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Abstract

Background: Accurate measurement of food and nutrient intake is crucial for nutrition research, dietary surveillance, and
disease management, but traditional methods such as 24-hour dietary recalls, food diaries, and food frequency questionnaires are
often prone to recall error and social desirability bias, limiting their reliability. With the advancement of artificial intelligence
(AI), there is potential to overcome these limitations through automated, objective, and scalable dietary assessment techniques.
However, the effectiveness and challenges of AI applications in this domain remain inadequately explored.

Objective: This study aimed to conduct a scoping review to synthesize existing literature on the efficacy, accuracy, and challenges
of using AI tools in assessing food and nutrient intakes, offering insights into their current advantages and areas of improvement.

Methods: This review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines. A comprehensive literature search was conducted in 4 databases—PubMed, Web of
Science, Cochrane Library, and EBSCO—covering publications from the databases’ inception to June 30, 2023. Studies were
included if they used modern AI approaches to assess food and nutrient intakes in human subjects.

Results: The 25 included studies, published between 2010 and 2023, involved sample sizes ranging from 10 to 38,415 participants.
These studies used a variety of input data types, including food images (n=10), sound and jaw motion data from wearable devices
(n=9), and text data (n=4), with 2 studies combining multiple input types. AI models applied included deep learning (eg,
convolutional neural networks), machine learning (eg, support vector machines), and hybrid approaches. Applications were
categorized into dietary intake assessment, food detection, nutrient estimation, and food intake prediction. Food detection accuracies
ranged from 74% to 99.85%, and nutrient estimation errors varied between 10% and 15%. For instance, the RGB-D (Red, Green,
Blue-Depth) fusion network achieved a mean absolute error of 15% in calorie estimation, and a sound-based classification model
reached up to 94% accuracy in detecting food intake based on jaw motion and chewing patterns. In addition, AI-based systems
provided real-time monitoring capabilities, improving the precision of dietary assessments and demonstrating the potential to
reduce recall bias typically associated with traditional self-report methods.

Conclusions: While AI demonstrated significant advantages in improving accuracy, reducing labor, and enabling real-time
monitoring, challenges remain in adapting to diverse food types, ensuring algorithmic fairness, and addressing data privacy
concerns. The findings suggest that AI has transformative potential for dietary assessment at both individual and population
levels, supporting precision nutrition and chronic disease management. Future research should focus on enhancing the robustness
of AI models across diverse dietary contexts and integrating biological sensors for a holistic dietary assessment approach.
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Introduction

Measuring food and nutrient intake is foundational in nutrition
research, dietary surveillance, and clinical practice [1].
Traditional methods, such as 24-hour dietary recalls, food
diaries, and food frequency questionnaires, have been the
cornerstones of such endeavors [2]. However, these self-reported
tools frequently encounter issues associated with recall error,
where individuals inadvertently omit, underreport, or exaggerate
certain food items or quantities [3]. Furthermore, social
desirability bias further complicates matters, with respondents
potentially altering their reports to reflect what they perceive
as more socially acceptable or healthier dietary habits [4]. While
clinical measures in controlled environments, such as
laboratories, offer higher accuracy, they have drawbacks [5].
These objective measures often entail labor-intensive processes,
significant costs, and potential intrusiveness for participants
[6]. Such constraints render them less suitable for large-scale,
population-level studies or individuals seeking to personally
monitor their food and nutrient intake for disease management
and other health-related objectives [6]. In light of these
challenges, there is an escalating interest in leveraging artificial
intelligence (AI) to enhance the accuracy and feasibility of
dietary intake assessment [7].

AI, a branch of computer science focusing on developing
algorithms that simulate human cognitive functions, has shown
transformative potential across diverse sectors [8]. In
health-related research, AI’s ability to process vast amounts of
data at incredible speeds and its adeptness at pattern recognition
has made substantial strides in medical imaging, predictive
modeling of disease outbreaks, and personalized medicine
[9,10]. In the context of dietary assessment, AI offers several
distinct advantages. First, it can potentially mitigate the biases
inherent in self-reported methods by using image recognition
to identify and quantify food items with minimal input from the
user [11]. Advanced machine learning algorithms can analyze
photographs of meals and provide instant, objective assessments
of portion sizes and nutrient content [11,12]. In addition to
image-based methods, AI techniques also use sound, jaw motion
from wearable devices, and text data for dietary assessment.
These methods provide diverse approaches to capture dietary
intake, enhancing the accuracy and comprehensiveness of
assessments. Second, AI can offer continuous, real-time
monitoring, bridging the temporal gap in methods like 24-hour
recalls [13]. Finally, while laboratory-based clinical measures
are costly and labor-intensive, once developed, AI-driven tools
can be scaled up relatively inexpensively, making them more
feasible for large population studies and individual dietary
tracking [14]. Given these attributes, AI emerges as a promising

candidate to revolutionize the landscape of food and nutrient
intake measurement.

