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Abstract

Background: The medical knowledge graph provides explainable decision support, helping clinicians with prompt diagnosis
and treatment suggestions. However, in real-world clinical practice, patients visit different hospitals seeking various medical
services, resulting in fragmented patient data across hospitals. With data security issues, data fragmentation limits the application
of knowledge graphs because single-hospital data cannot provide complete evidence for generating precise decision support and
comprehensive explanations. It is important to study new methods for knowledge graph systems to integrate into multicenter,
information-sensitive medical environments, using fragmented patient records for decision support while maintaining data privacy
and security.

Objective: This study aims to propose an electronic health record (EHR)–oriented knowledge graph system for collaborative
reasoning with multicenter fragmented patient medical data, all the while preserving data privacy.

Methods: The study introduced an EHR knowledge graph framework and a novel collaborative reasoning process for utilizing
multicenter fragmented information. The system was deployed in each hospital and used a unified semantic structure and
Observational Medical Outcomes Partnership (OMOP) vocabulary to standardize the local EHR data set. The system transforms
local EHR data into semantic formats and performs semantic reasoning to generate intermediate reasoning findings. The generated
intermediate findings used hypernym concepts to isolate original medical data. The intermediate findings and hash-encrypted
patient identities were synchronized through a blockchain network. The multicenter intermediate findings were collaborated for
final reasoning and clinical decision support without gathering original EHR data.

Results: The system underwent evaluation through an application study involving the utilization of multicenter fragmented
EHR data to alert non-nephrology clinicians about overlooked patients with chronic kidney disease (CKD). The study covered
1185 patients in nonnephrology departments from 3 hospitals. The patients visited at least two of the hospitals. Of these, 124
patients were identified as meeting CKD diagnosis criteria through collaborative reasoning using multicenter EHR data, whereas
the data from individual hospitals alone could not facilitate the identification of CKD in these patients. The assessment by clinicians
indicated that 78/91 (86%) patients were CKD positive.

Conclusions: The proposed system was able to effectively utilize multicenter fragmented EHR data for clinical application.
The application study showed the clinical benefits of the system with prompt and comprehensive decision support.
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Introduction

The fragmentation of patient data across multiple hospitals
adversely impacts health care quality. In practice, patients visit
different hospitals for various medical services. Previous studies
have indicated that up to 26.5% of patients from a hospital have
visited other institutions in the past 12 months [1-3]. These
visits result in fragmented patient data across different hospitals
within various electronic health record (EHR) systems [2,4-6].
Because of the sensitivity of medical data, sharing information
between hospitals encounters obstacles related to data privacy
and security [7]. As a result, EHR data in each hospital are often
incomplete, making collaboration difficult.

The missing information from outside the local institution cannot
provide clinicians with complete clinical evidence during routine
practice. This potentially affects decision-making and harms
health care quality in several aspects [2,8-10]:

• Delayed or missed diagnoses: Missing evidence from other
hospitals can lead to unconsidered diseases until apparent
symptoms occur.

• Duplicate care or additional tests: Additional tests may be
ordered to verify diagnoses, even though records in other
hospitals might already contain the needed results.

• Incomprehensive analysis and decisions: Because of
incomplete disease history, clinicians may neglect important
risk factors during decision-making.

The missing information could adversely affect patients in nearly
50% of cases. Much of the needed data can be found outside
local hospitals [9]. Thus, utilizing multicenter fragmented EHR
data for comprehensive decision support is essential while
maintaining data privacy.

The knowledge graph stands as an explainable artificial
intelligence method applicable across numerous domains. Using
knowledge graphs to enhance semantic relationships within
EHR data and execute deductive reasoning aids in producing
understandable results within clinical practice [11]. Recent
research on EHR-based knowledge graphs highlights the benefits
of integrating medical knowledge into clinical applications
(Textbox 1).

Textbox 1. Benefits of integrating medical knowledge into clinical applications.

1. Generating medical knowledge graphs from electronic health record data

• Li et al [12] have introduced systematic methodologies for the semiautomatic construction of medical knowledge graphs using electronic health
record (EHR) data. Entity recognition and occurrence-based algorithms play pivotal roles in relation to extraction and ranking.

