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Abstract

Background: For medical diagnosis, clinicians typically begin with a patient’s chief concerns, followed by questions about
symptoms and medical history, physical examinations, and requests for necessary auxiliary examinations to gather comprehensive
medical information. This complex medical investigation process has yet to be modeled by existing artificial intelligence (AI)
methodologies.

Objective: The aim of this study was to develop an AI-driven medical inquiry assistant for clinical diagnosis that provides
inquiry recommendations by simulating clinicians’ medical investigating logic via reinforcement learning.

Methods: We compiled multicenter, deidentified outpatient electronic health records from 76 hospitals in Shenzhen, China,
spanning the period from July to November 2021. These records consisted of both unstructured textual information and structured
laboratory test results. We first performed feature extraction and standardization using natural language processing techniques
and then used a reinforcement learning actor-critic framework to explore the rational and effective inquiry logic. To align the
inquiry process with actual clinical practice, we segmented the inquiry into 4 stages: inquiring about symptoms and medical
history, conducting physical examinations, requesting auxiliary examinations, and terminating the inquiry with a diagnosis.
External validation was conducted to validate the inquiry logic of the AI model.

Results: This study focused on 2 retrospective inquiry-and-diagnosis tasks in the emergency and pediatrics departments. The
emergency departments provided records of 339,020 consultations including mainly children (median age 5.2, IQR 2.6-26.1
years) with various types of upper respiratory tract infections (250,638/339,020, 73.93%). The pediatrics department provided
records of 561,659 consultations, mainly of children (median age 3.8, IQR 2.0-5.7 years) with various types of upper respiratory
tract infections (498,408/561,659, 88.73%). When conducting its own inquiries in both scenarios, the AI model demonstrated
high diagnostic performance, with areas under the receiver operating characteristic curve of 0.955 (95% CI 0.953-0.956) and
0.943 (95% CI 0.941-0.944), respectively. When the AI model was used in a simulated collaboration with physicians, it notably
reduced the average number of physicians’ inquiries to 46% (6.037/13.26; 95% CI 6.009-6.064) and 43% (6.245/14.364; 95%
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CI 6.225-6.269) while achieving areas under the receiver operating characteristic curve of 0.972 (95% CI 0.970-0.973) and 0.968
(95% CI 0.967-0.969) in the scenarios. External validation revealed a normalized Kendall τ distance of 0.323 (95% CI 0.301-0.346),
indicating the inquiry consistency of the AI model with physicians.

Conclusions: This retrospective analysis of predominantly respiratory pediatric presentations in emergency and pediatrics
departments demonstrated that an AI-driven diagnostic assistant had high diagnostic performance both in stand-alone use and in
simulated collaboration with clinicians. Its investigation process was found to be consistent with the clinicians’medical investigation
logic. These findings highlight the diagnostic assistant’s promise in assisting the decision-making processes of health care
professionals.

(J Med Internet Res 2024;26:e54616) doi: 10.2196/54616
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Introduction

Background
The growing demand for intelligent clinical decision support
systems (CDSSs) has become increasingly evident in the health
care landscape today [1,2]. The surge in demand can be
attributed to advances in medical knowledge, the accumulation
of health care data, and the rapid progression of artificial
intelligence (AI) and machine learning technologies.
Traditionally, health care professionals have relied heavily on
their individual experiences and medical expertise to make
clinical decisions, which are often susceptible to subjective
biases and information gaps [3,4]. Furthermore, the world faces
challenges related to insufficient medical resources, particularly
in regions where a shortage of health care professionals impedes
timely access to care. Consequently, intelligent CDSSs have
been developed with the potential to enhance patient care
quality, reduce medical costs, and minimize diagnostic errors.
These systems were developed by analyzing and training data
from electronic health records (EHRs) and medical literature
[5,6] using the power of extensive data analysis, machine
learning algorithms, and natural language processing techniques.

Our research is focused on advancing CDSSs with a primary
emphasis on aiding the diagnostic process before the diagnosis
is made, specifically during the information-gathering phase.
Existing diagnostic support systems often rely on comprehensive
patient information, such as EHRs and medical images [7-13],
to provide diagnostic predictions only at the final step of the
medical investigation process. Thus, the vital need for decision
support during the intermediate steps of the diagnostic process
is largely overlooked. The clinical diagnostic process is a
complex procedure that involves a series of inquiries and
examinations. In this dynamic process, health care professionals
continuously gather information, adjust hypotheses, and refine
diagnostic reasoning until the optimal diagnosis and treatment
are determined. The process is not merely a sequence of isolated
steps but a dynamic and evolving interaction between the
clinician and the patient. Conventional diagnostic support
systems tend to provide little to no guidance during these
intermediate steps, falling short of providing meaningful support
when it is most needed.

A variety of automatic disease diagnosis techniques have
emerged recently as a result of the advancement of AI with the

goal of assisting in the middle stages of clinical decision-making
[14-21]. However, a common limitation among these methods
is their exclusive focus on online disease diagnosis. Online
health care platforms have undoubtedly revolutionized medical
consultations by facilitating remote access to health care
professionals. Patients can seek advice and preliminary
assessments for various ailments without visiting a health care
facility physically. Unfortunately, there are inherent constraints
to these platforms. Online consultations are primarily reliant
on textual descriptions, making it challenging to gather essential
information that requires palpation, auscultation, or specialized
laboratory investigations, which collectively form the foundation
of a comprehensive and accurate diagnosis.

Large language models (LLMs) such as ChatGPT [22] have
demonstrated remarkable proficiency in following instructions
and generating humanlike responses across various domains.
LLMs have already attracted a lot of attention regarding their
potential applications in health care settings, which include
facilitating clinical documentation, summarizing research papers,
assisting with medical education [23], or acting as a chatbot to
respond to questions from patients about their specific concerns
[24,25]. While LLMs have access to extremely large corpora
containing medical dialogues, knowledge bases, and the
literature, there is a significant gap in access to large-scale real
patient records [26]. This lack of actual clinical data significantly
impacts their ability to provide tailored inquiry recommendations
for patients in varying clinical scenarios. In addition, ethical
[24,25] and security [27] concerns further complicate the
incorporation of sensitive health records into the training of
LLMs.

