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Abstract

Background: High systolic blood pressure is one of the leading global risk factors for mortality, contributing significantly to
cardiovascular diseases. Despite advances in treatment, a large proportion of patients with hypertension do not achieve optimal
blood pressure control. Arterial stiffness (AS), measured by pulse wave velocity (PWV), is an independent predictor of
cardiovascular events and overall mortality. Various antihypertensive drugs exhibit differential effects on PWV, but the extent
to which these effects vary depending on individual patient characteristics is not well understood. Given the complexity of selecting
the most appropriate antihypertensive medication for reducing PWV, machine learning (ML) techniques offer an opportunity to
improve personalized treatment recommendations.

Objective: This study aims to develop an ML model that provides personalized recommendations for antihypertensive medications
aimed at reducing PWV. The model considers individual patient characteristics, such as demographic factors, clinical data, and
cardiovascular measurements, to identify the most suitable antihypertensive agent for improving AS.

Methods: This study, known as the RIGIPREV study, used data from the EVA, LOD-DIABETES, and EVIDENT studies
involving individuals with hypertension with baseline and follow-up measurements. Antihypertensive drugs were grouped into
classes such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers, diuretics,
and combinations of diuretics with ACEIs or ARBs. The primary outcomes were carotid-femoral and brachial-ankle PWV, while
the secondary outcomes included various cardiovascular, anthropometric, and biochemical parameters. A multioutput regressor
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using 6 random forest models was used to predict the impact of each antihypertensive class on PWV reduction. Model performance

was evaluated using the coefficient of determination (R2) and mean squared error.

Results: The random forest models exhibited strong predictive capabilities, with internal validation yielding R2 values between
0.61 and 0.74, while external validation showed a range of 0.26 to 0.46. The mean squared values ranged from 0.08 to 0.22 for
internal validation and from 0.29 to 0.45 for external validation. Variable importance analysis revealed that glycated hemoglobin
and weight were the most critical predictors for ACEIs, while carotid-femoral PWV and total cholesterol were key variables for
ARBs. The decision tree model achieved an accuracy of 84.02% in identifying the most suitable antihypertensive drug based on
individual patient characteristics. Furthermore, the system’s recommendations for ARBs matched 55.3% of patients’ original
prescriptions.

Conclusions: This study demonstrates the utility of ML techniques in providing personalized treatment recommendations for
antihypertensive therapy. By accounting for individual patient characteristics, the model improves the selection of drugs that
control blood pressure and reduce AS. These findings could significantly aid clinicians in optimizing hypertension management
and reducing cardiovascular risk. However, further studies with larger and more diverse populations are necessary to validate
these results and extend the model’s applicability.

(J Med Internet Res 2024;26:e54357) doi: 10.2196/54357
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Introduction

Background
According to the Global Burden of Diseases, Injuries, and Risk
Factors Study, the leading global risk factor for attributable
deaths in 2019 was high systolic blood pressure, accounting for
10.8 million deaths (19.2% of the total) [1]. However, despite
receiving treatment through both nonpharmacological and
pharmacological measures, a significant percentage of patients
continue to have poor blood pressure control [2]. Current clinical
practice guidelines recommend individualized regimens for
hypertension treatment [3,4]. In addition, arterial stiffness (AS),
assessed through pulse wave velocity (PWV), is an independent
cardiovascular risk factor with the capacity to predict morbidity
and mortality from cardiovascular diseases [5,6]. Furthermore,
there are numerous pharmacological strategies for hypertension
treatment [7], and the effect on AS varies among these groups
[8-12]. In a recently published network meta-analysis by our
group [8] focusing on the outcomes of the 5 classes of drugs
used in clinical practice for hypertension treatment, a significant
decrease in PWV was observed with angiotensin-converting
enzyme inhibitors (ACEIs), angiotensin receptor blockers
(ARBs), and β-blockers (BBs) [8]. The meta-analysis conducted
by Ong et al [12] compared the effects of antihypertensive drugs
(except ARBs) with those of placebo and revealed that all
antihypertensive drugs reduced the PWV. In short-term trials,
ACEIs were more effective than calcium channel blockers
(CCBs), and in long-term trials, ACEIs, CCBs, BBs, and
diuretics were more effective than placebo. The meta-analysis
conducted by Chen et al [11] analyzed the effects of ARBs
versus other antihypertensive agents on PWV reduction and
found no differences compared to other groups. The
meta-analysis conducted by Shahin et al [9] examined the effect
of ACEIs on AS compared to that of placebo or other
antihypertensive agents and concluded that ACEIs reduce PWV
but did not definitively establish whether the effect was superior
to that of other antihypertensive agents. Finally, the

meta-analysis conducted by Li et al [10] assessed the effect of
ACEIs on PWV without finding any differences compared to
other antihypertensive drugs but did find differences compared
to placebo. Similarly, longitudinal studies that have analyzed
the effects of ACEIs or ARBs alone or in combination with
CCBs or diuretics have demonstrated their effectiveness in
reducing PWV [13]. Therefore, all the results suggest that
antihypertensive agents may have beneficial effects on AS, but
the intensity of these effects may vary. However, no studies
have analyzed whether the effects of antihypertensive drugs on
AS differ based on the individual characteristics of patients with
hypertension.

PWV is now recognized as a crucial indicator of AS, making
it a valuable predictor marker for atherosclerosis [14]. This link
between hypertension and cardiovascular risk is supported by
a strong body of evidence [15]. This study highlights the
importance of incorporating PWV into cardiovascular research
and risk assessment. Several epidemiological studies, including
the well-known Framingham Heart Study [16] and the
Rotherdam study [17], have consistently shown a significant
link between high PWV and a greater risk of cardiovascular
illness and death [5,18,19]. This relationship is further supported
by long-term studies that have linked PWV measurements to
the occurrence of negative cardiovascular events, such as
coronary artery disease and stroke [20]. Selecting PWV as the
primary outcome measure provides a thorough understanding
of the effects of antihypertensives on arterial health in line with
our goal of reducing cardiovascular risk in patients with
hypertension [8].

Machine learning (ML) techniques are ubiquitous in all fields
of research, and their use in medicine is increasingly common,
serving as tools to facilitate diagnosis, prediction, classification,
or personalized recommendations based on individual patient
characteristics. Unlike rule-based algorithms that require explicit
programming, ML algorithms use self-learning techniques to
discover sophisticated patterns in medical data, with the potential
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to enhance personalized care [21]. Therefore, predictive analyses
using ML methods are highly valued and practiced in real health
care applications, with significant potential to develop
recommendations that assist clinicians in making the most
suitable decisions for each patient, as the complexity of medicine
now exceeds the capacity of the human mind [21,22]. ML
techniques have been widely used to predict cardiovascular
diseases and their cardiovascular risk factors [23,24]. Numerous
studies concerning hypertension have been conducted to predict
which antihypertensive drug may be most beneficial for each
patient with hypertension [25], analyze the profiles of different
antihypertensive drugs [26], build a prediction model for
antihypertensive drugs to be used in older patients with
hypertension [27], analyze variables influencing blood pressure
reduction [28], study variables predicting the risk of
hypokalemia in patients with hypertension [29], or predict the
onset of pregnancy-induced hypertension [30]. There are many
ML studies investigating different personalized
recommendations for patients, particularly reinforcement
learning algorithms (ie, optimal dosing of medication [31,32]
and optimal timing of intervention [33]). However, it is essential
to consider the conclusion of the review conducted by the
Journal of the American Heart Association in 2023 [22]
regarding ML research in patients with hypertension,
emphasizing that these ML techniques currently have significant
deficiencies in terms of reporting quality, model validation, and
bias in the algorithms used.

