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Abstract

Background: Adverse events (AEs) associated with vaccination have traditionally been evaluated by epidemiological studies.
More recently, they have gained attention due to the emergency use authorization of several COVID-19 vaccines. As part of its
responsibility to conduct postmarket surveillance, the US Food and Drug Administration continues to monitor several AEs of
interest to ensure the safety of vaccines, including those for COVID-19.

Objective: This study is part of the Biologics Effectiveness and Safety Initiative, which aims to improve the US Food and Drug
Administration’s postmarket surveillance capabilities while minimizing the burden of collecting clinical data on suspected
postvaccination AEs. The objective of this study was to enhance active surveillance efforts through a pilot platform that can
receive automatically reported AE cases through a health care data exchange.

Methods: We detected cases by sharing and applying computable phenotype algorithms to real-world data in health care
providers’ electronic health records databases. Using the fast healthcare interoperability resources standard for secure data
transmission, we implemented a computable phenotype algorithm on a new health care system. The study focused on the algorithm's
positive predictive value, validated through clinical records, assessing both the time required for implementation and the accuracy
of AE detection.

Results: The algorithm required 200-250 hours to implement and optimize. Of the 6,574,420 clinical encounters across 694,151
patients, 30 cases were identified as potential myocarditis/pericarditis. Of these, 26 cases were retrievable, and 24 underwent
clinical validation. In total, 14 cases were confirmed as definite or probable myocarditis/pericarditis, yielding a positive predictive
value of 58.3% (95% CI 37.3%-76.9%). These findings underscore the algorithm's capability for real-time detection of AEs,
though they also highlight variability in performance across different health care systems.

Conclusions: The study advocates for the ongoing refinement and application of distributed computable phenotype algorithms
to enhance AE detection capabilities. These tools are crucial for comprehensive postmarket surveillance and improved vaccine
safety monitoring. The outcomes suggest the need for further optimization to achieve more consistent results across diverse health
care settings.
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Introduction

Background
The US Food and Drug Administration (FDA) Center for
Biologics Evaluation and Research (CBER) is responsible for
ensuring the safety, purity, potency, and efficacy of biological
products, including vaccines, allergenics, blood and blood
products, and cells, tissues, and gene therapies [1]. In partnership
with the Centers for Disease Control and Prevention, the FDA
monitors vaccine safety through the vaccine adverse event
reporting system (VAERS). Since the emergency use
authorization of 4 COVID-19 vaccines—Pfizer-BioNTech,
Moderna, Janssen, and Novavax—the FDA has been diligently
analyzing adverse events (AEs) of special interest (AESIs)
related to these vaccines and their boosters, including bivalent
boosters.

VAERS receives spontaneous reports of suspected vaccine AEs
from various sources, such as individuals, patients, clinical staff,
and vaccine manufacturers. VAERS plays a vital role as an early
warning system, relying on voluntary reports to monitor
potential AEs. While this approach is invaluable, it can
sometimes lead to underreporting, data quality issues, and
challenges in establishing direct causality between vaccines and
AEs. To enhance the robustness of monitoring, especially during
public health emergencies, active surveillance efforts are
essential in complementing and addressing the limitations of
passive reporting systems like VAERS and FAERS. Established
in 2017, CBER’s Biologics Effectiveness and Safety (BEST)
Initiative creates a robust postmarket surveillance system for
biologic products by leveraging real-world data (RWD) from
sources such as electronic health records (EHRs) and claims
data [2]. Through collaborations with various organizations,
BEST enhances the detection and reporting of biologics-related
AEs by assessing extensive health care data and scientific
expertise [3,4].

The key focus of BEST is developing interoperable, computable
phenotype algorithms that use standardized language to identify
potential AEs in EHR databases [2]. This approach allows for
automatic or semiautomatic detection and reporting of AEs with
minimal effort from health care providers. In a study with the
first site (site #1) [5], BEST successfully validated these
algorithms, demonstrating their effectiveness in identifying AEs
such as myocarditis (inflammation of the myocardium) and
pericarditis (inflammation of the pericardium) following
vaccination.