Objectives
To address the gap in diagnostic decision support, we present
MedRIA, a medical reinforcement learning inquiry assistant.
MedRIA is designed to facilitate the medical investigation
process by intelligently guiding inquiries; symptom assessments;
examination recommendations; and, in particular, the transitions
between them. To the best of our knowledge, no previous system
has successfully managed the entire diagnostic process. MedRIA
learns its inquiry capabilities from a large number of processed
EHRs. MedRIA uses a reinforcement learning actor-critic
framework [28] to explore rational and effective inquiry logic.
Following the standard inquiry process of physicians [29], we
segmented the inquiry into 4 stages: inquiring about symptoms
and medical history, conducting physical examinations (PEs),
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requesting auxiliary examinations (AEs), and terminating the
inquiry with a diagnosis. MedRIA’s ability to tailor inquiry
strategies according to patient-specific conditions positions it
as a promising solution for regions or populations facing
constraints in medical resources.

Methods

Processed Outpatient EHRs
The Shenzhen Center for Disease Control and Prevention in
Guangdong Province, China, collected deidentified outpatient

EHRs from 76 hospitals in Shenzhen. We selected records of
the emergency and pediatrics departments from July 2021 to
November 2021. As depicted in Figure 1, these records consist
of both unstructured textual information and structured
laboratory test results, which underwent feature extraction and
standardization using natural language processing techniques.
An example of a processed EHR is provided on the right side
of Figure 1.

Figure 1. Schematic illustration of the data collection, data processing, and task building process for the development of MedRIA. ADHD:
attention-deficit/hyperactivity disorder; EHR: electronic health record.

By combining established medical terminologies with
domain-specific knowledge from health care professionals, we
constructed a comprehensive feature set for the feature
extraction process. Initially, we used existing Chinese versions
of general medical terminologies, including the International
Classification of Diseases, 10th Revision, and Systematized
Nomenclature of Medicine–Clinical Terms. In addition, we
incorporated domain expertise by consulting with health care
experts to identify relevant clinical concepts and terminology
to the context of our study. The feature sets of the emergency
and pediatrics EHRs are presented in Multimedia Appendices
1 and 2, respectively.

As depicted in Figure 1, after extracting features from clinical
text and standardizing test forms, each record was converted
into a feature set, where each feature was categorized into 1 of
3 types based on its source—symptom and medical history
(SMH), PE, and AE—and assigned a value based on its data
type. Symptom features (eg, cough) and some features observed
from examinations (eg, throat congestion and proteinuria) were

assigned binary values indicating whether the patient exhibited
that feature. Numerical laboratory test features with specific
reference ranges, such as platelet count, were categorized as
high, low, or within the reference range. The values of
descriptive features depend on their meanings. For example,
urine color was given values such as yellow, colorless, white,
red, and so on.

In our study, we used the Medical Bidirectional Encoder
Representations From Transformers (MedBERT) model for
feature extraction on clinical text, which was based on
Bidirectional Encoder Representations From Transformers [30].
Using a vast corpus of Chinese clinical text data, including
medical textbooks, online consultations, journal article abstracts,
and deidentified EHRs, we pretrained the Bidirectional Encoder
Representations From Transformers model to obtain MedBERT.
We manually constructed 2 labeled data sets to fine-tune
MedBERT to perform medical named entity recognition and
entity normalization. In our pipeline, we first used fine-tuned
MedBERT for medical named entity recognition on clinical

J Med Internet Res 2024 | vol. 26 | e54616 | p. 3https://www.jmir.org/2024/1/e54616
(page number not for citation purposes)

Zou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


text. Next, we proceeded to normalize the identified entities to
our predefined feature set using the fine-tuned MedBERT for
entity normalization. Finally, we used a string-matching negation
detection mechanism to determine the values of binary features
based on the contents of the text. For structured laboratory test
results, we used a string-matching algorithm to standardize the
test items to our predefined feature set. The feature values could
be directly obtained from the structured results.

Following the feature extraction process, we conducted data
cleaning and filtering. Details are presented in Multimedia
Appendix 3 [31-37]. Finally, we filtered the data sets by
department, creating 2 retrospective inquiry-and-diagnosis
evaluation tasks for emergency and pediatrics. Emergency and
pediatrics are the 2 busiest departments in hospitals and often
put tremendous pressure on health care personnel. These
departments require effective decision support tools to assist
health care professionals in managing the workload efficiently
while providing timely and accurate patient care.

Reinforcement Learning Formulation
MedRIA takes as initial input the patient’s basic demographic
information, including gender and age, along with features
extracted from the patient’s chief concerns. Subsequently,
MedRIA provides recommendations for the physician to inquire
about specific features. As the physician conducts the inquiry
and gathers patient information, MedRIA updates the patient’s
status and continues to output the next relevant feature or
suggests terminating the inquiry and providing a predicted
diagnosis in terms of the probability distribution over potential
disease diagnoses. This can be described as a Markov decision
process [38], represented by the tuple M(S, A, T, R, γ). Here, S
(state) is a set of vectors representing the inquiry states that
incorporate both observed and unobserved features so far,
denoted as xO and xU, respectively. A (action) involves the
actions available to MedRIA, including recommending specific
features or suggesting the termination of the inquiry process.
The goal is to determine the optimal inquiry strategy composed
of a series of actions, denoted as πθ. At each step t, the policy
πθ(at|st) determines the action at based on the current state st.
The transition function T represents the probability distribution
of the next state st+1 given the current state st and action at,
denoted as p(st+1|st, at). R is a reward function used to assess
the benefit of the transition (st, at, st+1). γ is the discount factor
for accumulating rewards at each step. The state-value function
that reinforcement learning maximizes is the expected sum of
discounted rewards given the policy πθ and the state st.

Actor-Critic Framework
MedRIA uses the classic reinforcement learning actor-critic
framework [28] involving 2 neural networks: the actor and the
critic. The actor network determines the next action to take,
whereas the critic network is responsible for providing feedback
to the actor, evaluating the quality of actions and suggesting
adjustments. On the basis of our previous work [39], we used
a pretrained variational autoencoder (VAE) [31] as the backbone
of the actor network. We used a supervised diagnostic prediction
model, denoted as D, to provide the current disease prediction

probability distribution D(st) based on the state st to help decide
on each inquiry action.