Objectives
The hypothesis of this study was that the effects of different
antihypertensive drugs on PWV vary according to the individual
characteristics of each person with hypertension. To the best of
our knowledge, no study has analyzed which antihypertensive
drug is most suitable for real clinical practice using ML
techniques to reduce PWV. Therefore, we propose this study,
with the main objective of developing a model to provide
recommendations on the most suitable antihypertensive agent
for reducing PWV, based on the individual characteristics of
people with hypertension, using advanced ML techniques
consisting of multiple random forest (RF) models within a
multioutput regressor approach.

Methods

Design and Sample Characteristics
The Effectiveness of Antihypertensive Drugs on Arterial
Stiffness in Hypertensive Adults Study (the RIGIPREV study)
[34] represents a real-world longitudinal investigation involving
participants with hypertension. This study drew upon data
originating from the Influence of Different Risk Factors in
Vascular Accelerated Aging study (the EVA study) [35]
(NCT02623894), the Relationship of Central Blood Pressure
and Pulse Wave Velocity With Target Organ Damage study
(the LOD-DIABETES study) [36] (NCT01065155), and the
Effectiveness of the Use of a Mobile Tool in Improving Lifestyle
(the EVIDENT study) [37] (NCT02016014). Specifically,
participants were selected from these 3 research endeavors if
they were using antihypertensive drugs and possessed both
baseline and follow-up measurements of variables essential for
our primary analysis.

Ethical Considerations
The research protocols for the studies included in this pooled
analysis were approved by the Drug Research Ethics Committee
of Salamanca, with the following registration numbers:
PI15/01039 and PI20/10569 (EVA study [35]), PI15/11/2015
(LOD-DIABETES study [36]), and PI83/06/2018 (EVIDENT
study [37]). All the participants who participated in these studies
provided written informed consent. During the development of
the study, the principles of the Declaration of Helsinki [38] and
the World Health Organization standards for observational
studies were followed. The confidentiality of the participants
included was always guaranteed in accordance with the
provisions of Organic Law 3/2018, of 5 December, on Personal
Data Protection and Guarantee of Digital Rights and Regulation
(European Union) 2016/679 of the European Parliament and of
the Council of 27 April 2016 , on Data Protection.

Intervention
The antihypertensive drugs used in the 3 studies were
categorized into the following groups: BBs, diuretics, ACEIs,
ARBs, and combinations of diuretics+ACEIs and
diuretics+ARBs. While other antihypertensive agents from
various groups (such as CCBs, α-adrenergic receptor
antagonists, centrally acting agents, or direct-acting vasodilators)
were used in these studies, they were excluded from our analysis
due to their limited representation, each having samples of <10
participants (Textbox 1).
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Textbox 1. Antihypertensive groups included in the study.

Antihypertensive groups

• β-blockers include acebutolol, atenolol, atenolol, betaxolol, bisoprolol, carteolol, esmolol, metoprolol, nadolol, oxprenolol, penbutolol, propranolol,
timolol, celiprolol, carvedilol, labetalol, nebivolol, and pindolol.

• Diuretics include furosemide, bumetanide, torsemide, bendroflumethiazide, chlorothiazide, chlorthalidone, hydrochlorothiazide, indapamide,
polythiazide, trichlormethiazide, amiloride, eplerenone, spironolactone, and triamterene.

• Angiotensin-converting enzyme inhibitors (ACEIs) include benazepril, captopril, cilazapril, enalapril, fosinopril, imidapril, lisinopril, moexipril,
perindopril, quinapril, ramipril, trandolapril, and zofenopril.

• Angiotensin receptor blockers (ARBs) include candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan.

• Combinations of diuretic+ACEI and diuretic+ARB: these categories involve combinations of medications from the diuretic, ACEI, and ARB
classes.

Outcome
Our primary outcome measure centered on the change in
carotid-femoral PWV (cfPWV) and brachial-ankle PWV
(baPWV). These measurements were consistently collected
across the 3 included studies, following their respective study
protocols outlined elsewhere [35-37]. To facilitate comparison,
we standardized these 2 types of PWV using normalized values.

Specifically, the following primary outcome measures were
measured: the cfPWW was estimated using a SphygmoCor
device (AtCor Medical Pty Ltd). By analyzing the carotid and
femoral artery pulse waves in the supine position, the time delay
was estimated and compared to that of the electrocardiogram
R wave, and the cfPWV was calculated. Distances were
measured with a tape measure from the sternal notch to the point
where the sensor was placed in the carotid and femoral arteries
[39]. The baPWV was estimated using a VaSera VS-1500 device
(Fukuda Denshi Co Ltd) according to the manufacturer’s
instructions. The baPWV was estimated using the following
equation: baPWV = ({0.5934×height (cm)+14.4724})/tba, where
tba is the time interval between the arm and ankle waves [39].

Covariates
The variables collected and tests performed have been
previously published in the protocol of the EVA study [35],
the LOD-DIABETES study [36], and the EVIDENT II study
[37]. The professionals who performed the tests and
questionnaires followed a standardized protocol.

In this study, we meticulously considered an extensive array of
covariates, each of which played a crucial role in shaping our

analysis. These covariates included demographic factors such
as age and sex; lifestyle characteristics such as smoking habits
and alcohol consumption; adherence to the Mediterranean diet
assessed with the Mediterranean Diet Adherence Screener
questionnaire [40]; and medication use, which included
antidiabetics, antiaggregants, anticlotting agents, and
nonsteroidal anti-inflammatory drugs.

Furthermore, we incorporated a comprehensive set of
anthropometric measurements, including height, weight, and
waist circumference, along with vital cardiovascular parameters
such as systolic and diastolic blood pressure and heart rate, and
the measurements were performed according to the
recommendations of the European Society of Hypertension
[41]. Furthermore, we included parameters such as the
ankle-brachial index, intima-media thickness, carotid-artery
vascular index (CAVI), and augmentation index at 75 mm Hg
(AIx75), ensuring that our statistical models were
comprehensive and robust, thereby enhancing the validity of
our findings. In addition, the Cornell index and left ventricular
hypertrophy were measured.

We also included numerous biochemical variables. The
participants in the 3 studies underwent a venous blood draw at
the Salamanca Primary Care Research Unit between 8 AM and
9 AM on an empty stomach without smoking or consuming
alcohol or caffeinated beverages during the previous 12 hours,
and all samples were analyzed in the same laboratory.
Specifically, we performed the following analytical
determinations (Textbox 2).
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Textbox 2. Analytical determinations performed in the study.

Analytical determinations

• Hematological variables, including red blood cells, hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin
content, and mean corpuscular volume, were collected. Variables related to the distribution of erythrocyte sizes, such as the anisocytosis index,
were also considered. Moreover, leukocyte subpopulations, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils, red blood
cell distribution width, along with platelet characteristics such as the mean platelet volume, were included in our covariate set.