While numerous reviews have covered objective measures of
dietary intake, our review specifically focuses on the application
of AI technologies in this field. This scoping review provides
a comprehensive synthesis of recent advancements, highlights
the unique challenges faced by AI methodologies, and identifies
critical gaps that future research should address. Our work adds
to the existing literature by providing a detailed analysis of AI’s
role in improving the accuracy and efficiency of dietary
assessment.

To the best of our knowledge, a comprehensive scoping review
that delves into the applications of AI for measuring food and
nutrient intakes has not yet been conducted. This gap in the
literature underlines the novelty and urgency of our
investigation. The primary objective of this review is to explore
and map out the current landscape of AI applications in dietary
assessment, detailing methodologies, tools, and their associated
findings.

This endeavor holds transformative potential for several reasons.
First, by consolidating and synthesizing the vast yet dispersed
body of knowledge, researchers, clinicians, and policy makers
can gain a cohesive understanding of the current state-of-the-art
and its implications for the future. Second, the review will
spotlight any existing limitations or gaps in the current AI
methodologies, paving the way for targeted advancements in
technology and research design. Finally, given the paramount
importance of accurate dietary assessment in myriad health
outcomes and policy decisions, our findings can directly inform
best practices, promote technology adoption in clinical and
research settings, and guide future funding and priorities in
technological and nutritional research sectors.

Methods

Overview
This scoping review followed the guidelines of the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews;
see Multimedia Appendix 1) [15].

Study Selection Criteria
Predefined inclusion and exclusion criteria were established
and applied to all identified studies during the screening process.
Textbox 1 provides a detailed overview of the inclusion and
exclusion criteria, outlining the study characteristics considered
for eligibility in this review.
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Textbox 1. Inclusion and exclusion criteria for study selection.

Inclusion criteria:

• Study design: Experimental studies (eg, randomized controlled trials [RCTs], pre-post interventions) and observational studies (eg, cross-sectional,
longitudinal).

• Analytic approach: Modern AI approaches, including machine learning (ML), deep learning (DL), and reinforcement learning (RL).

• Participants: Individuals of all ages.

• Data type: Input data, including food images, plate images, etc.

• Outcome: Measures on food and nutrient intakes.

• Article type: Original, empirical, peer-reviewed journal publications.

• Language: Articles written in English.

• Search time frame: From the inception of electronic bibliographic databases to June 30, 2023.

Exclusion criteria

• Study design: Studies that do not involve human subjects, observational or experimental design.

• Analytic approach: Studies using rule-based (“hard-coded”) approaches instead of example-based ML, DL, or RL.

• Participants: Non-human subjects.

• Data type: Studies not using dietary input data.

• Outcome: Studies without outcomes related to food and nutrient intakes.

• Article type: Letters, editorials, study or review protocols, case reports, or review articles.

• Language: Non–English-language articles.

• Search time frame: Studies published after June 30, 2023.

Search Strategy
A comprehensive search was performed in 4 electronic
bibliographic databases: PubMed, Web of Science, Cochrane
Library, and EBSCO. The search strategy used a combination
of controlled vocabulary (eg, MeSH terms in PubMed) and
free-text keywords. The search terms were structured around
two main concepts: (1) AI and (2) nutrition or dietary intake.
The AI-related terms included: “artificial intelligence,” “machine
learning,” “deep learning,” “neural networks,” “natural language
processing,” “computer vision,” “algorithms,” “data mining,”
“big data,” “predictive modeling,” and “automated pattern
recognition.” The nutrition-related terms included: “nutrition,”
“dietetics,” “nutritional sciences,” “diet,” “dietary behavior,”
“beverage intake,” “food intake,” “nutrient intake,” and “healthy
eating.” These keywords were combined using Boolean
operators (AND, OR) to ensure a comprehensive search. The
complete search strategy, including database-specific
modifications and detailed search strings, is provided in
Multimedia Appendix 2. After the initial search, 2 coauthors
independently screened the titles and abstracts for the articles
found through the keyword search, obtained potentially relevant
articles, and reviewed their full texts. The inter-rater agreement
between these two authors was evaluated using Cohen κ
(κ=0.85). Disagreements were settled through conversation.

Data Extraction and Synthesis
The following methodological and outcome variables were
collected from each study using a standardized data extraction

form: authors, year of publication, country or region, study
objective, sample size, sample characteristics, AI models used,
tasks and applications, type of input data, outcome measures,
and perceived usefulness of AI technologies. No meta-analysis
was feasible, given the substantial heterogeneity of the models,
outcome measures, and applications. Therefore, we synthesized
the study findings narratively and categorized them into distinct
themes.