• Hong et al [13] have introduced a clinical knowledge extraction technique using sparse embedding regression with multicenter EHR data. The
embedding vectors derived from multicenter EHR data enhance the robustness of knowledge and facilitate the identification of data set heterogeneity.

2. Knowledge graph–based EHR query

• Thukral et al [14] have pioneered a method to convert tabular format EHR data into a knowledge graph representation, thereby enriching the
semantic relationships among EHR data elements. This approach enables the execution of complex data queries using the easily interpretable
SPARQL language.

• Xiao et al [15] used Ontology-Based Data Access to establish a virtual fast health care interoperability resources–based knowledge graph derived
from Observational Medical Outcomes Partnership (OMOP) EHR data. This approach facilitates data interoperability with exceptional efficiency
and generality.

• Although these studies greatly enhance data interoperability, they do not incorporate decision support functions.

3. EHR knowledge graph–based clinical decision support

• Carvalho et al [16] integrated EHR data with knowledge graph embeddings to develop a machine learning model for predicting intensive care
unit readmissions. The knowledge embedded within EHR data serves as a feature for model training, resulting in improved predictive performance.

• Liu et al [17] introduced a heterogeneous similarity graph neural network approach for diagnosing predictions based on graph-formatted EHR
data. The heterogeneous EHR graph undergoes normalization into multiple homogeneous graphs, which are then fused into a graph neural network
to enhance prediction accuracy.

Although the methods described in Textbox 1 have shown
enhanced performance, the model lacks both explainability and
generality. In our previous studies, we introduced an
EHR-oriented knowledge graph system, leveraging medical
information often overlooked or underutilized by clinicians.

This system aimed to offer decision support for diseases
spanning multiple departments [18]. Specifically, it aided
nonnephrology clinicians in identifying patients at risk of
chronic kidney disease (CKD) who had been overlooked for
extended periods. By transcending traditional knowledge
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barriers, the system tapped into previously underutilized
information to facilitate the early detection of diseases crossing
departmental boundaries.

Our previous work focused solely on cross-departmental data
within a single hospital. However, in real-world scenarios,
fragmented patient records within a single hospital often fail to
provide sufficient information for knowledge graphs to conduct
comprehensive analyses [10,19,20]. This limitation can result
in imprecise decisions or delayed diagnoses, thereby
constraining the practical implementation of knowledge graphs.
Currently, only a handful of studies on multicenter knowledge
graphs address the challenge of data fragmentation during model
application phases. The predominant focus of multicenter
knowledge graph research lies in 3 key areas: constructing
knowledge graphs from diverse sources, completing knowledge
graphs using data from multiple centers, and facilitating data
interoperability guided by knowledge graphs [21-24]. Challenges
in multicenter knowledge graphs encompass data heterogeneity,
knowledge inconsistency, and concerns regarding the privacy
and security of data sources. To address these challenges,
researchers have explored federated knowledge graph
embedding methods, allowing model training with multicenter
data while upholding data security. For instance, Chen et al [25]
introduced FedE, a knowledge graph embedding method
leveraging a federated learning framework. In these approaches,
each data source learns embedding vectors using its local data
and then shares these vectors for model iteration. Peng et al [26]
introduced FKGE (Federated Knowledge Graphs Embedding),
which enables the learning of embeddings from various
knowledge graphs in an asynchronous and peer-to-peer manner
while safeguarding privacy. These methods have demonstrated
improved performance in link prediction tasks without
necessitating the centralization of original data. The studies,
however, used multicenter data solely during the training phase
of the embedding model and did not address data fragmentation
during application. When applied to real-world decision support
scenarios, these models are still fed with fragmented patient
data from single hospitals only, which can significantly impact
the performance of otherwise well-trained models. Therefore,
it is crucial to empower knowledge graph systems to leverage
multicenter fragmented EHR data for CDS while ensuring the
preservation of data privacy, particularly in chronic disease
management and long-term decision support applications.