The actor of MedRIA makes decisions for the next action based
on the observed features xO. It is intuitive to prioritize asking
about feature x that has a high conditional probability p(x|xO).
We leveraged the VAE to incorporate the conditional probability
distribution between observed features xO and unobserved
features xU. A VAE defines a generative model of the form p(x,
z)=∏i pΘ(xi|z)p(z), where features x are generated from latent
variables z. The number of dimensions of z is 64. p(z) represents
a prior, often a spherical Gaussian distribution. pΘ(x|z) is
represented by a 4-layer multilayer perceptron (MLP) decoder
with parameters Θ. The VAE uses another neural network
encoder with parameters Φ to generate the variational
approximation of the posterior qΦ(z|x). To obtain p(xU|xO), we
sampled   from the VAE encoder as  ~qΦ(z|x) and then sampled
xU from the VAE decoder as pΘ(xU| ). Let ei represent the
embedding vector for the ith observed feature xi, and let ci=[xi,
ei] denote the concatenated input carrying information for xi.
The number of dimensions of ei is 64. Then, we used a 4-layer
MLP to map the input ci to a Gaussian distribution in latent
space, with mean vector μi and variance vector Vi. To address
arbitrary partial observations of features during the inquiry
process, we used a product-of-experts mechanism [40] to
calculate the approximate posterior. The VAE was incorporated
within the actor network to leverage the conditional probability
distribution p(xU|xO). To obtain the action at, xO were first fed
into the nested VAE, yielding decoded features that contain
predictive information regarding xU. The decoded features were
then concatenated with the current diagnostic confidence D(st)
and the representation of the current timestep nt. Here, nt=t / NT

represents the ratio of the number of completed inquiries t over
a predefined maximum action count NT. NT was set to 21 and
26 for the emergency and pediatrics tasks, respectively. Finally,
a 2-layer MLP with softmax activation was used to map the
concatenated vector to the action space.

The objective of the critic is to estimate the state-value function
to optimize the policy πθ. Similar to the approach used in the
actor, we concatenated the current state st with D(st) and nt to
form an input vector to aid in estimation. In addition, we
obtained the informative latent variable zt by feeding observed
features xO into the VAE encoder and appended zt to the input
vector. Ultimately, a 5-layer MLP was used to map the input
vector to predict the state value.

Reward Shaping
The reward function for evaluating the gain in state transition
plays a crucial role in the reinforcement learning process. We
start by defining the short-term reward function Rshort when the
action is to inquire about a specific feature x. For MedRIA, the
inquiry states can be categorized into 4 ordered stages: SMH
(SSMH), PE (SPE), AE (SAE), and termination with diagnosis
(STD). During the inquiry process, there can be multiple states
that fall under each stage. For example, the initial state of
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MedRIA falls under SSMH, followed by a sequence of states that
fall under SPE, and so on. Correspondingly, all features are
categorized according to the 3 inquiry stages SSMH, SPE, and
SAE. When MedRIA selects a feature that falls under a particular
inquiry stage, it signifies a transition from the inquiry stage to
that stage. We ensure that MedRIA’s inquiry process adheres
to the sequential nature of clinical inquiries, where features from
previous stages are not considered for selection once the inquiry
progresses to a subsequent stage. This is achieved by manually
setting the probabilities of actions associated with features from
previous stages to 0 in the action probability distribution of the
actor.

To measure the consistency of MedRIA’s inquiries with those
made by physicians, we introduce 3 functions: MSMH(st),
MPE(st), and MAE(st). These functions quantify the number of
features that physicians have inquired about in the current state
st but that MedRIA has not investigated. Specifically, MSMH(st),
MPE(st), and MAE(st) quantify the number of SMH features, PE
features, and AE features, respectively. When calculating
MAE(st), all features within a laboratory test are considered as
a unit. Essentially, MAE(st) calculates the number of AEs that
physicians have recommended in the current state st but that
MedRIA has omitted. Correspondingly, when MedRIA selects
a feature associated with an AE, it indicates that MedRIA has
recommended the entire examination.

To assess the diagnostic quality of inquiries, we define a
function Diff(st, x, st+1) to estimate the differential effect of
querying the feature x in the transition from state st to state st+1.
If x belongs to the extracted features, meaning that the physician
also inquired about that feature from the patient, then Diff(st,
x ,  s t + 1 )  i s  d e f i n e d  a s  D i f f ( s t ,  x ,
st+1)=|DKL[y||D(st)]-DKL[y||D(st+1)]|, where DKL is the
Kullback-Leibler divergence between 2 distributions and y is
a one-hot vector indicating the final diagnosis made by the
physician. The absolute difference between these 2
Kullback-Leibler divergences represents the degree to which
the feature x influences the diagnosis results, with the final
diagnosis made by the physician as the reference. If x does not
belong to the extracted features, then Diff(st, x, st+1) is simply
set to 0. Subsequently, we define the short-term reward function
Rshort(st, x, st+1) as follows: when st belongs to SSMH and st+1

belongs to SPE, Rshort(st, x, st+1)=Diff(st, x,
st+1)+α·Iphy(x)-m·MSMH(st); when st belongs to SSMH and st+1

belongs to SAE, Rshort(st, x, st+1)=Diff(st, x,
st+1)+α·Iphy(x)-m·(MSMH(st)+MPE(st)); when st belongs to SPE

and st+1 belongs to SAE,Rshort(st, x, st+1)=Diff(st, x,
st+1)+α·Iphy(x)-m·MAE(st); otherwise, Rshort(st, x, st+1)=Diff(st,
x, st+1)+α·Iphy(x). Iphy(x) is an indicator representing whether
feature x belongs to the extracted features. If yes, it takes the
value of 1; otherwise, it is 0. α and m are small constant factors
to balance terms in the expression. We set α to 0.2. m was set
to 0.2 in the emergency task and 0.3 in the pediatrics task. In
Rshort, we penalize each hasty stage transition based on the
number of features that the actual physician inquired about from

the patient in the previous stage but were not inquired about by
MedRIA.

Next, we elaborate on the definition of the long-term reward
Rlong for the action of terminating the inquiry. When MedRIA
selects the action to stop the inquiry process, if the disease
predicted by the diagnostic model D matches the physician’s
diagnosis, Rlong is set to 2 in the emergency task and 3 in the
pediatrics task. If it does not match, similar to the penalty of
inquiry consistency in Rshort, we define Rlong(st, x, st+1) as
follows: when st belongs to SSMH, Rlong(st, x,
st+1)=-m·(MSMH(st)+MPE(st)+MAE(st)); when st belongs to SPE,
Rlong(st, x, st+1)=-m·(MPE(st)+MAE(st)); when st belongs to SAE,
Rlong(st, x, st+1)=-m·MAE(st).