Results

Identification of Studies
Figure 1 illustrates the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram, outlining
the structured literature search and selection procedure. The
initial database search identified 6132 articles. After removing
duplicates, 5499 unique articles were retained for preliminary
screening based on their titles and abstracts. From this collection,
5456 articles were evaluated as irrelevant and, consequently,
excluded from the review. Applying the study selection criteria
to the remaining 43 articles resulted in the further exclusion of
18 studies due to various reasons, including lack of AI
technology adoption (n=7), absence of food and nutrient intake
measurements (n=6), being a commentary rather than original
empirical research (n=3), and a focus on smartphone-based apps
(n=2). Ultimately, 25 studies met the relevance criteria and were
included in the review [12,14,16-38].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram illustrating the study selection process.

Study Characteristics
Table 1 reports the characteristics, type of input data, outcome
measures, and main findings of the 25 studies incorporated in
the review (more details in Multimedia Appendix 3). The studies
spanned a range of publication years, with the earliest appearing
in 2010 [16] and singular studies being published in 2013 [17],
2015 [18], and 2023 [38]. Publications in the following years

were more frequent, with 2 studies each in 2016 [19,20], 2018
[21,22], and 2020 [14,27], 3 in 2021 [28-30], 5 in 2019
[12,23-26], and 7 in 2022 [31-37]. The geographical spread of
the studies was diverse, with research conducted in several
different countries: 14 in the United States
[12,16,17,19-22,24-27,30,31,37], 4 in Switzerland [14,18,23,29],
2 in France [32,36], and 1 each in Canada [33], China [38],
Denmark [34], Philippines [35], and Slovenia [28].
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Table 1. Geographic location, sample size, sample characteristics, artificial intelligence models, type of input data, task, outcome measures, and main
findings in the studies included in the review.

Outcome mea-
sures

TaskType of input dataAIa modelsSample characteris-
tics

Sample
size

Country or

Region

Author, Year

Food intakeClassificationSound, strain signalSVMb, RBFkcHealthy adults
(BMI: 28.01, SD
6.35)

18United
States

Lopez-Meyer et al,
2010 [16]

Food intakeClassificationJaw motion signal,
hand gesture signal,
body acceleration

RFdHealthy adults
(BMI: 24.39, SD
3.81)

12United
States

Fontana et al, 2013
[17]

Carbohydrates
counting

RegressionImageCVe, SVMImages of dishes144SwitzerlandAnthimopoulos et al,
2015 [18]

Food intakeClassificationJaw motion signal,
body acceleration
signal

SVM, DTfHealthy adults
(BMI: 27.87, SD
5.51)

10United
States

Farooq and Sazonov,
2016 [19]

Calorie intakeRegressionAudio signalSRMh, NLPi,

SMMj
—g10United

States
Hezarjaribi et al, 2016
[20]

Dietary lapsesRegressionTextRF, DT, Log-

it.Boot, BNk,

Adults with over-
weight/obesity
(BMI: 33.60, SD
5.66)

12United
States

Goldstein et al, 2018
[21]

Bagging, Ran-
dom subspace

Calorie intakeRegressionAudio signalNLP, LAl—30United
States

Hezarjaribi et al, 2018
[22]

Nutrient intakeRegressionImageMTNnetm,

DTMn,

Meal images (pixel:
640×480)

644SwitzerlandLu et al, 2019 [23]

RANSAC algo-
rithm

Food energyRegressionImageGANo, CNNpFood images (pixel:
224×224)

4190United
States

Fang et al, 2019 [12]

Dietary assess-
ment

RegressionImageCNNImages (pixel:
640×480)

38,415United
States

Jia et al, 2019 [24]

Amount of lac-
tose

RegressionTextLASSOq,

Ridge, FFNNr,

XGBs models

Food descriptions567United
States

Chin et al, 2019 [25]

Food intakeClassificationHand gesture, jaw
motion, body acceler-
ation

NNCtHealthy adults
(BMI: 26.1, SD 5.2)

40United
States

Farooq et al, 2019
[26]

Food intakeClassificationHeart rate variability
signal

ANNuAdults with dyspep-
sia

126United
States

Heremans et al, 2020
[27]

Nutrient intakeRegressionImageMTCNetv,

FSLBCw, 3D-

SCAx

Meal images (pixel:
640×480)

644SwitzerlandLu et al, 2021 [14]

Dietary assess-
ment

ClassificationImageDNNyFood images (pixel:
512×512)

520SloveniaMezgec and Koroušić
Seljak, 2021 [28]

Energy, nutrient
intake

RegressionImageCNN, PSPNetz,
DeepLabv3 net-
work

Meal images (pixel:
640×480)

866SwitzerlandPapathanail et al,
2021 [29]

Energy intakeRegressionText, voice dataCNN, SMMHealthy adults
(mean BMI: 24)

34United
States

Taylor et al, 2021 [30]