The ultimate goal is to implement a standardized, automated
case reporting system across different EHR databases, enabling
precise and timely identification of postvaccination AEs and
their subsequent reporting to the FDA for further evaluation.
This system aims to improve overall vaccine safety by swiftly
identifying potential increases in AE incidence rates [4].

Exchange Pilot Platform
To enhance CBER’s capability for postmarket surveillance,
accessing a diverse and representative set of data on a
near-national scale is essential. In a traditional federated
network, including additional partners to achieve this scale,
although essential, is prohibitively time-intensive. Therefore,
a more efficient approach is needed to access data on a national
scale and to address the potential undercounting of AEs.

To obtain the necessary RWD for potential AE cases from health
care providers nationwide, we developed a pilot cloud-based
platform to exchange EHR data with the FDA for analysis and
active surveillance efforts. CBER BEST Innovative Methods
initiative collaborated with the eHealth Exchange (eHX), a
health information exchange, to explore the semiautomated
detection and reporting of potential COVID-19 vaccine–related
AEs. This platform serves as a valuable tool for public health
awareness, safety, and transparency while minimizing the burden
on health care providers in collecting clinical data.

Figure 1 demonstrates how data are exchanged from the health
care provider through eHX to the FDA BEST platform.

This platform uses recent regulations under the 21st Century
Cures Act Final Rule, which mandates that all clinical data be
available through an application programming interface in the
Fast Healthcare Interoperability Resources (FHIR) standard
developed by Health Level Seven, Inc. (HL7) to improve
interoperability between health systems by simplifying data
exchange. These regulations facilitate seamless and secure
access, exchange, and use of electronic health information [6,7].
FHIR is a standard developed by HL7 to facilitate
interoperability between health systems. It is designed to
improve upon existing standards by reducing implementation
complexity without losing information integrity [3].

The EHR data provided through the exchanges give the FDA
access to richer clinical datasets compared to those currently
submitted to VAERS, reducing the need for further translation
to a common data model by one or both parties. These data
include unstructured clinician notes, which are often critical for
AE analysis. This pilot platform is a first step in establishing
an automated reporting system for AEs. To scale nationally,
computable phenotypes must be dependable across health care
provider systems, allowing the transmission of probable AE
reports to the BEST platform for further evaluation to support
postmarket safety and effectiveness.

This study models a nationwide automated reporting system by
evaluating the effective distribution and implementation of an
interoperable, computable phenotype algorithm at a new health
care partner site (site #2), using a different EHR platform than
at the initial validation site (site #1) [8]. The algorithm detected
postvaccination AE case candidates for automatic reporting
through our exchange pilot platform. The study focused on the
algorithm’s implementation for identifying myocarditis and
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pericarditis, rare but significant risk factors following
COVID-19 vaccinations, at site #2. Clinical data for detected
cases were transmitted through the health care exchange and
validated to assess detection and reporting accuracy. The results
were compared to those from the previous validation study using
the same phenotype algorithm at site #1.

A common issue with any distributed algorithm, especially for
health care data, is the potential drop in performance when an
algorithm developed at one site (site #1) is applied to a different
site (site #2). Therefore, it is often difficult to generalize results
from algorithms developed at multiple sites, leading to
significant differences in positive predictive value (PPV)
between sites, which can hinder the use of algorithms at a
national level. This study aimed to determine whether the results
of the algorithm were generalizable by comparing the PPV
results from site #1 to those from site #2. The long-term goal

is to accurately detect postvaccination AE cases by applying
standardized phenotypes across different EHR databases.

Distributed algorithms require significant overhead due to the
volume of translation to different data models or code systems.
This study assessed the efficacy of the phenotype algorithm by
measuring the time required for implementation by the health
care organization. It also aimed to determine whether the BEST
pilot platform received all necessary patient case data to validate
the postvaccination AEs such as myocarditis/pericarditis. The
evaluation criteria included the percentage of cases with
insufficient evidence (eg, missing lab tests or clinical outputs
needed for the case definition assessment) to complete a
validation determination. This study is part of the FDA’s BEST
initiative, and the findings from this validation study will help
BEST staff to assess the long-term feasibility of scaling to a
nationwide, automated detection using an active surveillance
system.