Training Details
During the training process of MedRIA, we first trained a VAE.
In particular, we simulated the arbitrary partial observations
during the inquiry process by randomly dropping a portion of
input features. Next, we trained a diagnostic prediction model
D based on a 5-layer MLP using the softmax function and
cross-entropy loss function. Then, we initialized the parameters
of the nested VAE in the actor network of MedRIA with the
parameters of the trained VAE. Only the nested VAE decoder
was fine-tuned in the follow-up training. We used the proximal
policy optimization [32] algorithm to train both the actor and
critic networks. To make the predicted diagnostic probability
distribution more accurate when dealing with the partially
observed features generated by MedRIA, we collected the
observed features xO when the actor chose to terminate the
inquiry process during each training epoch. At the end of each
epoch, collected data were used to fine-tune D to better adapt
to MedRIA’s inquiry patterns. More details on implementation
are presented in Multimedia Appendix 3.

External Validation
We used data from the medical dialogue corpus, IMCS-21 [41],
to assess MedRIA’s inquiry logic. IMCS-21 contains 4116
online medical consultations between physicians and patients
covering 10 pediatric diseases. After data filtering, we selected
950 consultations with clear diagnoses that overlapped with 4
diseases covered in our pediatrics task: bronchitis (286
consultations), acute upper respiratory tract infection (392
consultations), indigestion (233 consultations), and
bronchopneumonia (39 consultations). This data set served as
an external test set for the trained pediatric MedRIA. We
constructed ordered inquiry sequences based on the dialogue
contents. These inquiry sequences reflected the typical order of
feature queries in the diagnostic process, and they were used to
evaluate MedRIA’s inquiry sequences. If MedRIA’s inquiry
sequences are similar to those of physicians, we can conclude
that MedRIA’s inquiry logic is similar to that of physicians.
The similarity is measured by the Kendall τ distance, which
treats an inquiry sequence as a permutation of features and
quantifies the pairwise disagreements between 2 permutations.
In addition, we applied the normalized Kendall τ distance, which
scales the Kendall τ distance by the total number of possible
feature pairs.
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Statistical Analysis
Nonparametric bootstrap sampling was used to calculate a 95%
CI. Specifically, we repeatedly drew 1000 bootstrap samples
from the test set. Each bootstrap sample was obtained through
random sampling with replacement and has the same size as
the test set.

Ethical Considerations
All EHR data used in this study were retrospectively collected
from EHR systems sourced from routine clinical practice. To
ensure patient privacy and confidentiality, all data were
deidentified. This study was approved by the ethics committees
of the Shenzhen Center for Disease Control and Prevention
(SZCDC-IRB2024055). As this study involved no direct patient
intervention and was retrospective in nature, individual informed
consent was waived.

Results

Data Characteristics
We focused on 2 retrospective inquiry-and-diagnosis evaluation
tasks in the emergency and pediatrics departments. The
emergency departments provided 339,020 records, and the
pediatrics departments provided 561,659 records. We randomly
split the data into 3 parts: 75% for training MedRIA, 10% for
validation, and 15% for testing.

The emergency EHRs contained 862 features, including 42.8%
(369/862) SMH features, 21.2% (183/862) PE features, and
36% (310/862) AE features. There were 18 diagnosed diseases.
As some records had 2 diagnosed diseases, we classified each
combination as a separate disease category, bringing the total
number of distinct diagnoses to 23. Similarly, the pediatrics
EHRs covered 793 features, including 44.3% (351/793) SMH
features, 22.6% (179/793) PE features, and 33.2% (263/793)
AE features. There were 18 diagnosed diseases. When
combinations of diagnosed diseases were considered, the total
number of different diagnoses increased to 23. The detailed data
characteristics are presented in Tables 1 and 2.
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Table 1. Characteristics of the data in the emergency task (N=339,020).

ValuesCharacteristics

Gender, n (%)

187,992 (55.5)Male

151,028 (44.5)Female

5.2 (2.6-26.1)Age (years), median (IQR)

Diagnosis, n (%)

93,594 (27.6)AURTIa

93,564 (27.6)Bronchitis

2439 (0.7)Bronchitis with rhinitis

4923 (1.5)AURTI with bronchitis

3833 (1.1)Bronchopneumonia

6095 (1.8)Laryngopharyngitis

24,146 (7.1)Pharyngitis

2639 (0.8)AURTI with pharyngitis

3564 (1.1)Pharyngitis with bronchitis

7604 (2.2)Herpangina

10,286 (3)Tonsillitis

1784 (0.5)AURTI with tonsillitis

30,385 (9)Gastroenteritis

10,142 (3)Gastritis

2690 (0.8)Enteritis

1957 (0.6)Acute appendicitis

13,884 (4.1)Urinary tract stones

4052 (1.2)Urethritis

6239 (1.8)Dermatitis

5597 (1.7)Acute urticaria

2990 (0.9)Hand-foot-and-mouth disease

4397 (1.3)Hypertension

2216 (0.7)Lumbar disc herniation

aAURTI: acute upper respiratory tract infection.

J Med Internet Res 2024 | vol. 26 | e54616 | p. 7https://www.jmir.org/2024/1/e54616
(page number not for citation purposes)

Zou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Characteristics of the data in the pediatrics task (N=561,659).

ValuesCharacteristics

Gender, n (%)

315,074 (56.1)Male

246,585 (43.9)Female

3.8 (2.0-5.7)Age (years), median (IQR)

Diagnosis, n (%)

209,918 (37.4)Bronchitis

155,181 (27.6)AURTIa

11,734 (2.1)AURTI with bronchitis

8119 (1.4)Bronchopneumonia

2565 (0.5)Bronchitis with bronchopneumonia

41,205 (7.3)Pharyngitis

5232 (0.9)Pharyngitis with bronchitis

2859 (0.5)AURTI with pharyngitis

11,909 (2.1)Laryngopharyngitis

19,790 (3.5)Tonsillitis

15,647 (2.8)Herpangina

14,824 (2.6)Rhinitis

10,109 (1.8)Bronchitis with rhinitis

16,261 (2.9)Gastroenteritis

5313 (0.9)Gastritis

3479 (0.6)Enteritis

8757 (1.6)Indigestion

5156 (0.9)Hand-foot-and-mouth disease

3151 (0.6)Dermatitis

2595 (0.5)Acute urticaria

2953 (0.5)Developmental delay

2538 (0.5)Hyperactivity

2364 (0.4)Precocious puberty

aAURTI: acute upper respiratory tract infection.