Food intakeClassificationAccelerometer, opti-
cal sensor data

Time-CNN,

ResNetaa,

Adolescents and
adults

17United
States

Ghosh and Sazonov,
2022 [31]

FCNab, IMac,

MLPad
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Outcome mea-
sures

TaskType of input dataAIa modelsSample characteris-
tics

Sample
size

Country or

Region

Author, Year

Food itemRegressionFood imageDNNDishes images22,544FranceVan Wymelbeke-De-
lannoy et al, 2022 [32]

Food intakeRegressionPlate imageDeep-CNNPlate images (pixel:
640×480)

689CanadaPfisterer et al, 2022
[33]

Food intakeRegressionPsychophysiological
responses

RFAdults with normal
weight

100DenmarkPedersen et al, 2022
[34]

Under-nutritionRegressionTextRF, SVM,

LDAae, LRaf
Children618PhilippinesSiy Van et al, 2022

[35]

Dietary potassi-
um intake

RegressionTextBN, BTANNagAdults with chronic
kidney disease

375FranceGranal et al, 2022 [36]

Dietary intakeRegressionImage, textPop-socketAdolescent36United
States

Nguyen et al, 2022
[37]

Energy, nutrient
intake

RegressionImageRGB-Dah fu-
sion network

Food images5920ChinaShao et al, 2023 [38]

aAI: artificial intelligence.
bSVM: support vector machine.
cRBFk: radial basis function kernels.
dRF: random forest.
eCV: computer vision.
fDT: decision tree.
gNot applicable.
hSRM: speech recognition model.
iNLP: natural language processing.
jSMM: string matching module.
kBN: Bayesian network.
lLA: levenshtein algorithm.
mMTNnet: multi-task neural network.
nDTM: delaunay triangulation method.
oGAN: generative adversarial networks.
pCNN: convolutional neural network.
qLASSO: least absolute shrinkage and selection operator.
rFFNN: feed forward neural network.
sXGB: eXtreme gradient boosting.
tNNC: neural network classifier.
uANN: artificial neural network.
vMTCNet: multi-task contextual network.
wFSLBC: few-shot learning-based classifier.
xSCA: surface construction algorithm.
yDNN: deep neural network.
zPSPNet: pyramid scene parsing network.
aaResNet: residual neural network.
abFCN: fully convolutional neural network.
acIM: inception network.
adMLP: multilayer perceptron.
aeLDA: linear discriminant analysis.
afLR: logistic regression.
agBTANN: bayesian tree augmented naive network.
ahRGB-D: Red, Green, Blue-Depth.

The studies varied in sample sizes, ranging from 10 to 38,415.
Specifically, 10 studies had sample sizes between 10 and 99
[16,17,19-22,26,30,31,37], 3 had between 100 and 199

[18,27,34], and the remaining 12 had sample sizes exceeding
300. Among the 25 studies, while all involved human subjects,
10 studies focused on analyzing food images, dish images, or
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plate images to estimate dietary intake
[12,14,18,23,24,28,29,32,33,38], 4 targeted healthy adults
dealing with obesity or overweight [16,19,21,26], 3 focused on
adults with normal weight [17,30,34], 3 engaged with children
and adolescents [31,35,37], and 2 addressed adults with diseases
[27,36]. Over the years, there have been notable advancements
in AI-based dietary assessment. Early studies primarily focused
on developing basic image recognition algorithms. More recent
studies have integrated advanced machine learning models, such
as deep learning and convolutional neural networks, which have
significantly improved the accuracy of food recognition and
nutrient estimation.

Among the 25 studies, 10 used image data, 9 used sound or jaw
motion data from wearable devices, 4 used text data, and the
remaining 2 combined multiple types of input data for dietary
assessment. We classified the applications into 4 categories:
dietary intake assessment, food detection, nutrient estimation,
and food intake prediction.

Applications in Dietary Intake Assessment
Our review identified several critical steps involved in the
processing of dietary intake assessment systems, specifically
for image-based methods. These steps include (1) identifying
images with food, (2) identifying the foods, (3) separating the
foods into separate parts, (4) estimating portion sizes served
and remaining to estimate intake, and (5) estimating nutrient
intake. Each of these steps involves distinct AI methodologies
with varying degrees of accuracy and potential errors.

Identifying Images With Food
AI models, particularly convolutional neural networks (CNNs),
are widely used for recognizing the presence of food in images.
Studies, such as those by Fang et al (2019) [12] and Jia et al
(2019) [24], have demonstrated high accuracy in detecting food
presence using end-to-end image-based automatic food energy
estimation techniques and real-world egocentric images,
respectively.

Identifying the Foods
Once food is identified in an image, the next step is to classify
and recognize different food items. Techniques such as support
vector machines (SVMs) and deep learning models, including
GANs (Generative Adversarial Networks) and advanced CNNs,
are used for this purpose. For example, the GoCARB system
developed by Anthimopoulos et al [18] used computer vision
to estimate carbohydrate content by recognizing different food
items from smartphone images.