Figure 1. CBER (Center for Biologics Evaluation and Research) BEST (Biologics Effectiveness and Safety) Exchange pilot platform. FDA: US Food
and Drug Administration; FHIR: Fast Healthcare Interoperability Resources.

Methods

Overview
The methods section is crucial for ensuring the accuracy and
reliability of research findings. This study’s methodology
encompasses the following aspects: computable phenotype
development, phenotype distributed deployment, study period,
data, and the process of reviewing medical records. Each
methodological aspect plays a vital role in the comprehensive
evaluation of our study's findings, ensuring the robustness and
validity of the results.

Computable Phenotype Development
For this validation study, we applied the algorithm developed
for the postvaccination myocarditis/pericarditis phenotype used
in the validation study by Holdefer et al [5] in 2023. The
algorithm was built using a myocarditis/pericarditis case
definition, which was current at the time of the Holdefer study.

While a new case definition [9] was published in 2022, no
changes to the developed phenotype algorithm were
recommended. Therefore, we continued using the original
algorithm for detection and the new case definition for our
clinician validation. However, we made one change to the
phenotype algorithm used in the Holdefer (2023) validation
study by adding a vaccine exposure requirement. This
requirement is for the myocarditis/pericarditis diagnosis to occur
within a risk window of 0-42 days post vaccination.

Table S1 in the Multimedia Appendix describes the definitions
of the terms. The specific search terms used to develop the code
lists for myocarditis/pericarditis case definition concepts are
listed in Tables S2-S6 in the Multimedia Appendix.
Myocarditis/pericarditis were chosen due to reports of potential
safety concerns after the initial distribution of COVID-19
vaccinations [9]. Recent research has indicated a reduction in
the incidence of myocarditis/pericarditis associated with boosters
compared to the initial 2-dose regimen for mRNA vaccines,
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likely due to interdose intervals [10,11]. However,
myocarditis/pericarditis remain a monitoring concern given the
recommendation for continued COVID-19 vaccinations.

Phenotype Distributed Deployment
The BEST team provided a newly developed phenotype
algorithm and code lists to our exchange data partner at site #2
in 2 standardized formats: clinical quality language (CQL) and
observational medical outcomes partnership standard query
language. The partner then implemented the algorithm in their
Epic Clarity reporting databases. Detection of an AE triggered
a secure submission of patient demographics to the FDA BEST
platform.

The BEST team subsequently initiated a data request to the
eHX, using demographics to locate patients via the FHIR search
functionality. Future updates will enable the automatic

transmission of relevant patient information through eHX to
the BEST platform upon detecting potential AEs at the partner
site, eliminating the need for manual intervention. To evaluate
the algorithm's sharing and application success, we interviewed
the IT team members responsible for the implementation and
documented the findings, including the estimated hours needed
for implementation and testing. These are described in the results
section.

Study Period
The study period was from December 14, 2020, when
COVID-19 vaccinations received emergency use authorization,
through April 28, 2023. The observation period began on
December 14, 2019, to ensure all patients had at least 1 year of
historical data, necessary to evaluate the clean window, as
outlined in Figure 2.

Figure 2. Standard algorithm template logic. AE: adverse event.

Data
The study population was derived from site #2, a health care
provider partner recruited through their participation in the eHX
system. eHX is a mature network of US exchange partners
covering 77% of the nation’s state and regional health
information exchanges, including the federal government and
private health care networks. It securely shares clinical
information over the internet using a standardized approach
[12] and prenegotiated common agreements, providing timely
access to RWD without the need for individual data use
negotiations with partners. During the study period, site #2
provided care to 694,151 patients across over 6.5 million
medical encounters. Table 1 presents the patient and encounter

demographic breakdown for total and inpatient encounters, the
only care settings considered for the postvaccination
myocarditis/pericarditis phenotype.

