and thus await human review. Users could also press “Quit” to leave the system. AI: artificial
intelligence; APS: Acute Physiology Score; IV: intravenous; MAP: mean arterial pressure; NEE: norepinephrine equivalence; SBP: systolic blood
pressure; SpO2: oxygen saturation; UOP: urine output.
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Discussion

Principal Findings
We developed a novel AI-based model to predict patients with
sepsis likely to have a long disease course. Such a model
improves the homogeneity of patients with sepsis enrolled in
clinical trials and ensures that a patient recruited into a trial will
still be persistently ill by the time the proposed therapy can
impact patient outcome. Furthermore, we used CP to estimate
the uncertainty of the model outputs, which allows for a more
comprehensive understanding of the model’s reliability and
assists in making informed decisions based on the predicted
outcomes. In addition, the developed web-based calculator may
assist clinicians in comprehending the relationship between
input data and predicted output. This could facilitate feedback
from the clinicians and help improve the model predictions,
which may be more effectively translated into medical practice
for clinical decision-making.

To identify innovative pharmacological treatments for sepsis,
enrolling patients who are most likely to benefit is essential.
The enrichment strategy in this study differed from the prior
prognostic and predictive enrichment strategies. In the Efficacy
of Xuebijing Injection in Patients With Sepsis RCT, considering
that the mortality rate was 74.3% in patients with a SOFA score
of more than 13 in the Chinese population, Liu et al [25] used
a prognostic enrichment strategy to enroll patients with sepsis
with a SOFA score of 2 to 13 to evaluate the treatment effect
of Xuebijing injection on 28-day mortality. However, this
approach fails to consider patients with rapid recovery
trajectories who may not derive significant benefits from
Xuebijing injection treatment. Whether the targeted SOFA score
can be effectively generalized in other trials remains uncertain.
One important constraint with the predictive enrichment strategy
is that different therapeutics necessitate different populations
[26,27], and we lack the prior knowledge to accurately determine
which patients are most likely to benefit from a specific therapy.
Moreover, the limited availability of point-of-care devices for
the identification of targeted patients, coupled with the lengthy
measurement turnaround time, creates considerable obstacles
for clinical trial enrichment [28]. These challenges are further
exacerbated by the rapidly changing nature of diseases observed
within clinical trials. From another perspective, we stratified
patients based on the disease course of sepsis and suggested
that future sepsis clinical trials should prioritize including
patients with persistent ill, who would have a sufficiently long
disease course to benefit from a therapy. Additionally, the
current enrichment strategy does not necessarily take into
account the different infection sites, pathogens, and
pharmacological interventions.

Using real-time eHealth data, we developed an AI-based model
for patient enrollment in sepsis clinical trials. Of the 12 machine
learning models tested, a multiclass GBM model performed
best and was able to provide a probability risk for each
trajectory. The lightweight model using the top 15 features also
showed acceptable performance and could be more suitable for
future clinical applications. In addition, this model overcame
the challenges of a heterogeneous patient population and tailored

patient stratification to the needs of a particular drug candidate.
Meanwhile, the predictive window, defined as the period
between identification and enrollment, was 24 hours for the AI
model, which was consistent with the previous sepsis RCTs
[29]. It is reasonable to predict the disease course of patients
within 24 hours after the identification of sepsis onset in future
trials.

To mitigate the risk of automation bias in AI and evaluate model
uncertainty, we implemented a CP framework on top of the
prediction algorithm. This framework enabled the model to
generate confidence measures, allowing for the monitoring of
predictions and identification of uncertain outcomes based on
adjustable confidence levels for human review. This is
particularly crucial in different clinical scenarios where the AI
system should be capable of acknowledging its limitations and
saying “I don’t know” [30]. This could help to reduce prediction
errors, especially in external validation, where the model
performance could not be guaranteed, as well as in internal
validation due to factors such as population heterogeneity and
differences in clinical practice [31]. In addition, this study
demonstrated that flagging the multiple (uncertain) predictions
that the model could not classify for human review proved
valuable, as it enabled the identification of more potentially
persistent ill patients while simultaneously identifying high-risk
individuals. In this case, the initial screening of patients could
be achieved, allowing clinicians to avoid having to manually
screen each patient for eligibility in the trial. Instead, they only
need to review and assess the uncertain results of the model.
As discussed by Goodman et al [32], clinicians were supposed
to integrate their clinical experience with AI model outputs for
clinical decision-making, thus avoiding inappropriate reliance
on algorithms alone.

Limitations
Our study faces some limitations. First, although this
retrospective study demonstrates that the proposed AI-based
enrichment strategy is effective in reducing patient heterogeneity
in the design of sepsis clinical trials, we still need to include
more patients to perform further prospective external validation
using the developed web-based calculator. Second, the definition
of sepsis onset was different between MIMIC-IV and
eICU-CRD since the onset time of infection and organ failure
in eICU-CRD were missing. Third, considering that our
AI-based model needed a 24-hour predictive window after
identifying sepsis onset, this model is not available for the
mandated emergency therapies for sepsis, including the
administration of antibiotics and IV fluid. The final limitation
arises from the absence of criteria for balancing the trade-off
between generating single-label and multiple predictions.
Avoiding an excessive number of multiple (uncertain)
predictions is important, as this can lead to an unmanageable
situation.

Conclusions
Our interpretable AI-based model using clinical data accurately
identifies patients with different disease courses, which can
reduce the heterogeneity of patients with sepsis in future clinical
trials. Additionally, we estimate the uncertainty of the model
outputs and enable the performance of the model using a mixed
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confidence approach. Application of this model can identify
more homogeneous patient populations and precision

pharmacological treatments for sepsis trials.
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SBP: systolic blood pressure
SOFA: Sequential Organ Failure Assessment
TPR: true positive rate
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

Edited by B Puladi; submitted 16.11.23; peer-reviewed by S Nemati, X Tong; comments to author 27.02.24; revised version received
22.04.24; accepted 21.07.24; published 04.09.24

Please cite as:
Yang M, Zhuang J, Hu W, Li J, Wang Y, Zhang Z, Liu C, Chen H
Enhancing Patient Selection in Sepsis Clinical Trials Design Through an AI Enrichment Strategy: Algorithm Development and
Validation
J Med Internet Res 2024;26:e54621
URL: https://www.jmir.org/2024/1/e54621
doi: 10.2196/54621
PMID:

©Meicheng Yang, Jinqiang Zhuang, Wenhan Hu, Jianqing Li, Yu Wang, Zhongheng Zhang, Chengyu Liu, Hui Chen. Originally
published in the Journal of Medical Internet Research (https://www.jmir.org), 04.09.2024. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of
Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original
publication on https://www.jmir.org/, as well as this copyright and license information must be included.

J Med Internet Res 2024 | vol. 26 | e54621 | p. 18https://www.jmir.org/2024/1/e54621
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2024/1/e54621
http://dx.doi.org/10.2196/54621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