Separating Foods Into Separate Parts
Segmenting individual food items within an image is crucial
for accurate portion size estimation. Techniques such as image
segmentation using deep neural networks (DNNs) have been
effective in this regard. The study by Mezgec and Koroušić
Seljak [28] showcased the use of DNNs for image-based dietary
assessment with a classification accuracy of 86.72%.

Estimating Portion Sizes Served and Remaining
Estimating the portion sizes of served and remaining food
requires precise volume and area measurements, which can be

challenging due to varying presentation and occlusion of food
items. AI models using RGB-D (Red, Green, Blue-Depth)
imagery, as seen in the work by Shao et al [38], have shown
promise in improving the precision of such estimations by using
depth information to enhance the accuracy of food volume
assessments.

Estimating Nutrient Intake
The final step involves estimating the nutrient intake based on
the identified and quantified food items. This step often
leverages databases such as the US Department of Agriculture
(USDA) nutritional database to map food items to their nutrient
profiles. The integration of AI for this purpose is exemplified
by systems like the S2NI platform, which combines speech
recognition and natural language processing to monitor dietary
composition from spoken data, achieving high accuracy in
nutrient computation.

Non–image-based dietary assessment methods, including those
using sound, jaw motion from wearable devices, and text
analysis, can also be categorized similarly. These methods
contribute to various steps, particularly in identifying food intake
and estimating nutrient content. For instance, the use of jaw
motion signals analyzed by SVMs, as studied by Lopez-Meyer
et al [16], provides high accuracy in detecting food intake.

Applications in Food Detection
Food detection refers to the identification and recognition of
food items using AI technologies. AI applications have become
increasingly important in automating food detection, providing
foundational advancements crucial for accurate nutrient
estimation and food intake prediction. SVM and random forests
are highlighted as prevalent machine learning models across
the studies, aiming to achieve high food detection accuracy
[16,17,19]. Random forest classification emphasizes the
importance of time and frequency domain features in food intake
detection with wearable sensor systems, focusing predominantly
on jaw motion and accelerometer signals [17].

Another essential facet in this AI-infused dietary landscape is
the integration of image-based assessments [28,33]. The
development and validation of deep neural networks like
NutriNet for food and beverage image recognition have
showcased the ability of image-based approaches to identify
multiple food or beverage items in a single image. Moreover,
incorporating FCNs and deep residual networks (ResNet)
magnifies the efficacy of segmenting food images, presenting
a robust method in automated dietary assessments. Notably,
Pfisterer et al [33] offered insights into the application of deep
convolutional encoder-decoder food networks with
depth-refinement (EDFN-D) in long-term care settings,
providing an automated imaging system for quantifying food
intake with high precision and objectivity, addressing the
existing limitations in these settings [33].

A noticeable trend across the studies is the use of wearable and
mobile devices, demonstrating the integration of technology
with daily human activities for real-time and accurate data
collection [19,24,32,37]. Wearable devices, such as the
Automatic Ingestion Monitor (AIM) and other novel devices
with sensors on the temporalis muscle and accelerometers, have
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shown potential in reducing the influence of motion artifacts
and speech on food intake detection accuracy [19]. Furthermore,
mobile AI technologies, such as FRANI (Food Recognition
Assistance and Nudging Insights), illustrate their feasibility and
reliability in resource-constrained settings, offering a comparable
alternative to traditional methods like weighed records (WRs)
[37].

DNN and CNN are central in recognizing and detecting food
items from images, providing an automated approach to food
detection and segmentation. The FoodIntech system, using a
DNN-based approach, has demonstrated reliability in
recognizing a variety of dishes and assessing food consumption
[32]. Similarly, algorithms designed for egocentric images from
wearable cameras have achieved substantial accuracy in food
detection, addressing concerns related to data processing burdens
and privacy [24].

Combining AI with RGB-D imagery is an evolving approach,
showing promise in refining the precision of food nutrition
estimation. The use of RGB-D fusion networks has revealed
advancements in performing multimodal and multiscale feature
fusion, offering a refined accuracy in nutrient analysis [38].
This approach successfully estimated calories and mass with a
lower percentage mean absolute error and effectively visualized
the estimation results of 4 nutrients [38].

Despite the advancements, there is a discernable disparity in
the reported accuracy and reliability among the studies, with
accuracy ranging from 74% to 99.85% [19,24]. This variance
reflects the diverse methodologies, sensor modalities, ML
algorithms, and the nature of features extracted for analysis.
The ongoing refinements in methods and technologies showcase
the evolving nature of AI applications in food detection,
signaling a step forward in automating dietary assessment in
varied environments and demographic settings.