Evaluation Criteria
We assessed the inquiry performance of MedRIA along 2
dimensions: the consistency of its inquiries with those of
physicians and the contribution of its inquiries to diagnostic
accuracy. It should be noted that physicians will inevitably make
incorrect diagnoses, conduct inquiries based on individual
previous experience, and record the EHRs in different ways.
Therefore, we can establish a baseline diagnostic model by
training a supervised classification model using the extracted
feature sets as input and the physicians’ diagnoses as output.
This model simulated the physicians’ diagnostic ability, and its
performance approximates the actual performance of physicians.
We aimed to mitigate the influence of individual physician
variability and ensure a fair comparison between different
inquiry methods based on the extracted feature sets. While the
diagnoses in the records could serve as a gold standard, our

simulated physician diagnostic model also serves as an important
baseline. For training, several machine learning models were
used, including logistic regression, random forest, support vector
machine, MLP, and light gradient-boosting machine [42]. We
chose light gradient-boosting machine for the emergency task
and random forest for the pediatrics task based on their
performance on the validation set.

To better evaluate the potential of MedRIA as a clinical
assistant, we simulated a collaborative inquiry process between
MedRIA and a physician. Specifically, MedRIA’s actor network
would generate probability distributions for potential inquiry
features based on the currently collected medical information.
These distributions suggest several high-probability features
for the physician to inquire about. The physician has the
flexibility to accept and incorporate some or all of these
suggestions into the inquiries. In addition, the physician can
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exercise their professional judgment to either ask additional
questions or proceed to examination. In our simulated
collaboration, we simplified this process by having MedRIA
recommend only the feature with the highest probability at each
step. If the inquiry features suggested by MedRIA were in
agreement with part of the extracted feature set, it was assumed
that the physician accepted the inquiry recommendations.
Otherwise, if the suggested features were not found in the
extracted feature set, the simulated physician would randomly

select an unasked feature from the extracted features as the next
inquiry question. This simplification represents a simplistic
approximation of a less informed or junior physician’s behavior.
It serves as a conservative estimate of MedRIA’s performance
when collaborating with less experienced counterparts, reflecting
a lower-bound performance of MedRIA-physician collaborative
inquiry. Figure 2 illustrates a vivid example of the simulated
collaborative inquiry process.

Figure 2. Schematic illustration of the simulated collaborative inquiry process between a physician and MedRIA. AI: artificial intelligence.

Inquiry Quality Analysis
Table 3 illustrates the performance of MedRIA in the emergency
and pediatrics tasks in terms of diagnosis accuracy and inquiry
consistency. In the emergency task, physicians used an average
of 13.26 (95% CI 13.202-13.317) inquiries to gather 19.488
(95% CI 19.361-19.618) features. This disparity in numbers is
because a single inquiry related to a specific laboratory test can
yield multiple features. For example, a complete blood count
includes several features, such as lymphocyte percentage,
platelet count, hemoglobin concentration, and so on. When
MedRIA conducted its own inquiries, it averaged 14.24 (95%
CI 14.2-14.284) inquiries, with 58% (8.253/14.24; 95% CI
8.212-8.297) of them matching the extracted features. It resulted
in the acquisition of an average of 10.628 (95% CI
10.549-10.714) features, accounting for 55% (10.628/19.488)
of all extracted features. In the pediatrics task, MedRIA

performed, on average, 1.9 more inquiries (16.271, 95% CI
16.231-16.307) than physicians (14.364, 95% CI
14.322-14.404), with 60% (9.81/16.271; 95% CI 9.776-9.842)
of them matching 64% (13.168/20.429; 95% CI 13.093-13.244)
of all extracted features (20.429, 95% CI 20.338-20.513). When
MedRIA collaborated with physicians, it recalled 95%
(18.543/19.488; 95% CI 18.425-18.657) and 99%
(20.168/20.429; 95% CI 20.080-20.251) of the extracted features
in the emergency and pediatrics tasks, respectively. The
simulated collaborative inquiry process required only an average
of 12.648 (95% CI 12.602-12.696) and 14.146 (95% CI
14.106-14.182) inquiries, respectively, for the emergency and
pediatrics tasks, both fewer than the number of inquiries made
by physicians. With the assistance of MedRIA, we were able
to reduce the number of inquiries made by physicians to 46%
(6.037/13.26; 95% CI 6.009-6.064) and 43% (6.245/14.364;
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95% CI 6.225-6.269) of those in independent inquiries while
recovering nearly all the original inquiry records.

We used multiple metrics to assess final diagnoses, including
the area under the receiver operating characteristic curve
(AUROC), macro–F1-score, and accuracy. We also introduced
a new metric called general accuracy, which considers both
fully and partially correct diagnoses in accuracy calculation
because health care professionals from different hospitals may
have varying recording habits. A diagnosis was considered fully
correct when the core diagnosis was recorded and partially
correct when only a constituent element of the core diagnosis
was recorded [43,44]. As shown in Table 3, when MedRIA
conducted its own inquiries in the emergency task, it achieved
an AUROC (0.955, 95% CI 0.953-0.956) comparable to when
it acquired complete extracted features (0.960, 95% CI
0.957-0.962) despite obtaining only 55% (10.628/19.488) of
the extracted features. In the pediatrics task, MedRIA achieved
a higher AUROC (0.943, 95% CI 0.941-0.944) with 64%
(13.168/20.429) of the extracted features compared to using
complete features (0.930, 95% CI 0.928-0.932). As shown in
Figure 3, MedRIA’s own inquiry and the collaborative inquiry

in the emergency task significantly improved the AUROC of
diagnostic predictions for acute appendicitis. Specifically, when
compared to physicians’ inquiry, both MedRIA’s own inquiry
and the collaborative inquiry demonstrated substantially lower
false negative rates (equal to 1 minus true positive rates) at
various false positive rate thresholds. These findings underscore
the potential of MedRIA to significantly reduce diagnostic
errors, particularly for critical conditions such as acute
appendicitis in which even small increases in false negative
rates may be unacceptable to patients and health system leaders.