• Regarding diabetes-related covariates, we incorporated fasting plasma glucose, glycated hemoglobin, and insulin levels as essential factors.

• In addition, lipid profiles, comprising total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides,
were considered.

• Renal function markers such as uric acid, serum creatinine, and creatinine, as well as microalbuminuria, reflect kidney health. In addition, the
albumin/creatinine ratio and estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology Collaboration criteria
were included.

• Liver function was assessed through markers, including aspartate aminotransferase and glutamic oxaloacetic transaminase, alanine aminotransferase
and serum glutamic pyruvic transaminase, and gamma-glutamyl transferase.

• Inflammation markers, such as fibrinogen and C-reactive protein, were integrated into our covariate framework. Thyroid function was evaluated
with the inclusion of thyroid-stimulating hormone and thyroxine levels, while vitamin D levels provided insight into nutritional status.

Data Standardization
The EVA [35], LOD-DIABETES [36], and EVIDENT [37]
studies each followed unique protocols and meticulously
selected participants based on predetermined criteria.

To achieve data standardization, our main priority was to ensure
consistent measurement of key factors, particularly baseline
and follow-up PWV assessments, which were integral to our
primary analytical framework. It should be acknowledged that
there was no universally agreed upon protocol for drug choice
among the 3 studies, but for standardization, we categorized
antihypertensive drugs into specific classes, including BB,
diuretics, ACEI, ARB, and diuretic+ACEI and diuretic+ARB
combinations. Due to their minimal representation within each
group, certain medications were excluded from consideration.
This was done to ensure substantial sample sizes for meaningful
comparisons between groups, a crucial factor in our
decision-making process. In addition, patients who consistently
stayed on 1 drug throughout the follow-up period as well as
those who may have switched between different drugs were
included in the analysis.

This study investigated a wide range of antihypertensive drugs
that were purposefully selected to enhance the scope and
diversity of our research. We acknowledged the diversity and
potential differences in drug options and how they are
administered in various studies and thus used thorough statistical
corrections. Our analysis considered factors such as age, lifestyle
behaviors, and medication use, which were carefully
incorporated to mitigate any potential biases stemming from
these differences.

Statistical Analysis
Normal probability plots and the Kolmogorov-Smirnov test
were used to verify the normality of the distribution of
continuous variables. Descriptive data for the total sample and
antihypertensive drugs are shown as the means and SDs or
proportions (%), as appropriate. ANOVA for continuous
variables and chi-square analysis for categorical variables were

used to compare baseline variables according to antihypertensive
drugs.

Data Preprocessing and Outcome Structuring
Once the patient data were organized, we addressed missing
values within the feature set by imputing them using the median
of the respective variables. For the target variables, we created
6 distinct output vectors, each corresponding to 1 of the 6
antihypertensive drugs under study: ACEIs, ARBs, BBs,
diuretic, diuretic+ACEI, and diuretic+ARB. These output
vectors capture the differences between the original PWV
measurements and the PWV values observed during at least 1
year of follow-up for each patient.

Training and Assessment of Embedded RF ML Models
for Multitarget Prediction
To predict medication effectiveness in decreasing PWV, we
used a multioutput regressor framework consisting of 6
individual RF models, each corresponding to a different
medication [42]. These RF models were independently trained
on the same feature set but aimed to predict different target
variables, specifically the effectiveness of the respective
antihypertensive drugs in decreasing PWV.

To construct the predictive models, we characterized each
patient using a feature input vector X, comprising medical
attributes such as cholesterol levels, systolic blood pressure,
and Mediterranean diet intake, among others. Nevertheless,
given the high number of input variables in our study, various
procedures for variable reduction were implemented. Initially,
the average decrease in impurity for each model was calculated
because of the inherent ability of RF algorithms to assess the
importance of input features. This analysis was based on
evaluating how each covariate contributes to reducing variance
in the predictions within the trees. A feature is considered more
important if its inclusion in tree splits leads to a greater reduction
in variance, indicating that the predictions become more
homogeneous and precise due to that feature. In addition, a
permutation-based analysis was also conducted to address the
potential high cardinality of the input variables, yielding
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consistent results without unfairly favoring features with a high
number of unique values.

Both variable reduction methodologies yielded similar results,
leading to the identification of the top 10 most important features
for each model and aiming to make the final recommendation
system lighter and more interpretable. Thus, each RF model
was finally trained using these 10 most important features
exclusively in each case. Consequently, the global features used
by the system were reduced from 64 to 38 variables, representing
a reduction of >40%.

Initially, we combined the 3 studies and opted for an internal
validation scheme. Thus, a holdout validation strategy was
implemented, randomly distributing data into 2 folds for training
and testing, with 80% of patients retained for training [43].
However, we also proceeded with an external validation phase
to further test the model’s robustness and generalizability across
different datasets. However, given the limited sample size across
the 3 databases, the synthetic minority oversampling technique
(SMOTE) was used. The SMOTE algorithm works by
synthetically generating new samples by selecting instances
that are close to the feature space, drawing a line between the
examples in the feature space, and creating a new instance at a
point along the line [44].

Thus, considering the 3 studies that are part of this work, the
samples from the EVIDENT II study were reserved for external
validation because they contained the greatest proportion of
samples in almost all the subgroups. Meanwhile, the remaining
2 databases were combined and synthetically augmented using
the SMOTE algorithm to use the samples for training. These
samples were augmented to approximately 80%-20% for training
and testing, respectively.

The predictive power of the models was assessed on the
validation set in both strategies using the coefficient of

determination (R2) and the mean squared error (MSE) [45]. R2

quantifies the proportion of the variance in the dependent

variable, PWV, predicted from the independent variables, with
values closer to 1 indicating a better fit. MSE quantifies the
alignment between predictions and actual outcomes.

Design of the Recommendation System
The core function of the recommendation system is to determine
the most effective treatment for individual patients. For each
patient’s feature vector, the system runs all 6 RF models to
predict the corresponding change in PWV. The system identifies
the medication predicted to yield the most significant reduction
in PWV, offering data-driven personalized treatment
optimization.

This recommendation system provides a personalized approach
to treatment optimization, allowing patients to benefit from the
medication predicted to be most effective for them.

To provide additional insights into the recommendation system,
a depth-level 10 decision tree was constructed. Tree growth was
regulated using the Gini impurity index as the criterion for node
splitting, stopping when the Gini index reached a value ≤20%.
This decision tree serves as a valuable tool for understanding
the most influential variables in the recommendation process
and offers a transparent and interpretable framework.

Results

Characteristics of the Study Participants
The RIGIPREV study sample included a total of 194 participants
with hypertension, of whom 96 (49.5%) were women. The mean
age of the participants was 61.8 (SD 10.0) years. Overall, there
were no differences in the baseline values of the participants
included in each of the treatments except for mean corpuscular
hemoglobin concentration (P=.02), mean corpuscular volume
(MCV; P=.02), glycated hemoglobin (HbA1c; P=.045), and
thyroid-stimulating hormone (TSH; P=.02). Table 1 shows the
baseline characteristics of the enrolled population.
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Table 1. Baseline characteristics of patients with hypertension from the RIGIPREV study, a multicohort analysis conducted in Spain. This table
summarizes the demographic, clinical, and biochemical characteristics of participants, including age, sex, BMI, comorbidities, and medication use. The
study includes individuals with hypertension recruited from the EVA, LOD-DIABETES, and EVIDENT studies, focusing on their cardiovascular health
and arterial stiffness as measured by pulse wave velocity.