Applications in Nutrient Estimation
AI has been used to address the challenges associated with
accurate nutrient intake assessment and dietary management
for various medical conditions and patient demographics. The
GoCARB system [18] exemplifies how AI can assist individuals
with type 1 diabetes in carbohydrate counting, using computer
vision to automate the estimation process using smartphones,
hence aiding in optimal insulin dosage estimations. This
application relies on the segmentation and recognition of food
items, calculating the carbohydrate content based on food
volumes and the USDA nutritional database, demonstrating a
mean absolute percentage error in carbohydrate estimation of
approximately 10%.

In addressing the nutrition assessment needs of hospitalized
patients, an AI-based system has been developed [23,29] that
uses RGB-D image pairs to estimate nutrient intake. These
applications offer a means to counter malnutrition risks in
hospital settings by delivering more accurate and automated
nutrient intake assessments. The systems segment images into
different food components, estimate the volume consumed, and
calculate energy and macronutrient intake, showing a 15%
estimation error [23] and improved agreement with expert
estimations compared to standard clinical procedures [29].

Efforts have also been made to estimate food energy values
using GAN architecture [12]. By mapping food images to their
energy distributions, the technology has shown promise in
improving the accuracy of dietary assessments, with an average
error of 209 kcal per eating occasion in a real-world study
setting.

In the context of 24-hour food recalls, machine learning models
and database matching have been instrumental in estimating
nutrients not directly outputted by specific dietary assessment
tools [25]. For instance, lactose was relatively accurately
estimated using models like XGB regressor and database
matching methods.

Meanwhile, studies on the interplay between behavioral and
physiologic variables in predicting food intake [34] have
provided foundational insights. However, the predictive
capability of combined or separate measures of food reward or
biometric responses has not outperformed traditional models
in clinical settings. The approach, however, lays the groundwork
for further exploration of behavioral nutrition and personalized
nutrition strategies.

Furthermore, the development of predictive tools leveraging
AI for patients with chronic kidney disease has exhibited the
potential to estimate dietary potassium intake, emphasizing the
role of AI in clinical and therapeutic management [36]. This
application has been noteworthy for its ability to classify
potassium diet in 3 classes of potassium excretion with 74%
accuracy, focusing more on clinical characteristics and renal
pathology than on the potassium content of the ingested food.

Using mobile platforms that incorporate speech and natural
language processing to convert spoken data to nutrient
information offers a lens into the transformative potential of
voice-based solutions [20,22,30]. These solutions, such as S2NI,
Speech2Health, and the COCO Nutritionist app, achieve
substantial accuracy in computing calorie intake, emphasizing
the importance of real-time and pervasive monitoring. They
demonstrate an integrated approach to capture dietary
information more frequently, revealing the user preference
toward voice-based interfaces over text-based and image-based
nutrition monitoring due to their ease of use and accessibility.

Applications in Food Intake Prediction
Food intake prediction involves estimating the amount and type
of food consumed based on detected items. Advancements in
AI are significantly shaping the landscape of food intake
prediction by offering various innovative solutions and
techniques. For instance, ML techniques in predicting dietary
lapses during weight loss interventions have demonstrated the
potential to augment adherence to dietary guidelines and offer
real-time interventions, providing a comprehensive perspective
on combining individual and group-level data to enrich
predictions [21].

The adaptability and efficiency of ML are further highlighted
in the studies focusing on detecting food intake using various
sensor technologies and algorithms. Developing and validating
sensor-based food intake detection methods, such as AIM, have
illustrated high accuracy and reliability, presenting a promising
future for food intake monitoring in unconstrained environments
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[26,31]. SVMs have been effectively used in monitoring
ingestive behavior, yielding up to 94% accuracy in detecting
food intake by analyzing chews and swallows [16].

In particular, the utility of DL algorithms, like ResNet and Fully
Convolutional Neural Network (FCN), is revealed to be
paramount in differentiating food intake from other activities
using sensor signals. The competitive performance of these
algorithms indicates the significance of selecting appropriate
methods for precise classifications in real-world scenarios,
establishing their importance in the evolving field of dietary
monitoring and health interventions [31].

The exploration of DNN in automatic food intake detection
through dynamic analysis of heart rate variability has opened
avenues for addressing meal-related disorders. The notable
accuracy of DNN, especially in neuromodulation treatments for
conditions like obesity and diabetes, establishes the potential
of ML in contributing to varied health care settings [27].

Furthermore, the studies using ML algorithms like the random
forest have provided a robust method for identifying and
comparing nutritional risk, offering valuable insights into
developing targeted nutritional interventions and effectively
addressing undernutrition. Such approaches are crucial in
considering local dietary culture and delivering more nuanced
and culturally competent health care solutions [35].