The collaborative inquiry and the physicians’ inquiry resulted
in similar AUROCs for acute upper respiratory tract infections
and bronchopneumonia. As shown in Figure 4, MedRIA’s own
inquiry resulted in a higher AUROC for rhinitis than the
physicians’ inquiry in the pediatrics task but a lower AUROC
for bronchitis and bronchopneumonia. For these 3 diseases, the
collaborative inquiry yielded the highest AUROC. The complete
receiver operating characteristic curves for all diseases are
shown in Figures S1 and S2 in Multimedia Appendix 4. These
results demonstrate that MedRIA understands the importance
of inquiring about discriminative features that have a high
diagnostic contribution, especially in the pediatrics task.

Table 3. Performance of MedRIA in the emergency and pediatrics tasks.

Average num-
ber of recalled
features (95%
CI)

Average number
of inquiries con-
ducted by physi-
cians (95% CI)

Average number of
inquiries matching
extracted features
(95% CI)

Average num-
ber of in-
quiries (95%
CI)

Accuracy
(95% CI)

General ac-
curacy
(95% CI)

F1-score
(95% CI)

AUROCa

(95% CI)

Emergency

19.488
(19.361-
19.618)

13.26 (13.202-
13.317)

13.26 (13.202-
13.317)

13.26 (13.202-
13.317)

0.744
(0.741-
0.748)

0.853
(0.85-
0.856)

0.63
(0.623-
0.638)

0.96 (0.957-
0.962)

Physicians

10.628
(10.549-
10.714)

08.253 (8.212-
8.297)

14.24 (14.2-
14.284)

0.684
(0.68-
0.688)

0.806
(0.803-
0.81)

0.538
(0.531-
0.545)

0.955
(0.953-
0.956)

MedRIA

18.543
(18.425-
18.657)

6.037 (6.009-
6.064)

12.648 (12.602-
12.696)

12.648
(12.602-
12.696)

0.746
(0.742-
0.75)

0.854
(0.851-
0.857)

0.646
(0.639-
0.653)

0.972 (0.97-
0.973)

Collaboration

Pediatrics

20.429
(20.338-
20.513)

14.364 (14.322-
14.404)

14.364 (14.322-
14.404)

14.364
(14.322-
14.404)

0.704
(0.701-
0.708)

0.827
(0.825-
0.83)

0.613
(0.608-
0.618)

0.93 (0.928-
0.932)

Physicians

13.168
(13.093-
13.244)

09.81 (9.776-9.842)16.271
(16.231-
16.307)

0.656
(0.653-
0.66)

0.782
(0.779-
0.784)

0.521
(0.514-
0.527)

0.943
(0.941-
0.944)

MedRIA

20.168 (20.08-
20.251)

6.245 (6.225-
6.269)

14.146 (14.106-
14.182)

14.146
(14.106-
14.182)

0.732
(0.729-
0.735)

0.842
(0.839-
0.844)

0.633
(0.627-
0.638)

0.968
(0.967-
0.969)

Collaboration

aAUROC: area under the receiver operating characteristic curve.
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Figure 3. Receiver operating characteristic curves for 3 diseases in the emergency task. AUC: area under the curve; AURTI: acute upper respiratory
tract infection.

Figure 4. Receiver operating characteristic curves for 3 diseases in the pediatrics task. AUC: area under the curve.

MedRIA may conduct inquiries that were not asked by
physicians, so they are excluded from the extracted features of
patient EHRs. Hence, when MedRIA conducted its own
inquiries, there was a varying degree of decline in all diagnostic
metrics when compared to using complete extracted features.
On the other hand, MedRIA obtained more information through
the guidance of physicians when it collaborated with them. In
the emergency task, the F1-score (0.646, 95% CI 0.639-0.653)
of diagnoses significantly improved. Both general accuracy
(0.854, 95% CI 0.851-0.857) and accuracy (0.746, 95% CI
0.742-0.750) were comparable to those of physicians’diagnoses.
In the pediatrics task, collaborative inquiry led to a significant
increase in F1-score (0.633, 95% CI 0.627-0.638), general
accuracy (0.842, 95% CI 0.839-0.844), and accuracy (0.732,
95% CI 0.729-0.735).

Considering the high prevalence of respiratory diseases in our
data set, we evaluated MedRIA’s performance on a more
representative data set to show its generalizability. Specifically,
we randomly discarded two-thirds of respiratory cases from the
emergency data set and three-quarters from the pediatrics data
set. The results are presented in Table S1 in Multimedia
Appendix 5. From these results, we can draw similar conclusions
to those obtained from the experiments conducted on the
complete data set.

Inquiry Logic Analysis
Table 4 provides the number of different types of positive
recalled features, which refer to exhibited symptoms or
laboratory test results showing out-of-range values. Collecting
more positive features under the same number of inquiries often
leads to more accurate diagnosis results [16,45]. In the pediatrics
task, 36% (7.326/20.429; 95% CI 7.294-7.357) of the features
collected by physicians were positive, and MedRIA’s own

inquiries recalled 66% (4.852/7.326; 95% CI 4.825-4.877) of
positive features. Specifically, it recalled 62% (1.665/2.692;
95% CI 1.654-1.675) of SMH features, 79% (2.24/2.837; 95%
CI 2.23-2.25) of PE features, and 53% (0.948/1.797; 95% CI
0.931-0.965) of AE features. When MedRIA worked with
physicians, the recall rates for all types of features were >95%.
Overall, we observed that MedRIA was capable of accurately
identifying positive features that were not mentioned in the
chief concerns of patients. This ability is crucial during the
investigation process because patients may not always have
sufficient medical knowledge to fully describe their health
conditions.