P value
Diuretic+ARB
(n=44)

Diuretic+ACEI
(n=28)

Diuretic
(n=14)

BBc

(n=17)
ARBb

(n=47)
ACEIa

(n=44)
Total
(N=194)Characteristic

Study data, n (%)

—d13 (29.5)9 (32.1)5 (35.7)6 (35.3)15 (31.9)8 (18.2)56 (28.9)EVA study

—12 (27.3)12 (42.9)2 (14.3)3 (17.6)14 (29.8)14 (31.8)57 (29.4)LOD-DIABETES study

—19 (43.2)7 (25)7 (50)8 (47.1)18 (38.3)22 (50)81 (41.8)EVIDENT II study

Demographic factors

.3764.1 (9.9)60.3 (11.9)63.4 (10.6)61.6 (9.5)62.1 (8.9)59.6 (10.0)61.8 (10.0)Age (y), mean (SD)

.19Gender, n (%)

26 (59.1)14 (50)10 (71.4)9 (52.9)20 (42.6)17 (38.6)96 (49.5)Women

18 (40.9)14 (50)4 (28.6)8 (47.1)27 (57.4)27 (61.4)98 (50.5)Men

Lifestyle characteristics

.006Smoking, n (%)

7 (15.9)1 (3.6)0 (0)1 (5.9)7 (14.9)10 (22.7)26 (13.4)Yes

20 (45.5)20 (71.4)12 (85.7)8 (47.1)25 (53.2)12 (27.3)97 (50.0)No

17 (38.6)7 (25)2 (14.3)8 (47.1)15 (31.9)22 (50)71 (36.6)Former smoker

.175.7 (11.2)2.8 (8.5)0.7 (2.6)5.2 (7.8)6.7 (12.9)8.3 (11.4)5.75 (10.8)Cigarette consumption (n),
mean (SD)

.4781.4 (164.9)51.2 (79.0)19.2 (40.4)38.2
(76.6)

58.3 (98.3)47.6 (100.4)55.5
(111.2)

Alcohol consumption
(g/wk), mean (SD)

.337.5 (2.0)6.5 (2.2)6.6 (1.7)7.8 (2.6)8.0 (1.8)7.2 (2.1)7.4 (2.0)Mediterranean diet adher-

ence (MEDASe units), mean
(SD)

Medication use, n (%)

.19Antidiabetics

13 (29.5)11 (39.3)6 (42.9)2 (11.8)9 (19.1)13 (29.5)54 (27.8)Yes

31 (70.5)17 (60.7)8 (57.1)15 (88.2)38 (80.9)31 (70.5)140 (72.2)No

.1Lipid-lowering agents

21 (47.7)18 (64.3)9 (64.3)4 (23.5)20 (42.6)20 (45.5)92 (47.4)Yes

23 (52.3)10 (35.7)5 (35.7)13 (76.5)27 (57.4)24 (54.5)102 (52.6)No

.51Antiaggregants

7 (15.9)6 (21.4)2 (14.3)3 (17.6)15 (31.9)10 (22.7)43 (22.2)Yes

37 (84.1)22 (78.6)12 (85.7)14 (82.4)32 (68.1)34 (77.3)151 (77.8)No

.39Anticoagulants

0 (0)2 (7.1)0 (0)0 (0)1 (2.1)1 (2.3)4 (2.1)Yes

44 (100)26 (92.9)14 (100)17 (100)47 (100)44 (100)190 (97.9)No

.64NSAIDsf

1 (2.3)0 (0)0 (0)0 (0)0 (0)0 (0)1 (0.5)Yes

43 (97.8)28 (100)14 (100)17 (100)47 (100)44 (100)193 (99.5)No

Anthropometric measurements, mean (SD)

.31161.4 (10.7)163.5 (11.2)158.5 (13.2)159.4
(8.3)

163.5 (10.5)164.3 (8.7)162.5
(10.3)

Height (cm)
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P value
Diuretic+ARB
(n=44)

Diuretic+ACEI
(n=28)

Diuretic
(n=14)

BBc

(n=17)
ARBb

(n=47)
ACEIa

(n=44)
Total
(N=194)Characteristic

.6379.3 (14.6)83.0 (17.2)76.3 (16.1)76.8
(12.9)

81.6 (17.0)81.6 (13.4)80.5 (15.3)Weight (kg)

.64101.6 (9.2)104.8 (11.9)99.2 (10.1)102.0
(10.8)

103.0 (12.1)103.0 (8.5)102.6
(10.4)

Waist circumference (cm)

Cardiovascular parameters, mean (SD)

.11134.1 (17.1)133.9 (18.1)120.2 (11.9)128.1
(18.7)

131.0 (16.4)131.5 (13.9)131.2
(16.4)

SBPg (mm Hg)

.2182.9 (14.0)83.5 (12.9)76.6 (7.5)78.0
(13.0)

81.9 (9.0)79.3 (9.8)81.0 (11.4)DBPh (mm Hg)

.1471.2 (11.2)70.8 (10.9)74.2 (11.4)63.5 (9.9)68.6 (12.2)69.8 (12.1)69.7 (11.6)Heart rate (beats/min)

.351.1 (0.1)1.1 (0.1)1.1 (0.1)1.1 (0.1)1.0 (0.1)1.0 (0.1)1.1 (0.1)ABIi (units)

.679.8 (3.0)9.9 (3.0)9.9 (1.9)9.4 (2.5)9.5 (2.5)8.9 (2.3)9.5 (2.6)cfPWVj (m/s)

.5314.3 (2.3)14.6 (2.3)14.9 (2.4)13.8 (2.0)14.0 (2.4)13.8 (2.3)14.2 (2.3)baPWVk (m/s)

.378.4 (1.3)8.6 (1.3)8.6 (1.3)8.0 (1.0)8.3 (1.4)8.0 (1.3)8.3 (1.3)CAVIl (m/s)

.2133.5 (9.8)29.6 (10.4)30.2 (13.2)25.6 (7.9)29.8 (10.2)32.0 (12.5)30.8 (10.8)AIx75m (%)

.070.7 (0.1)0.7 (0.1)0.6 (0.1)0.7 (0.1)0.7 (0.1)0.8 (0.1)0.7 (0.1)IMTn (mm)

.34IMT plaque, n (%)

11 (25)3 (10.7)2 (14.3)3 (17.6)11 (23.4)11 (25)41 (21.1)Yes

26 (59.1)23 (82.1)9 (64.3)8 (47.1)22 (46.8)19 (43.2)107 (55.2)No

.9815.3 (5.3)15.1 (7.5)14.1 (3.6)14.2 (5.6)15.3 (5.6)15.2 (4.8)15.1 (5.6)Cornell index (mm), mean
(SD)

.551735.2 (700.7)1662.8 (711.9)1477.2
(378.0)

1643.9
(506.0)

1516.3
(610.2)

1499.8
(493.5)

1600.0
(610.6)

LVH Cornello (ms*mV),
mean (SD)

Biochemical variables, mean (SD)

.874.8 (0.4)4.9 (0.3)4.9 (0.6)4.8 (0.3)4.9 (0.4)4.8 (0.4)4.8 (0.4)Red blood cells (mil-

lion/mm3)