Another essential facet in this AI-infused dietary landscape is
the integration of image-based assessments [28,33]. The
development and validation of deep neural networks like
NutriNet for food and beverage image recognition have
showcased the ability of image-based approaches to identify
multiple food or beverage items in a single image. Furthermore,
incorporating FCNs and deep residual networks (ResNet)
magnifies the efficacy of segmenting food images, presenting
a robust method in automated dietary assessments. Notably,
Pfisterer et al [33] offered insights into the application of deep
convolutional EDFN-D in long-term care settings, providing
an automated imaging system for quantifying food intake with
high precision and objectivity, addressing the existing limitations
in these settings [33].

Discussion

Principal Findings
The increasing intersection of AI with dietary assessment has
emerged as a transformative trend, as evidenced by our scoping
review. Our literature search revealed 25 pertinent studies
published between 2010 and 2023. These studies spanned
several nations, diverse demographics, and a spectrum of
methodologies. At its core, AI has primarily been used in 3
domains: food detection, nutrient estimation, and food intake
prediction. Machine learning models like SVMs and random
forests and deep learning models like CNNs have proved
instrumental in enhancing the accuracy of food detection and
nutrient estimation, often integrated with wearable devices and
mobile platforms. Another observation was the use of AI in
designing user-friendly interfaces, such as voice-based inputs,
to improve adherence to dietary tracking. User experience with
AI-based dietary assessment tools varies, but studies indicate

generally positive feedback regarding ease of use and
convenience. Users appreciate the real-time feedback and
reduced burden of manual input. However, there are concerns
about accuracy and privacy. Enhanced user training and
transparent data privacy policies could improve user trust and
interaction with these tools. The collective findings underscore
the potential of AI to revolutionize dietary assessment, providing
robust accuracy and user-centric solutions. This amalgamation
of technology and nutrition research addresses the inherent
limitations of traditional methods and charts a path for more
personalized, accurate, and real-time dietary assessments in
varied settings.

As illustrated by the reviewed studies, integrating AI into food
and nutrient intake assessments showcases a marked
advancement over traditional methodologies commonly used
in nutritional science [14,37]. Historically, methods such as
24-hour recalls, food frequency questionnaires, and dietary
records have been the mainstream of dietary assessments [2].
While these methods have provided invaluable insights, they
have inherent limitations like recall bias, inaccuracies stemming
from self-reporting, and the logistical challenges of frequent,
detailed data recording [3]. The reviewed studies, however,
highlighted the significant potential of AI to alleviate some of
these concerns. For instance, AI-backed systems such as FRANI
have been shown to offer a reliable alternative to weighed
records, which, although thorough, can be burdensome for
participants [37]. Similarly, tools like the GoCARB system
automate carbohydrate counting, which, if done manually,
demands meticulous attention and can be prone to errors,
especially for individuals with conditions like diabetes [18].

Furthermore, the versatility of AI applications across various
nutritional assessments is evident from the reviewed literature.
For instance, SVMs and random forests, when deployed in
monitoring ingestive behaviors, have demonstrated high
accuracy in detecting food intake by analyzing nuances such as
chews and swallows [16]. This level of precision is difficult to
attain through manual observation or self-reports. Applying
DNNs to recognize food items from images underscores another
leap, automating a process that traditionally demands human
expertise. Furthermore, the intersection of AI with RGB-D
imagery suggests an improved accuracy in nutrient analysis, an
area where traditional methods may not always yield precise
results [38]. However, it is crucial to note the variability in
reported accuracy among studies, which underscores the
importance of refining methodologies and recognizing the
evolving nature of AI applications. Despite this, the current
trajectory indicates that AI is poised to bring a paradigm shift
in automating dietary assessment, melding accuracy with
efficiency [36,37]. Wearable technology that detects food intake
based on chews and swallows offers significant benefits in
real-time dietary monitoring, particularly in clinical and research
settings. These devices can be integrated with mobile
applications and other wearable sensors to provide
comprehensive dietary assessments. While continuous camera
use may not be practical for all users, advancements in discreet
wearable sensors and intermittent image capture can enhance
user compliance and accuracy.
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While AI’s promise in food and nutrient intake measurement
is evident, its application comes with intrinsic challenges and
limitations. The reviewed studies, as well as the broader
literature, highlight some consistent concerns. First, the AI
models heavily depend on the quality and breadth of training
data [39]. A model trained on a limited dataset may not
recognize diverse food items, particularly those from various
global cuisines or those prepared using unique methods [40].
This can lead to inaccuracies in nutrient estimation. Common
biases include algorithmic biases resulting from non-diverse
training datasets that fail to represent global food diversity. In
addition, limitations in image-based recognition systems often
stem from varying image quality and presentation, which can
affect the accuracy of food and nutrient estimations. The
variability in food presentation, portion sizes, and the physical
environment in which the food is captured (eg, lighting
conditions) can pose challenges for image-based recognition
systems [41,42]. Furthermore, while tools like FRANI and
GoCARB show promise, they also underscore the current
limitations in recognizing mixed dishes or deciphering layered
foods with multiple ingredients [18,37]. It is also worth noting
that AI systems while reducing human biases, introduce
computational biases that may arise from algorithmic designs
or training datasets [43,44]. These challenges highlight the need
for more comprehensive datasets and improved image
processing techniques to enhance AI model reliability. Finally,
a potential digital divide exists, where populations without
access to advanced technology or those not adept at using it
might be excluded from AI-based dietary assessments, thereby
limiting its universal applicability [45,46].