Multimedia Appendix 6 shows the top 10 physician inquiry
features on patients diagnosed with pharyngitis in the emergency
task and tonsillitis in the pediatrics task. We observed that
MedRIA could accurately inquire about features obtained by
physicians. Figures 5 and 6 illustrate when these features were
investigated by MedRIA and through collaborative investigation,
respectively. First, we observed a clear distinction between
when SMH and PE features were acquired, which is in line with
our settings for MedRIA’s inquiry process. SMH features,
including cough, runny nose, convulsions, and chills, were
consistently acquired before the seventh step, whereas PE
features, including pharyngeal congestion, enlarged tonsils,
coarse breath sounds, rash, herpes, and hand and foot rash, were
consistently acquired after the seventh step. We also noticed
that consecutive steps of inquiries exhibited consistently high
frequencies, allowing us to understand MedRIA’s inquiry logic
clearly. For example, when conducting PEs, MedRIA began
with pharyngeal congestion and enlarged tonsils followed by
coarse breath sounds and rash. This logical sequence reflects a
structured approach to differential diagnosis, ensuring a
thorough evaluation of relevant symptoms and signs. Pharyngeal
congestion and enlarged tonsils are pivotal features in the
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context of pharyngitis. Coarse breath sounds may suggest
respiratory issues or lung conditions, whereas rash can be
associated with a wide range of dermatological, allergic, or
infectious disorders. As shown in Figures 5 and 6, when
collaborating with physicians, the refinement of MedRIA’s
inquiry logic is evident in the increased stability of determining
which features to inquire about at each step. Table 5 provides
concrete examples of MedRIA’s inquiry sequences, where the

aforementioned logic can be traced back. Figure S1 in
Multimedia Appendix 7 presents the tree diagram depicting the
order of MedRIA’s inquiry features for 4 patients diagnosed
with pharyngitis in the emergency task. These evidences
demonstrate MedRIA’s coherent, stable, and well-reasoned
inquiry logic. The characteristics of inquiry features for all
diseases in both tasks are shown in Figures S1-S6 in Multimedia
Appendix 8.

Table 4. Number of recalled features from the extracted features by MedRIA in the emergency and pediatrics tasks.

Average posi-
tive AE features
(95% CI)

Average positive
PE features (95%
CI)

Average posi-
tive SMH fea-
tures (95% CI)

Average positive

featuresd (95%
CI)

Average AEc

features (95%
CI)

Average PEb

features (95%
CI)

Average SMHa

features (95%
CI)

Emergency

1.782 (1.749-
1.813)

2.527 (2.514-
2.541)

2.52 (2.503-
2.538)

6.83 (6.788-6.87)6.902 (6.793-
7.011)

5.291 (5.265-
5.32)

7.295 (7.26-
7.332)

Physicians

0.653 (0.635-
0.672)

1.907 (1.894-
1.92)

1.363 (1.353-
1.375)

3.923 (3.897-
3.954)

2.483 (2.421-
2.546)

3.835 (3.808-
3.865)

4.31 (4.29-
4.331)

MedRIA

1.607 (1.576-
1.636)

2.501 (2.489-
2.515)

2.435 (2.418-
2.452)

6.543 (6.505-
6.581)

6.311 (6.206-
6.415)

5.222 (5.196-
5.25)

7.01 (6.978-
7.043)

Collaboration

Pediatrics

1.797 (1.776-
1.82)

2.837 (2.826-
2.848)

2.692 (2.677-
2.707)

7.326 (7.294-
7.357)

6.617 (6.546-
6.687)

6.29 (6.269-
6.312)

7.522 (7.494-
7.546)

Physicians

0.948 (0.931-
0.965)

2.24 (2.23-2.25)1.665 (1.654-
1.675)

4.852 (4.825-
4.877)

3.508 (3.452-
3.565)

4.639 (4.619-
4.66)

5.021 (5.001-
5.04)

MedRIA

1.736 (1.714-
1.758)

2.833 (2.822-
2.844)

2.672 (2.658-
2.687)

7.241 (7.209-
7.27)

6.427 (6.356-
6.496)

6.28 (6.258-
6.302)

7.461 (7.435-
7.484)

Collaboration

aSMH: symptom and medical history.
bPE: physical examination.
cAE: auxiliary examination.
dRefers to exhibited symptoms or laboratory test results showing out-of-range values.

Figure 5. MedRIA and collaborative inquiry heat maps of the top 10 physician inquiry features in patients diagnosed with pharyngitis in the emergency
task.
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Figure 6. MedRIA and collaborative inquiry heat maps of the top 10 physician inquiry features in patients diagnosed with tonsillitis in the pediatrics
task.

Table 5. Examples of the inquiry sequences of MedRIA on 3 patients diagnosed with pharyngitis.

Inquiry sequences of AEcInquiry sequences of PEbInquiry sequences of SMHaChief concernAge (y)Gender

Absolute monocyte count

[complete blood count] f
Pharyngeal congestion(1), enlarged ton-
sils(0), moist rales(0), dry rales(0), lower
limb edema, coarse breath sounds(0)

Fever(0)e, cough(0), runny nose(0),
nasal congestion(0), chest pain(0),
coughing up phlegm(0), abdominal
pain, diarrhea

Sore throat d26Male

Absolute monocyte countPharyngeal congestion(1), enlarged ton-
sils(0), moist rales(0), dry rales(0), coarse
breath sounds(0), rash

Fever, cough(1), sore throat(0),
runny nose, coughing up phlegm(0),
abdominal pain, diarrhea, vomiting,
dizziness

Pharyngeal for-
eign body sensa-
tion

50Male

Absolute monocyte count
[complete blood count]

Pharyngeal congestion(1), coarse breath
sounds(1), enlarged tonsils(0), hand and
foot Rash(0), dry rales(0), normal muscle
tone, moist rales(0)

Cough(1), runny nose, vomiting(0),
coughing up phlegm, diarrhea(0),
convulsions(0), shortness of
breath(0)

Fever4Male

aSMH: symptom and medical history.
bPE: physical examination.
cAE: auxiliary examination.
dFeatures belonging to the extracted features are italicized.
eFeature values are indicated in parentheses.
fContents within square brackets represent the associated laboratory tests documented in the patient’s health record.