.3914.4 (1.3)14.4 (1.5)14.2 (1.1)14.5 (1.0)14.9 (1.2)14.7 (1.3)14.5 (1.3)Hemoglobin A (g/dL)

.39842.4 (3.0)42.9 (3.7)42.6 (4.0)43.4 (3.2)44.1 (4.0)43.9 (3.8)43.3 (3.6)Hematocrit (%)

.0229.1 (2.4)29.4 (2.5)28.1 (2.9)30.8 (1.3)30.2 (1.5)30.7 (1.5)29.7 (2.2)MCHCp (g/dL)

.6133.3 (0.8)33.1 (1.1)32.9 (1.3)33.7 (0.5)33.3 (0.8)33.4 (0.9)33.3 (0.9)CHbCMq (pg)

.0287.3 (6.2)88.9 (6.5)85.0 (8.0)91.6 (3.7)90.8 (3.3)91.7 (4.1)89.2 (5.7)MCVr (fl)

.0713.4 (1.7)12.7 (1.0)12.8 (0.6)12.6 (0.7)12.2 (0.4)12.8 (1.3)12.8 (1.2)Anisocytosis index (%)

.286.1 (1.5)7.1 (1.7)7.1 (2.2)7.0 (1.6)7.0 (1.9)7.1 (2.4)6.8 (1.9)Leukocytes (million/mm3)

.233.3 (0.9)4.1 (1.2)3.5 (1.2)3.9 (1.2)3.9 (1.1)4.0 (1.8)3.8 (1.3)Neutrophils (million/mm3)

.632.0 (0.5)2.2 (0.6)2.4 (0.7)2.2 (0.6)2.3 (1.1)2.2 (0.6)2.2 (0.7)Lymphocytes (million/mm3)

.790.5 (0.1)0.5 (0.1)0.4 (0.1)0.5 (0.1)0.5 (0.1)0.5 (0.2)0.5 (0.1)Monocytes (million/mm3)

.270.1 (0.1)0.1 (0.1)0.2 (0.3)0.2 (0.1)0.2 (0.1)0.1 (0.1)0.2 (0.1)Eosinophils (million/mm3)

.590.0 (0.0)0.0 (0.0)0.1 (0.2)0.0 (0.0)0.1 (0.0)0.1 (0.1)0.1 (0.1)Basophils (million/mm3)

.92225.4 (50.4)231.0 (60.0)247.3 (47.3)239.2
(60.8)

230.5 (66.5)229.0 (66.8)231.4
(59.5)

Platelets (109/L)

.8913.0 (1.4)12.6 (0.7)12.7 (0.6)12.6 (0.5)12.4 (0.3)12.6 (0.8)12.7 (0.9)RDWs (%)
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P value
Diuretic+ARB
(n=44)

Diuretic+ACEI
(n=28)

Diuretic
(n=14)

BBc

(n=17)
ARBb

(n=47)
ACEIa

(n=44)
Total
(N=194)Characteristic

.489.6 (1.9)8.9 (1.9)9.5 (1.9)9.3 (1.4)9.0 (1.7)10.2 (2.0)9.4 (1.8)MPVt (fl)

.11101.3 (29.0)113.6 (38.8)103.2 (24.6)90.8 (9.8)98.0 (20.9)102.1 (26.4)101.7
(27.2)

FPGu (mg/100 mL)

.0455.9 (0.8)6.2 (1.2)6.2 (1.0)5.5 (0.4)5.8 (0.7)5.8 (0.6)5.9 (0.8)HbA1c
v (%)

.4911.1 (6.6)12.7 (6.9)12.5 (5.4)11.5 (5.6)14.2 (10.5)11.8 (6.0)12.4 (7.6)Insulin (mIU/L)

.94191.2 (34.7)189.7 (31.9)184.2 (23.4)191.5
(34.5)

194.7 (28.7)190.9 (37.2)191.3
(32.5)

Total cholesterol (mg/dL)

.44101.2 (33.8)104.1 (30.3)83.3 (28.5)97.1
(45.4)

95.5 (41.1)89.6 (42.5)95.9 (38.1)cLDLw (mg/dL)

.3368.1 (29.9)56.8 (21.4)76.7 (38.1)69.6
(33.4)

70.2 (34.7)75.8 (42.3)69.5 (34.3)cHDLx (mg/dL)

.2111.7 (54.6)145.8 (72.6)144.5 (69.8)123.9
(49.0)

134.6 (54.4)135.5 (67.1)131.0
(61.5)

Triglycerides (mg/dL)

.995.8 (1.4)5.8 (1.5)5.8 (0.8)5.6 (1.6)5.8 (1.3)5.7 (1.4)5.7 (1.4)Uric acid (mg/dL)

.970.8 (0.1)0.8 (0.1)0.8 (0.1)0.8 (0.2)0.8 (0.1)0.8 (0.1)0.8 (0.1)Serum creatinine (mg/dL)

.86119.6 (68.9)105.5 (68.7)102.0 (63.8)120.0
(67.1)

119.8 (65.7)122.1 (66.8)117.0
(66.6)

Creatinine (µg/min)

.59627.6 (76.6)11.8 (18.8)6.9 (8.2)8.7 (10.2)21.7 (37.7)20.2 (52.5)19.1 (48.7)Microalbuminuria (mg/day)

.5527.4 (62.2)12.1 (25.1)13.0 (23.0)6.9 (7.9)19.8 (35.4)13.0 (28.9)17.3 (39.0)Albumin/creatinine ratio

.2582.1 (13.6)86.0 (17.2)81.5 (17.4)85.8
(16.1)

85.0 (13.4)89.2 (10.8)85.2 (14.1)eGFRy (mL/min/1.73 m2)

.0628.0 (22.6)26.7 (11.0)24.5 (7.7)20.4 (4.2)21.2 (5.9)20.4 (6.1)23.6 (12.8)AST/GOTz (units/L)

.1829.2 (26.6)33.3 (25.1)23.8 (11.3)20.7 (8.0)24.2 (9.7)25.5 (14.3)26.6 (18.5)ALT/SGPTaa (units/L)

.5634.5 (53.7)42.8 (46.7)22.4 (7.9)37.3
(40.8)

30.2 (25.0)29.5 (24.2)32.9 (37.4)GGTab (units/L)

.82330.2 (59.5)350.1 (62.7)337.9 (97.8)359.3
(108.4)

348.1 (94.9)345.4 (65.7)344.0
(78.3)

Fibrinogen (mg/dL)

.950.3 (0.4)0.4 (0.3)0.3 (0.3)0.4 (0.8)0.3 (0.5)0.3 (0.3)0.3 (0.4)CRPac (mg/dL)

.022.9 (1.6)2.6 (1.7)3.1 (1.2)1.8 (1.3)2.2 (0.9)2.0 (1.1)2.4 (1.3)TSHad (mU/L)

.881.1 (0.1)1.2 (0.1)1.1 (0.2)1.1 (0.2)1.1 (0.1)1.1 (0.2)1.1 (0.1)T4ae hormone (µg/dL)
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P value
Diuretic+ARB
(n=44)

Diuretic+ACEI
(n=28)

Diuretic
(n=14)