Many AI-based dietary assessment tools rely on dietitians to
validate and estimate dietary intake from images due to the
complexities involved in accurate food identification and portion
size estimation. With the constant addition of new food items,
maintaining up-to-date nutrient databases is challenging. Some
studies have focused narrowly on estimating energy intake or
working with a limited set of foods under controlled conditions,
which limits the generalizability of their findings. Future
research should focus on developing scalable AI models that
can handle a broader range of foods and integrate real-time
updates to nutrient databases. In addition, enhancing the
collaboration between AI technologies and dietitians can help
improve the accuracy and applicability of these tools.

Current objective methods face significant limitations, including
inaccuracies in nutrient composition tables, the complexity of
multi-ingredient dishes, and variability in nutrient composition
of commercially available foods. In addition, these methods do
not account for individual metabolic differences in nutrient
processing. Integrating biological sensors with AI technologies
could offer a more definitive approach by providing real-time
data on circulating nutrients and individual metabolic responses,
thereby improving the accuracy of dietary assessments.

The sequential nature of AI-based dietary assessment introduces
cumulative errors, where inaccuracies at each stage—from food
detection to nutrient estimation—can compound, leading to
significant overall errors. Biological sensors that measure
circulating nutrients in real-time offer a promising solution to
overcome these limitations, as they provide direct data on

nutrient absorption and metabolism, reducing reliance on
intermediate estimations and improving overall accuracy.

Our search strategy, while comprehensive, may not have
captured all studies involving AI and dietary assessment. Despite
significant advancements, several gaps remain in the application
of AI for dietary assessment. Future research should focus on
enhancing the diversity of training datasets to reduce algorithmic
biases and improve the accuracy of AI models in recognizing
a wide variety of food items. In addition, integrating real-time
metabolic data with dietary assessments could offer more
comprehensive insights into individual nutritional statuses.
Among the AI tools evaluated, image-based recognition systems
like the GoCARB system are highly effective for carbohydrate
counting in diabetes management, while wearable devices
monitoring jaw motion offer promising real-time intake data,
particularly useful in clinical settings.

Ethical considerations in AI-based dietary assessment are
paramount. Data privacy concerns arise from the extensive
personal data required for accurate assessments, necessitating
robust security measures and transparent consent processes.
Algorithmic biases can lead to inaccuracies and unfair outcomes,
highlighting the need for diverse training datasets. In addition,
the digital divide poses a significant challenge, as populations
without access to advanced technologies may be excluded from
the benefits of AI. Addressing these issues requires
comprehensive strategies, including inclusive technology design
and stringent ethical standards in data handling and algorithm
development.

As AI continues to evolve, there is vast potential for
revolutionary enhancements in dietary and nutrient intake
measurement. Based on current trajectories in nutrition science
and AI advancements, we might anticipate a future where AI
systems can recognize food items with high precision and factor
in variables like cooking methods, regional variations, and the
bioavailability of nutrients. These AI systems could be trained
on increasingly diverse datasets, capturing the nuances of global
diets and potentially integrating real-time metabolic and
physiological data from wearable devices to provide a more
comprehensive view of an individual’s nutrient absorption
[47,48]. AI could facilitate large-scale dietary assessment studies
on a population level, helping researchers discern dietary
patterns, nutrient deficiencies, and even epidemiological
correlations faster and more accurately [49,50]. With the rise
of precision nutrition, AI might enable personalized dietary
recommendations, considering an individual's genetic,
metabolic, and health profile [51]. This tailored approach could
radically improve disease management, particularly for
conditions like diabetes or cardiovascular diseases, where dietary
interventions play a pivotal role [52].

Conclusion
In conclusion, the scoping review highlighted the burgeoning
role of AI in advancing the measurement of food and nutrient
intakes, with notable advancements in accuracy and efficiency
compared to traditional methods. However, while the potential
of AI in this domain is substantial, it is imperative to
acknowledge its current limitations and areas requiring
refinement. As the nexus between nutrition science and
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technology continues to strengthen, future research must focus
on refining AI methodologies, ensuring their applicability across
diverse populations, and integrating them into broader nutritional

and health studies. This interdisciplinary collaboration promises
a future where dietary assessments are accurate and instrumental
in shaping individual and public health outcomes.
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