Cases were selected using a distributed computable phenotype
algorithm, which the site #2 team translated into a standard
query language query for their Epic Clarity reporting database.
The clinical data for the selected cases were provided to the
BEST study team through site #2’s Epic FHIR application
programming interface, which was queried by eHX and then
sent to the BEST pilot platform. This included the data required
for the algorithm, as well as additional data such as clinician
notes, allergies, and procedures required for validation. A list
of FHIR resources received for each patient identified by the
algorithm is included in Table 2.
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Table 1. Demographics of the academic health system for the study population (N=694,151).

TotalInpatientCategory

Encounters (n=6,574,420),
n (%)

Patients (694,151), n
(%)

Encounters (114,254),
n (%)

Patients (n=78,946), n
(%)

Age (years)

137,068 (2.08)30,256 (4.36)2328 (2.04)2134 (2.70)<5

180,857 (2.75)38,711 (5.58)1129 (0.99)888 (1.12)5-17

222,254 (3.38)45,859 (6.61)2699 (2.36)2017 (2.55)18-24

1,555,636 (23.66)214,969 (30.97)29,044 (25.42)23,467 (29.73)25-44

2,057,258 (31.29)194,912 (28.08)26,886 (23.53)17,727 (22.45)45-64

2,418,968 (36.79)167,988 (24.20)52,131 (45.63)32,677 (41.39)>65

2379 (0.04)1456 (0.21)37 (0.03)36 (0.05)Missing

Sex

2,808,578 (42.72)317,393 (45.72)63,534 (55.61)45,327 (57.42)Male

3,762,854 (57.23)375,258 (54.06)50,691 (44.37)33,590 (42.55)Female

2988 (0.05)1500 (0.22)29 (0.03)29 (0.04)Missing or other

Race

4,231,991 (64.37)420,483 (60.58)74,462 (65.17)51,531 (65.27)White

802,942 (12.21)72,882 (10.50)18,367 (16.08)11,425 (14.47)Black or African American

630,886 (9.60)62,467 (9.00)9247 (8.09)6797 (8.61)Asian or Pacific Islander

25,755 (0.39)2104 (0.30)427 (0.37)265 (0.34)American Indian or Alaska Native

537,872 (8.18)57,815 (8.33)10,085 (8.83)7440 (9.42)Other

298,228 (4.54)73,092 (10.53)1243 (1.09)1171 (1.48)Unknown

46,746 (0.71)5308 (0.76)423 (0.37)317 (0.40)Declined to answer

Ethnicity

981,688 (14.93)99,502 (14.33)19,767 (17.30)13,536 (17.15)Hispanic

5,206,326 (79.19)507,626 (73.13)92,673 (81.11)63,771 (80.78)Non-Hispanic

386,406 (5.88)87,023 (12.54)1814 (1.59)1639 (2.08)Unknown

Table 2. Period of resources received for validation by resource type.

Date periodResource

Full clinical historyAllergy intolerance

Full clinical historyCondition

Study period (12/14/2020-04/28/2023)Diagnostic report

Study period (12/14/2020-04/28/2023)Document reference

Full clinical historyEncounter

Full clinical historyImmunization

All linked resourcesLocation

All linked resourcesMedication

Full clinical historyMedication request

Study period (12/14/2020-04/28/2023)Observation

Single patient resourcePatient

All linked resourcesPractitioner

Full clinical historyProcedure
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Process for the Review of Medical Records
All cases selected by the algorithm and pulled into the BEST
platform were reviewed using a chart tool for BEST clinician
review. Each case was assigned to 2 clinicians. The clinical
validation used a patient’s comprehensive clinical history,
including EHR data and all clinical notes. This dataset included
information not used by the detection algorithm, such as
different data types (eg, allergies, clinical notes, etc) and data
that were filtered out (eg, admitting diagnosis, encounters with
various care settings, etc). For each case, the reviewer evaluated
whether the clinical data evidence met the specified case
definition criteria. Relevant patient data for the case window
were accessible and presented to the clinicians in a chart review
application designed specifically for this purpose (see Figures
S1-S7 in the Multimedia Appendix). Within the tool, clinicians
could group items by type, search across all items and text, and
request additional chart data to expand the window and access
any available historical patient data.