BBc

(n=17)
ARBb

(n=47)
ACEIa

(n=44)
Total
(N=194)Characteristic

.4618.6 (10.0)24.9 (10.3)26.1 (10.7)27.1
(11.6)

25.1 (8.0)21.5 (9.4)23.4 (9.7)Vitamin D (µg/dL)

aACEI: angiotensin-converting enzyme inhibitor.
bARB: angiotensin receptor blocker.
cBB: β-blocker.
dNot available.
eMEDAS: Mediterranean Diet Adherence Screener.
fNSAID: nonsteroidal anti-inflammatory drug.
gSBP: systolic blood pressure.
hDBP: diastolic blood pressure.
iABI: ankle brachial index.
jcfPWV: carotid-femoral pulse wave velocity.
kbaPWV: brachial-ankle pulse wave velocity.
lCAVI: cardio-ankle vascular index.
mAIx75: augmentation index at 75 mm Hg.
nIMT: intima-media thickness.
oLVH Cornell: left ventricular hypertrophy diagnosed by Cornell.
pMCHC: mean corpuscular hemoglobin concentration.
qCHbCM: mean corpuscular hemoglobin content.
rMCV: mean corpuscular volume.
sRDW: red blood cell distribution width.
tMPV: mean platelet volume.
uFPG: fasting plasma glucose.
vHbA1c: glycated hemoglobin.
wcLDL: low-density lipoprotein cholesterol.
xcHDL: high-density lipoprotein cholesterol.
yeGFR: estimated glomerular filtration rate.
zAST/SGOT: aspartate aminotransferase/glutamic oxaloacetic transaminase.
aaALT/SGPT: alanine aminotransferase/serum glutamic pyruvic transaminase.
abGGT: gamma-glutamyl transferase.
acCRP: C-reactive protein.
adTSH: thyroid-stimulating hormone.
aeT4: thyroxin.

Model Performance and Importance of Characteristics
Table 2 presents a summary of the final features used by each
model in descending order of importance. The complexity of
the factors influencing the effectiveness of treatments and the
importance of considering a broad spectrum of clinical variables
and biomarkers are shown in this table.

Specifically, the use of ACEIs was associated with the ability
of weight and HbA1c levels to predict the reduction in PWV.
ARB, in contrast, emphasized cfPWV and low-density
lipoprotein cholesterol levels as the most significant factors.
BB indicated that TSH and diastolic blood pressure were the
primary contributors. Diuretics exhibited high relevance for
CAVI and waist circumference. In the case of diuretic+ACEI,
AIx75 and uric acid were crucial factors, while diuretic+ARB
were key factors for basophils and mean platelet volume. In

summary, these findings underscore the intricate nature of the
underlying mechanisms influencing the efficacy of various
antihypertensive drugs in reducing PWV.

Furthermore, Table 3 shows the performance of the 6 predictive
models used for each antihypertensive drug for both internal

and external validation. The R2 values ranged from 0.61 to 0.74

in the internal validation, with the highest R2 value for the

diuretic+ACEI group (R2=0.74) and the lowest for the ACEI

drug group (R2=0.69). The MSE values for all drug models
ranged between 0.08 for ACEIs and 0.22 for BBs. However,
the model’s performance in external validation significantly

decreased compared to internal validation. Thus, the R2 values
ranged from 0.26 to 0.46, and the MSE values varied from 0.29
to 0.45.
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Table 2. Most significant features contributing to the regression models evaluating the efficacy of each antihypertensive medication in the RIGIPREV
study. This table highlights the key features that provide the most information for each regression model, which represents the efficacy of different
antihypertensive drugs, including angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers (BB), diuretics
(DIU), and combinations.

DIU+ARBDIU+ACEIDIUBBARBACEIImportance

BasophilsAIx75dCAVIcTSHbcfPWVaWeight1

MPVhUric acidWaist circumferenceDBPgcLDLfHbA1c
e

2

MCVlABIkVitamin DcfPWVAST/GOTjALT/SGPTi3

LVH CornellLVH CornellocHDLnHbA1cCHbCMmCreatinine4

DBPHbA1ccLDLAlbumin and creati-
nine

Alx75baPWVp5

HematocritTriglyceridesMPVcHDLUric acidHemoglobin6

TSHcfPWVCreatinineUric acidFPGqLVH Cornell7

cfPWVHeightRDWrTriglyceridesTotal cholesterolcHDL8

MonocytesGGTIMTt plaqueABIGGTsUric acid9

IMTbaPWVIMTeGFReGFRuRed blood cell distri-
bution width

10

acfPWV: carotid-femoral pulse wave velocity.
bTSH: thyroid-stimulating hormone.
cCAVI: cardio-ankle vascular index.
dAIx75: augmentation index at 75 mm Hg.
eHbA1c: glycated hemoglobin.
fcLDL: low-density lipoprotein cholesterol.
gDBP: diastolic blood pressure.
hMPV: mean platelet volume.
iALT/SGPT: alanine aminotransferase/serum glutamic pyruvic transaminase.
jAST/GOT: aspartate aminotransferase/glutamic oxaloacetic transaminase.
kABI: ankle-brachial index.
lMCV: mean corpuscular volume.
mCHbCM: mean corpuscular hemoglobin content.
ncHDL: high-density lipoprotein cholesterol.
oLVH Cornell: left ventricular hypertrophy diagnosed by Cornell.
pbaPWV: brachial-ankle pulse wave velocity.
qFPG: fasting plasma glucose.
rRDW: red blood cell distribution width.
sGGT: gamma-glutamyl transferase.
tIMT: intima-media thickness.
ueGFR: estimated glomerular filtration rate.
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Table 3. Performance evaluation of predictive models by medication using R2 and mean squared error (MSE) with internal and external validation.
This table summarizes the performance of machine learning models predicting the impact of antihypertensive drugs on pulse wave velocity in patients
with hypertension. Results are based on R² and mean square error for internal and external validation using data from the RIGIPREV study cohorts in
Spain.

External validationInternal validationDrug

MSER 2MSER 2

0.310.260.080.69ACEIa

0.380.420.090.72ARBb

0.450.310.220.61BBc

0.290.400.120.71Diuretic

0.330.460.150.74Diuretic+ACEI

0.320.290.150.70Diuretic+ARB

aACEI: angiotensin-converting enzyme inhibitor.
bARB: angiotensin receptor blocker.
cBB: β-blocker.

Analysis of Medication Recommendations
Figure 1 shows the distribution of patient recommendations by
medication. There was substantial variability in medication
recommendations compared to the original antihypertensive
drugs taken by patients. ARB medication was the most
frequently recommended, appearing in 26.8% (52/194) of the
patients, followed by ACEI, which was recommended in 15.5%

(30/194) of the patients. Notably, of the patients who were
originally on ACEIs, the same recommendation (match rate)
was made for only 36% (16/44) of the patients. For patients
who were originally on ARBs, a substantially greater match
rate of 55% (26/47) was observed. The combination
antihypertensive drugs such as diuretics+ARB and
diuretics+ACEI, 52% (23/44) and 43% (12/28), respectively,
maintained the same combination medication regimens.
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Figure 1. Comparison of original versus predicted pulse wave velocity (PWV) in patients with hypertension. This figure shows the comparison between
the original PWV values and those predicted by the recommendation system in patients with hypertension from the RIGIPREV study. The model
suggests optimized antihypertensive treatments based on individual patient characteristics. ACEI: angiotensin-converting enzyme inhibitor; ARB:
angiotensin receptor blocker.