External Validation
We used external medical dialogues to evaluate MedRIA’s
inquiry logic. These dialogues consist of inquiry sequences
generated by physicians during medical consultations. Limited
by the online scenario, the average length of the inquiry
sequences was 3.905 (95% CI 3.744-4.076), consisting of 3.043
(95% CI 2.895-3.195) inquiries about SMH and PE features
and 0.862 (95% CI 0.814-0.907) recommended AEs. Diagnoses
based on such few features were unreliable, so we primarily
focused on evaluating MedRIA’s own inquiry order. As a result,
MedRIA matched 64% (1.946/3.043; 95% CI 1.835-2.058) of
the inquiries in the inquiry sequences and 28% (0.244/0.862;

95% CI 0.218-0.269) of recommended AEs. We compared the
order of MedRIA’s inquiries to the inquiry sequences of
physicians. The normalized Kendall τ distance was 0.323 (95%
CI 0.301-0.346). It indicated that only 32.3% of pairs of inquiry
features differed in ordering, demonstrating MedRIA’s
consistency with physicians and reasonable inquiry logic.

Discussion

Principal Findings
In this study, we proposed a reinforcement learning medical
inquiry assistant, MedRIA, aiming to provide inquiry
recommendations for medical investigation processes. The
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variety of questions that can be asked during the medical
investigation process, especially when it incorporates PEs and
AEs, poses a significant challenge. In addition, patients vary in
their understanding of their health status and their ability to
articulate it. To address these issues, MedRIA uses an
actor-critic framework [28]. The actor incorporates a pretrained
VAE [31] to recommend actions based on conditional
probability distributions between observed and unobserved
patient information. MedRIA uses a supervised diagnostic
prediction model to aid in action selection, ensuring that the
actor suggests inquiries that contribute to accurate diagnoses.
In addition, MedRIA places significant emphasis on crafting a
reward function to guide the reinforcement learning process.

The superiority of these designs in MedRIA was verified in our
retrospective experiments. When conducting its own inquiries
in both emergency and pediatrics scenarios, MedRIA
demonstrated comparable diagnostic prediction performance
on AUROCs with that of physicians and even achieved a higher
AUROC in the pediatrics setting. This was accomplished with
MedRIA obtaining only 55% (10.628/19.488) and 64%
(13.168/20.429) of the information that physicians received in
making the final diagnosis in the emergency and pediatrics
tasks, respectively. It is important to consider that AI, similarly
to MedRIA, has the capacity to identify subtle patterns within
vast data sets, which physicians may overlook. This inherent
capability often leads to divergence from the inquiry logic of
individual clinicians, as evidenced in our experiments. Given
that MedRIA has demonstrated its ability to identify important
diagnostic features, such divergence should be considered
acceptable as it may provide new insights. In addition, it is
worth noting that our experiments were based on EHRs.
Therefore, when MedRIA conducted its own inquiries, its
performance might very well have been underestimated due to
the unavailability of patient information that was not
documented in the records.

When MedRIA worked in simulated collaboration with
physicians, it notably reduced the number of inquiries made by
physicians to 46% (6.037/13.26; 95% CI 6.009-6.064) and 43%
(6.245/14.364; 95% CI 6.225-6.269) while maintaining feature
recall rates of 95% (18.543/19.488; 95% CI 18.425-18.657) and
99% (20.168/20.429; 95% CI 20.080-20.251) in the emergency
and pediatrics scenarios, respectively. This reduction suggests
that MedRIA’s recommendations are sufficiently informative
to assist physicians in considering aspects they may have
overlooked. The additional insights provided by AI
recommendations have a significant impact on medical
decision-making [46]. By leveraging the insights provided by
MedRIA, physicians can potentially make more informed
decisions and arrive at more accurate diagnoses.

The demonstration and analysis of MedRIA’s inquiry feature
frequencies, as well as concrete inquiry sequences, reveal its
clear inquiry logic for different diseases, which resembles the
approach of physicians. The ability of MedRIA to emulate the
diagnostic process of human physicians suggests that it has the

potential to be a useful tool in medical education, particularly
in regions or populations with limited medical resources. Junior
health care practitioners can leverage MedRIA to enhance their
diagnostic skills, benefiting from its structured and logical
inquiry process.

Limitations
Despite these promising results, it is essential to acknowledge
certain limitations. First, the feature extraction process of EHRs
requires careful feature engineering, which could be further
refined. Second, while MedRIA excelled in adapting its inquiry
logic, it is not immune to instances of missed inquiries. For
example, the reliance on AEs of MedRIA is significantly lower
than that of physicians. One potential solution is to enhance
MedRIA by modeling the significance of inquiries for disease
treatment. This is because the purpose of examinations may not
be for diagnosis but to determine the severity of the disease to
formulate appropriate treatment.

Third, the composition of patient presentations can vary
significantly between countries. For example, in some Western
countries, only 5% to 20% of emergency [47] or pediatrics [48]
outpatients are due to upper respiratory tract infections. The
proportion in our data set was many times greater due to
seasonal variations. We speculate that this may have arisen due
to limited access to primary care, seasonal respiratory peaks
during the autumn and winter months, greater COVID-19
awareness and fear, and our method of prioritizing the most
frequent diagnoses. Changes in these factors, such as using
summer data in China or winter data elsewhere, may influence
accuracy. Furthermore, while MedRIA’s workflow is language
independent, the evaluation of our system has been limited to
a Chinese context. Further validation in other languages and
health care settings is necessary to establish its broader
applicability and effectiveness.

Fourth, our AI system would be biased toward excess certainty
if deployed in the real world as it lacks the humility to recognize
its diagnostic limitations. Future work should include the AI
system’s degree of confidence and manage corresponding
clinical risks. Fifth, decision system developers must consider
adopting safe integration systems to mitigate potential errors,
especially for life-threatening conditions such as appendicitis,
where risk aversion may be greater. Sixth, future work could
incorporate MedRIA with the latest developments in LLMs
[49], which will assist in its future deployment and testing in
clinical workflows.

Conclusions
In conclusion, MedRIA is a significant step toward enhancing
health care decision-making processes. Its proficiency in medical
inquiries, ability to identify important diagnostic features, and
adaptability underscore its value as an AI-driven diagnostic
assistant. While there are challenges to overcome, the results
of this study show a prototype for sophisticated and effective
AI applied in health care, ultimately benefiting both health care
professionals and patients.
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AE: auxiliary examination
AI: artificial intelligence
AUROC: area under the receiver operating characteristic curve
CDSS: clinical decision support system
EHR: electronic health record
LLM: large language model
MedBERT: Medical Bidirectional Encoder Representations From Transformers
MLP: multilayer perceptron
PE: physical examination
SMH: symptom and medical history
VAE: variational autoencoder
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