All suspected AEs were validated using the conventional
categories and definitions for rating diagnostic certainty of AEs:
definite, probable, possible, or doubtful [13]. A case was
classified as definite, probable, or possible if it met the published
case definitions for that determination. Any case not meeting
these criteria was labeled as doubtful. In cases of disagreement
between the 2 clinicians, a third clinician made the final
determination by reviewing the EHR data.

Clinicians could not confirm a case as positive (definite or
probable) in case of insufficient information within the
structured (data organized according to an explicit data model
or data structure, often stored in a relational database) or
unstructured (without a predefined data model, like free text)
EHR data. In such instances, they marked the review as possible
insufficient evidence, indicating that an AE might have occurred,

but there was not enough documentation to meet the case
definition requirements (eg, some case definitions may require
specific test results that were not performed or not recorded in
the EHR during patient care).

Statistical Analysis
Statistical analysis in this study involved the examination and
interpretation of data to evaluate the accuracy and reliability of
our algorithm for identifying AEs. This section covers PPV,
CIs, and interrater reliability. Each of these measures provides
a distinct perspective on the algorithm's performance and the
consistency of clinical adjudication.

Positive Predictive Value
PPV was used to assess the accuracy of our algorithm. The PPV
for each algorithm was determined as the proportion of positive
AEs identified by the algorithm that were confirmed by clinical
adjudication, out of all cases with sufficient evidence for clinical
adjudication. This study’s PPV was compared to the one in the
Holdefer validation study [5], which reported a PPV of 83.5%
(95% CI 74.9%-89.6%).

Cases flagged as having insufficient evidence for validation
were excluded from the calculation. These cases were initially
considered as possible AEs due to some evidence of an AE.
However, they lacked one or more pieces of crucial evidence
required to meet the case definition (ie, no record of results for
a lab test expected for use in diagnosis).

As indicated in Table 3, 4 cases labeled definite or probable
were marked as true positive (where the clinician agreed with
the algorithm’s prediction), while cases labeled possible or
doubtful were marked as false positive (where the algorithm
predicted a positive AE result, but clinicians could not confirm
the occurrence of the AE).

Table 3. Case marking for PPVa calculation.

Case markingCase labeling

Not included in PPV calculationInsufficient evidence

True positivesDefinite or probable

False positivesPossible or doubtful

aPPV: Positive predictive value.

The PPV for this study was calculated as follows:

PPV=true positives (definite+probable)/all cases selected by
a l g o r i t h m  w i t h  s u f f i c i e n t  e v i d e n c e
(definite+probable+possible+doubtful).

As a sensitivity analysis, we also calculated PPV by including
the cases without sufficient evidence as false positives. This
alternative PPV was calculated as follows:

PPV=true positives (definite+probable)/all cases selected by
algorithm (definite+probable+possible+doubtful).

CIs
Since PPV is a binominal proportion, we calculated CIs for the
performance metrics using the Agresti-Coull interval [14], the

recommended method for estimating accurate CIs for binomial
proportions such as PPV [15].

Interrater Reliability
Interrater reliability was used to measure the extent to which
the 2 physicians agreed in their AE assessment. It was calculated
using Cohen kappa between the first 2 reviewers. Cohen κ
measures the agreement between 2 raters classifying instances
into mutually exclusive groups [16].

Ethical Considerations
This study was conducted under the Food and Drug
Administration's Sentinel initiative (Public Health Surveillance
Activities), which are not deemed research per the guidance
from the Office for Human Research Protections (OHRP), which
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has determined that the regulations they administer (45 CFR
part 46) do not apply to the activities that are included in the
FDA's Sentinel initiative.

Results

Overview
The results section presents the key findings of the study
organized under Population Sample, Phenotype Implementation
Results, and Overall PPV and Interrater Reliability Results.
These result findings detail the selection of cases, the
implementation of the phenotype algorithm, and the evaluation
of the algorithm's performance and reliability.

Population Sample
The computable phenotype algorithm selected cases from
114,254 inpatient encounters out of approximately 6.5 million

total clinical encounters available during the study period. The
algorithm identified 484 cases with a condition diagnosis and
supporting evidence for myocarditis/pericarditis. Of those 484
cases, 30 met the algorithm’s additional vaccine exposure
criteria, and 26 could be pulled into the BEST platform for our
clinical validation study.