Modeling Medication Recommendations With a
Decision Tree
Figure 2 shows the decision tree for selecting a suitable
antihypertensive drug for PWV reduction based on patient
characteristics. An overall accuracy of 84.02% was achieved
when the decision tree was fitted to the medication
recommendations generated by the original RF models, with
10 levels of depth. However, in terms of interpretability, only
5 levels are shown in Figure 2. After examination, the decision

tree revealed that ARBs and ACEIs were the first
antihypertensive drug options based on HbA1c. At the second
level, based on baseline cfPWV levels when a person is taking
ACEI, the antihypertensive drug should be BBs or maintain
ACEI, and based on total cholesterol when a person is taking
ARA, diuretic+RA, or maintain ARA. Diuretics and
diuretics+ACEI did not appear until the third level based on
monocytes and MCV, respectively, and depended on the levels
of the previous characteristics.
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Figure 2. Visual decision tree representation of the underlying mechanisms and workflow of the recommendation system. This decision tree visualizes
the workflow of the machine learning–based recommendation system, showing key predictors such as baseline pulse wave velocity (PWV) and patient
characteristics. It was developed using data from the RIGIPREV study, conducted on patients with hypertension in Spain. ABI: ankle-brachial index;
ACEI: angiotensin-converting enzyme inhibitor; AIx75: augmentation index at 75 mm Hg; ALT/SGPT: alanine aminotransferase/serum glutamic
pyruvic transaminase; ARB: angiotensin receptor blocker; AST/SGOT: aspartate aminotransferase/glutamic oxaloacetic transaminase; baPWV:
brachial-ankle PWV; BB: β-blocker; CAVI: cardio-ankle vascular index; cfPWV: carotid-femoral PWV; cHDL: high-density lipoprotein cholesterol;
cLDL: low-density lipoprotein cholesterol; CRP: C-reactive protein; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; FPG:
fasting plasma glucose; GGT: gamma-glutamyl transferase; HbA1c: glycated hemoglobin; IMT: intima-media thickness; LVH Cornell: left ventricular
hypertrophy diagnosed by Cornell; MCV: mean corpuscular volume; MPV: mean platelet volume; RDW: red blood cell distribution width; TSH:
thyroid-stimulating hormone.

Discussion

Effectiveness of the Predictive Models and Validation
In this study, we developed models using embedded RF ML
models for multitarget prediction to provide recommendations
on the most suitable antihypertensive drug for reducing PWV,
based on the individual characteristics of participants with
hypertension. The predictive models used demonstrated a high

level of fit between the predictions and validation data, with R2

values of approximately 0.65 for all the models in the internal
validation. In addition, they exhibit low MSEs ranging from
0.08 to 0.22, indicating that the model predictions significantly
align with the PWV values.

However, the performance of the model significantly decreased
in external validation compared to its performance in internal

validation. The R2 value decreased by approximately 0.33 on
average (SD 0.06), while the MSE increased by an average of
0.21 (SD 0.05). Although this decrease could indicate potential
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overfitting of the regression models to the training data, it is
important to consider that the use of SMOTE for generating
training data could also play a role in this overfitting. The
synthetic augmentation of data, while valuable for addressing
sample size limitations, may introduce patterns or characteristics
that are not present in the original dataset, potentially leading
to models that are overly optimized for the synthetically
enhanced training set rather than real-world data. This
phenomenon underscores the complex balance between
enhancing the dataset size for model robustness and ensuring
that such augmentation accurately reflects the true data
distributions.

Nevertheless, the results suggest that the models can explain a
significant portion of the variance in PWV prediction and,
consequently, affirm their reliability in providing
recommendations in clinical practice.

Importance of Variables and Medication
Recommendations
The intrinsic capability of RFs to evaluate and prioritize the
importance of input features during training plays a pivotal role
in understanding which variables crucially influence the
predictions. This aligns seamlessly with our objective to guide
clinicians in selecting the most appropriate medication by
identifying key determinants of treatment effectiveness. Unlike
other models, such as support vector machines, which might
offer precision but lack the ability to inherently track feature
importance, RF models provide unique insights into how specific
variables impact outcomes, making them particularly valuable
in scenarios where understanding these impacts is as crucial as
achieving high prediction accuracy.

The variable weights for each of the 6 antihypertensive drug
models for PWV reduction differed: ACEIs were associated
with weight and HbA1c, ARBs with cfPWV and low-density
lipoprotein cholesterol, BBs with TSH and DBP, diuretics with
CAVI and waist circumference, diuretic+ACEI with AIx75 and
uric acid, and diuretic+ARB indicated basophils and mean
platelet volume levels as the most important factors. Similarly,
we found significant variability in the recommendations of the
different models regarding the antihypertensive drug that most
effectively reduced the PWV in each participant compared to
the original antihypertensive drugs taken by the patients, with
a matching rate of 55.3% for ARBs. Finally, the decision tree
for selecting the most suitable antihypertensive drug to reduce
PWV based on patient characteristics revealed that, at the first
level, ARBs and ACEIs were the top choices based on HbA1c,
and at the second level, based on baseline cfPWV for ACEIs,
the antihypertensive drug should be either BBs or continuation
of ACEIs, while based on total cholesterol levels for ARBs, it
should be diuretic+ARB or ARB alone.

Advantages of RF Models in the Clinical Context
RF models can handle a wide variety of variable types (both
continuous and discrete) within their decision-making processes,
effectively capturing the nonlinear relationships among
variables. This is a significant advantage over linear models,
which may struggle to interpret these complex relationships
without prior data transformation. In addition, the ability of RF

to manage high-dimensional data by identifying and selecting
the most relevant features for model training (thereby reducing
dimensionality without the need for manual intervention)
distinguishes it from models such as k-nearest neighbors, which
can suffer performance issues in high-dimensional spaces.

Currently, numerous clinical practice guidelines establish
common guidelines for hypertension treatment and emphasize
the importance of making a personalized choice regarding the
most suitable antihypertensive drug [3,4]. However, the medical
approach to choosing an antihypertensive drug is based on its
ability to reduce blood pressure, individual patient needs, and
potential side effects [3,4], without considering the effect of
each antihypertensive drug on AS, although AS is an
independent risk factor for morbidity and mortality from
cardiovascular disease [5,6]. Therefore, we must choose an
antihypertensive drug that considers both lowering blood
pressure and reducing AS based on the individual characteristics
of the participant. However, currently, physicians do not have
sufficient information to consider all these aspects when making
decisions. After demonstrating the beneficial effect [8-11] of
antihypertensive drugs on AS, we analyzed individual
characteristics to predict a greater reduction in AS for each
antihypertensive drug using ML techniques to identify
sophisticated patterns by analyzing each patient’s variables and
thus improving personalized care [21]. Furthermore, the
embedded RF ML model used in this study is an integrated
learning approach that offers excellent prediction capabilities
and is tolerant of outliers [46].