The cases that could not be retrieved through the eHX had
demographic information matching multiple patients in the EHR
database. This prevented data transfer for privacy reasons since
the FDA cannot currently confirm that both patients had a
potential postvaccination AE. A CONSORT (Consolidated
Standards of Reporting Trials) diagram is included in Figure 3
to illustrate how the steps of the algorithm in filtering encounters
produce our validation sample.

As indicated in Figure 3 cases were not pulled in because of
multiple matches for the provided patient demographics.

Figure 3. Study Population Consolidated Standards of Reporting Trials (CONSORT) diagram.

Phenotype Implementation Results
It took about 200-250 hours to successfully implement the
phenotype on site #2’s Epic Clarity database. Considering the
size of the EHR database, most of this time was spent designing
an efficient data extraction solution and testing the logic to
ensure it accounted for all possible scenarios, particularly in
patients with multiple immunizations or AE diagnosis codes.
The implementation team at site #2 believes that the query
implementation time could be substantially reduced to
approximately 20 hours from the current 200-250 hours at the
next partner site using the same Epic EHR software by reusing

the queries from this implementation. This is presented in further
detail in the discussion section.

There were no issues matching the interoperable code list to the
Epic Clarity database.

Overall PPV and Interrater Reliability Results
The overall algorithm performance characteristics for the
myocarditis/pericarditis computable phenotype as executed in
the EHR system using cases with sufficient evidence are
presented in Table 4.

For the 26 cases validated, PPV was 58.3% (95% CI
37.3%-76.9%), with approximately 7.7% of the data insufficient
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to make a determination. The interrater reliability Cohen κ score
for the 26 reviewed cases was 0.699, which shows substantial
agreement between the clinicians. This measure suggested

sufficient reliability since the value was greater than 0.61,
although it did not meet the higher threshold of 0.80 suggested
by other articles [16].

Table 4. Site #2 total validation sample results.

Detected casesPartner and final case classification (Cedars Sinai)

3Definite, n

11Probable, n

0Possible, n

10Doubtful, n

14Total true positive cases (definite+probable), n

10Total false positive cases (possible+doubtful), n

24Total cases with sufficient evidence, n

58.3 (37.3-76.9)PPV (definite+probable/total cases with sufficient evidence; %), % (95% CI)

2Possible (insufficient evidence), n

26Total cases, n

7.7% of Cases with insufficient evidence, %

53.8 (34.2-72.5)PPV–alternate calculation (definite+probable/total cases; %), % (95% CI)

Discussion

Overview
The discussion section highlights the findings of our study on
the computable phenotype for postvaccination
myocarditis/pericarditis AE across 2 health care organizations,
site #1 and site #2. The discussion covers Principal Findings,
Comparison of Validation to Previous Site Validation, and
Methodological Considerations and Limitations. Our study
underscores the importance of continued research to refine these
algorithms and ensure their success in revolutionizing public
health surveillance.

Principal Findings
This study demonstrated that a simple, rules-based,
postvaccination myocarditis/pericarditis AE-computable
phenotype from one health care organization (site #1) [5] can
be distributed and replicated at a separate health care
organization (site #2) with comparable performance. However,
the study also revealed a decline in PPV and a significant time
cost for implementation at the new partner. The computable
phenotype at site #2 had a PPV of 58.3% (95% CI
37.3%-76.9%), which was lower than that of 83.5% (95% CI
74.9%-89.6%) at site #1 [5]. This was driven largely by a higher
percentage of cases with evidence of alternative diagnoses.

Additionally, the study showed that live, FHIR-formatted
clinical data received through a health exchange-based platform
are robust and interoperable enough for complex clinical case
validation, in which we received direct data extracts from EHR
tables from our health care partner from site #1 [5]. The
proportion of cases identified by validating clinicians as
containing insufficient data in this study was much lower than
those in the previous study, where direct data extracts from

EHR tables were used. Lastly, it demonstrated that our
phenotypes could be implemented by health care analysts on
EHR data unseen by algorithm developers, although with
significant effort.

Feedback from our partner indicated that the phenotype took
approximately 200-250 hours to implement. However, the
implementation team believes that this time can be drastically
reduced to approximately 20 hours by reusing the solution at
subsequent data partners using the same Epic EHR software.
They emphasized that the ease of deploying the algorithm is
crucial for scaling the solution to other health organization data
partners and provided several suggestions (as detailed in the
section Methodological Considerations and Limitations) to
make the process easier in the future.

Comparison of Validation to Previous Site Validation
The PPV of this study’s validation was lower than the previously
completed myocarditis/pericarditis validation (58.3%; 95% CI
37.3%-76.9%) versus (83.5%; 95% CI 74.9%-89.6%). Most
false positives in this study occurred due to an alternative
diagnosis that better explained the symptoms, such as
myocardial infarction or pulmonary embolism [17]. This
highlights the challenge of creating a reliable algorithm for
complex diagnoses such as myocarditis or pericarditis, as they
often present similarly to other conditions.

Possible explanations for the degradation in performance of the
computable phenotype at site #2 include but are not limited to
the following (Textbox 1).

If all cases with insufficient evidence were assumed negative,
the PPVs of the 2 studies would be closer: 53.8% (95% CI
34.2%-72.5%) versus 63.7% (95% CI 55.2%-71.4%), and not
statistically significant at P<.10.
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Textbox 1. Possible explanations for the degradation in performance.

• Different population compositions: The populations from different hospital systems with varying geographies and demographics, potentially
affecting medical treatment types.

• Algorithm changes: A vaccine exposure requirement was added [17].

• Case definition changes: An updated version of the case definition was used.

• Statistical noise from the small sample size: The 95% CI positive predictive value (PPV) for this study was 39.6%, between 37.3% and 76.9%,
suggesting statistical noise. A 2-sample proportion test comparing PPVs for the 2 studies is significant at a P<.01. However, the number of cases
with insufficient evidence complicates comparing algorithm PPVs. Due to the rarity of postvaccination myocarditis/pericarditis, we included all
the cases identified by our algorithm at site #2.

• Different levels of evidence: Categorizing cases with insufficient evidence was challenging in both studies. We assumed that the cases from the
PPV were as likely to be positive or negative as unreviewed cases, with missing details possibly not documented for various reasons. We excluded
these cases from the PPV calculation. However, it is possible that the lack of evidence indicated a clinician's doubt about the diagnosis, leading
to less detailed notes or fewer diagnostic tests. This could vary across sites due to differences in processes, patient populations, and available
technology. Notably, the previous validation excluded a quarter of myocarditis cases due to insufficient evidence, compared to less than 8% in
this study.

Methodological Considerations and Limitations
There were several limitations to this study. First, there were
issues with measuring and comparing the PPV to our previous
site (site #1) validation, as discussed above, including small
sample sizes and challenges in handling insufficient evidence
cases. Second, although the algorithms were designed to be
simple to employ, they required customization from CQL or
observational medical outcomes partnership queries to be
implemented in the existing EHR system's available querying
tools. Additionally, a substantial amount of time was needed to
design and optimize the queries for large EHR databases. This
customization must be made easier for health care data partners
in the future.

We collected feedback from our data partner regarding potential
concerns and improvements to make it easier to apply the
algorithm to another site without sacrificing accuracy. Our data
partner suggested that the query implementation time could be
drastically reduced if we provided a design template for efficient
phenotype queries and validations specific to an EHR vendor’s
system; added additional text description around some of the
phenotype logic; and simplified the algorithms to make them
easier to implement.

Future research involving a new partner site can be designed to
assess the reduction in time with the template from site #2, along
with simplified and improved algorithm documentation.

Even with the recommended improvements, the customization
required makes scaling the algorithms nationwide challenging.
In the future, the evolving landscape of health IT may facilitate
the public health use cases of detecting and reporting

postvaccination AESIs in a safe and secure manner that protects
patient privacy over the process described in this paper.