Indeed, the essence of our prediction system lies precisely in
its ability to infer potential outcomes for a patient based on
information from other patients with similar characteristics who
have been treated with various medications. In this regard, while
a patient who has taken only one type of medication during the
data collection period provides a direct outcome for that specific
medication, the recommendation system uses 6 predictive
models that have been trained with all patients who have taken
different medications. Therefore, this learning process enables
the system to predict how other medications could have
impacted the patient by considering how patients with similar
profiles responded to those other treatment options. For instance,
by comparing these covariates and the observed outcomes in
the dataset, the system can suggest that a patient who took
ACEIs, for example, might benefit more from ARBs, based on
patterns identified in patients with similar characteristics.

Comparison With Previous Studies
In recent years, numerous studies have examined ML techniques
to assess which antihypertensive drug is most suitable for
controlling blood pressure as well as the variables with the most
significant weight in indicating its use, but we have not found
studies that analyzed the effect on PWV. Among these studies,
we aimed to construct a prediction model for antihypertensive
drugs to be used in older patients with hypertension to help
physicians quickly and rationally combine the most appropriate
antihypertensive drugs based on their individual characteristics.
The authors compared 5 models and found that the Light
Gradient Boosting Machine algorithm predicted the best results,
identifying different variables for each antihypertensive drug
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analyzed [27]. Koren et al [47] applied ML techniques such as
decision trees and neural networks to determine how to treat
hypertension in a large group of patients from the Maccabi
Healthcare Service in Israel. They found that the number of
patients with hypertension treated with a single antihypertensive
drug was greater than the number of patients with hypertension
treated with combination therapy, and the monotherapy control
rate was greater than the success rate of 2-, 3-, or 4-drug
combinations. Liu et al [26] profiled 5 commonly used
antihypertensive drugs (irbesartan, metoprolol, felodipine,
amlodipine, and levamlodipine) and provided data for the
customization of clinical antihypertensive drugs. All these
studies could help tailor the administration of effective
antihypertensive drugs to individual patients. Our study goes a
step further and provides information on the most effective
antihypertensive drugs for reducing AS on an individualized
basis.

Conclusions and Limitations of This Study
In summary, this study included participants with hypertension
on antihypertensive treatment from 3 research projects with at
least 2 PWV measurements and a wide range of variables who
were followed for at least 1 year. We developed individual
recommendations to determine which antihypertensive drug
achieves the greatest reductions in PWV based on individual
characteristics. These results can assist physicians in making
decisions regarding the prescription of antihypertensive drugs
considering not only blood pressure reduction but also PWV
reduction. The analysis also underscores the importance of a
personalized approach to drug selection, considering a broad
spectrum of patient characteristics. The differences in indicators
found among antihypertensive drug groups will help guide our
selection of antihypertensive drugs.

This study has several limitations, such as the omission of
variables that have been shown to influence blood pressure
levels, such as dietary salt intake [48], and the inclusion of
variables that are not routinely measured in clinical practice,
such as insulin levels. Consequently, the dataset considered for
the investigated clinical question may not be the most
appropriate, and the sample size is small. Nevertheless, the
study also has strengths, as the data come from records of studies
conducted in various research projects, and the measurement
of variables was uniform and protocolized, a guarantee that
cannot be provided when using electronic health record data.
Given that these models learn from examples, data quality is
fundamental; without meticulously selected and labeled data,
models cannot be effectively built or evaluated. Furthermore,
the participants who were treated with each antihypertensive
drug were not randomized, but they were selected at the
discretion of the clinician, which may bias our results because,
although there were no statistically significant differences in
most of the baseline variables, there were significant differences
in mean corpuscular hemoglobin concentration, MCV, HbA1c,
and TSH. Finally, the main limitation of this study is related to
the sample size. Although a train-test split of 80%-20% was
used to evaluate the model’s performance, both the training and
test samples originated from the same databases. Consequently,
the generalizability of the model to entirely new and external
datasets remains untested. Ideally, in line with the Transparent

Reporting of a multivariable prediction model for Individual
Prognosis or Diagnosis guidelines [49], an external validation
using a completely independent dataset would have been
performed to robustly ascertain the model’s applicability across
various patient populations. While the current approach provided
valuable insights, a broader sample base in future studies could
offer an even more robust understanding of the model’s
applicability across different patient groups.

Our research bridges a crucial gap in the current management
of hypertension by not only prioritizing the reduction of blood
pressure but also considering the effect on AS, as measured by
PWV. AS is a widely accepted independent predictor of
cardiovascular diseases. The importance of this lies in the
customization of antihypertensive drug recommendations that
not only effectively lower blood pressure but also aid in
decreasing AS, thereby potentially reducing the overall risk of
cardiovascular disease.

Our findings hold significant importance, and this can be better
explained through the points mentioned subsequently. First, our
study addresses a critical gap in current hypertension
management by not only focusing on blood pressure reduction
but also considering the impact on AS, as measured by PWV.
AS is a well-established independent risk factor for
cardiovascular diseases. The significance lies in tailoring
antihypertensive drug recommendations that not only effectively
lower blood pressure but also contribute to reducing AS, thus
potentially lowering overall cardiovascular risk. Second, the
personalized recommendations generated by our models offer
a patient-centric approach to antihypertensive therapy. By
considering individual characteristics and responses, clinicians
can make more informed decisions, potentially enhancing
treatment adherence and overall patient outcomes. Third, the
use of advanced ML techniques, specifically the embedded RF
model, enhances the reliability and sophistication of our
recommendations. ML methods, when integrated appropriately,
have the potential to reveal intricate patterns within complex
datasets, providing more nuanced and accurate predictions than
traditional approaches. Fourth, while the primary focus is on
antihypertensive recommendations, it is essential to highlight
that our study integrates evidence from 3 distinct studies (the
EVA study, the LOD-DIABETES study, and the EVIDENT
study), each with the following unique protocols. The careful
consideration of key variables, consistent measurement of PWV,
and adjustment for various covariates strengthen the validity of
our results. In addition, the model performance metrics,

including R2 values and MSEs, indicate the robustness of our
predictive models.

Furthermore, before the conclusions of this study, it is important
to examine future work and the limitations of our study. Our
analysis is primarily focused on data gathered at the initial and
subsequent follow-up points. However, as we recognize the
fluid nature of patient well-being, we are keen to examine the
potential impact of incorporating multiple follow-up sessions
within the data-gathering phase. This involves treating patients
as dynamic variables during each follow-up, providing a more
comprehensive understanding of their progressing health
patterns. As we delve into our future work, addressing potential
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transitions between antihypertensive medications for patients
during the follow-up period holds great importance. To enhance
our recommendation system, we delve into the implications of
these changes and consider effective methodologies to account
for them. It is imperative that we understand the interplay
between patient characteristics, medication choices, and health
outcomes. To enhance the strength of our recommendations,
we will delve into the potential for causal inference within our
model and explore the incorporation of supplementary outcomes.

In conclusion, in this study, we developed predictive models to
provide recommendations regarding the most suitable
antihypertensive drug for reducing PWV based on the individual
characteristics of patients with hypertension. We found that at
the first level, ARBs and ACEIs were the top choices based on
HbA1c, and at the second level, based on baseline cfPWV levels
for ACEIs, antihypertensive drugs should be either BBs or
ACEIs, while based on total cholesterol levels for ARBs, they
should be diuretics+ARBs or ARBs alone. Therefore, our study
provides a data-based reference for the customization of
antihypertensive drugs to reduce PWV.
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