A truly interoperable ability to query across health providers is
a demonstrated need to address variations in underlying
technology, standards, and connectivity. The stakeholders
include the electronic clinical report program jointly managed
by the Association of Public Health Laboratories, Centers for
Disease Control and Prevention, and Council of State and
Territorial Epidemiologists; the Electronic medical record
Support for Public health network for case reporting [18]; and
the Helios HL7 FHIR Accelerator, Aggregate Data initiative
[19], which has recently focused on capacity reporting such as
open beds, ICU beds, emergency department visits, and similar
statistics supporting emerging public health responses.

These initiatives vary in the complexity of the queries or trigger
codes that identify a data point. A common thread is the
inclusion or centrality of FHIR standards or profiles. A challenge
for the BEST use case is the need for more complex queries
linking biologic exposures to potential outcomes. This could
be achieved by EHRs supporting secure querying of patient
cohorts with probable postvaccination AEs using CQL [20] or
another interoperable query language. Reducing the burden of
automatic detection of postvaccination AEs would help public
health organizations improve AE surveillance with minimal
additional burden to health care institutions and providers.

A final limitation of this study is that the algorithms were only
applied to a limited number of sites. Moving forward, the
algorithm’s performance needs to be validated through
exchanges at additional sites, preferably with a larger sample
of potential postvaccination AE cases. This would ensure the
following (Textbox 2).
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Textbox 2. Algorithm generalizability and challenges in implementation across diverse healthcare settings and electronic health record systems.

• Performance generalizes to other health care sites: The algorithm has only been applied to site #1 and site #2. It may have different operating
characteristics (positive predictive value, sensitivity, etc) at additional locations.

• Performance generalizes to other postvaccination adverse events (AEs): Other algorithms could not be validated due to sample size issues arising
from the rarity of postvaccination AEs. These algorithms may be validated with a larger data partner or a series of validations at different data
partners.

• Algorithms can be applied to other sites’ electronic health record (EHR) implementations: Although the phenotype was applied to one Epic site,
the results could differ for other Epic EHR implementations. We are currently researching variability in Fast Healthcare Interoperability Resources
(FHIR) end points and how it might affect postmarket vaccine safety and effectiveness research (Deady et al, in preparation).

• Data received from other EHR vendor systems are similarly robust: Data captured or received through the exchange platform could vary among
health care providers using other vendors’EHR systems, altering the validation results and reducing the usefulness of this method for postvaccination
AE detection.

Conclusions
Active surveillance systems have the potential to enhance
vaccine safety, contribute to the development and use of safer
vaccines, and provide evidence to minimize the risk of
postvaccination AEs [21]. These systems can also detect
suspected or unknown AE cases. The algorithms described
herein were developed and validated using a methodology that
is recommended to be applied to and generalized for new EHR
databases.

Before expanding the application of these algorithms, additional
research is needed to improve their accuracy. This requires
collaboration with additional partner EHR systems. Machine
learning techniques could potentially be used to train the model
to identify specific data patterns, creating a more effective
algorithm compared to the rules-based methods that incorporate
published case definition criteria and clinical subject matter
experts. With sufficient data, machine learning approaches
outperform rules-based approaches across domains, including
the medical domain in which we received direct data extracts
from EHR tables from our health care partner from site #1 [22].

However, machine learning methods may not be generalizable
across different EHR systems because the data identified could
be specific to individual health care organizations. Building a
large dataset that combines multi-site data is challenging and
costly due to concerns over infrastructure, regulations, privacy,
and data standardization. Federated learning could be explored
to address this problem. This method allows multiple sites to
collaborate in training a global model without directly sharing
data and has been used to train machine learning algorithms at
EHR sites [23]. However, given the BEST initiatives’ goal of
reducing burden on providers, federated learning faces multiple
barriers to becoming nationally feasible. In the meantime,
current methods of conducting large-scale surveillance studies
with health care provider networks remain critical for postmarket
safety and surveillance [24].

BEST staff will use the findings from this validation study to
inform the long-term feasibility of scaling to a nationwide,
semi-automated detection approach for an active surveillance
system. Further research and investigation are needed to enhance
algorithm performance and integration across health care
organizations for active surveillance in the interest of public
health.
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