Collaborative research networks such as the Observational
Health Data Sciences and Informatics (OHDSI) offer valuable
insights into addressing this issue [27,28]. These networks use
local analysis results from various institutions, aggregating
models, or summarizations to enhance generalizability and
mitigate bias. Collaborative research does not necessarily require
the centralization of original data, thus ensuring data security.
Axfors et al [29] and Baigent et al [30] showcased meta-analyses
by incorporating results from multiple randomized control trials
and providing additional insights through summarization.
Noman et al [31] and Tian et al [32] introduced collaborative
methods using federated learning and multivariate aggregation
to enhance model accuracy and generalizability. Such
collaborative research only necessitates the collection of local

analysis results and has demonstrated significant clinical value
through the utilization of multicenter data sources.

Taking inspiration from collaborative research, this study
introduces an EHR-oriented knowledge graph system designed
to effectively harness multicenter fragmented patient EHR data
while safeguarding data security. Implemented within each
hospital, the system conducts local reasoning based on local
EHR data and generates intermediate reasoning results. Through
a distribution module, the intermediate results are formulated
as an online subgraph with encrypted identities, facilitating
multicenter collaboration and alignment. A blockchain network
synchronizes the findings across centers, and the collaborated
patient clinical evidence is used for final reasoning, enabling
comprehensive CDS. Importantly, the original data remain
within the local institute to uphold data security. The main
contribution of the study is as follows:

• Introducing a novel framework for multicenter collaborative
reasoning using fragmented EHR data for comprehensive
CDS without the need to share original data. This approach
enables knowledge graphs to use intact evidence for CDS
purposes.

• Implementing an EHR-oriented knowledge graph system
across multiple hospitals to standardize local EHR data and
facilitate the local reasoning process. This initiative
establishes a standardized semantic environment conducive
to multicenter collaborative reasoning.

• Developing a distribution component and online subgraph
structure to facilitate the collaboration of intermediate
reasoning findings across multiple centers. This initiative
addresses data privacy concerns and enhances local systems
with the capability for multicenter collaboration.

An application study was conducted to evaluate the system’s
effectiveness in assisting clinicians in detecting undiagnosed
CKD in patients who visited multiple hospitals. The system
successfully issued timely CKD warnings, a capability not
supported by data from a single hospital alone.

Methods

EHR-Oriented Knowledge Graph System for
Multicenter Collaboration

Overall System Architecture
This study presents an EHR-oriented knowledge graph system
designed for multicenter collaboration using fragmented patient
information. The overall system architecture is depicted in
Figure 1. The proposed system uses structured EHR data
following the Observational Medical Outcomes Partnership
(OMOP) common data model (CDM) for semantic reasoning
and clinical applications [33]. The semantic organization of
EHR data within the knowledge graph adheres to the structure
outlined in the OMOP CDM. The system consists of 3 main
components: (1) the local EHR knowledge graph component,
which conducts semantic reasoning on local EHR data to
generate independent clinical findings; (2) the distribution
component, which manages the distribution of intermediate
reasoning results and patient alignment for multicenter
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collaboration; and (3) the blockchain component, which
establishes a secure network for multicenter synchronization.

The system is deployed in hospitals, where it conducts local
reasoning on local EHR data. The distribution component and

blockchain network collaborate on intermediate reasoning results
without exposing original data for privacy concerns.
Subsequently, fragmented patient information from multiple
hospitals is used to generate comprehensive CDS with complete
clinical evidence.

Figure 1. The architecture of the EHR-oriented knowledge graph system. (1) The local EHR knowledge graph system performs local reasoning based
on local EHR data. (2) The distribution component creates online subgraphs with intermediate reasoning findings to synchronize across hospitals without
sharing original EHR data. (3) The blockchain network supports the collaborative process. CDS: clinical decision support; CP-ABE: ciphertext-policy
attribute–based encryption. EHR: electronic health record; OMOP: Observational Medical Outcomes Partnership; RDF: resource description framework.

The Local EHR Knowledge Graph Component
The local EHR knowledge graph component offers the capability
to leverage local EHR data for semantic reasoning and CDS
generation. This component has been adapted from our previous
study [18]. The EHR Data Conversion Module is responsible
for transforming EHR data into resource description framework
(RDF)–type triples to enable semantic querying and reasoning.
The module conducts an analysis of the EHR database and
aligns table concepts with the entities within the knowledge
graph ontology. Within the EHR knowledge graph, EHR data
and clinical knowledge entities undergo a semantic
transformation, organized under a unified top-level ontology
structure. Semantic triples are used within the EHR knowledge
graph to represent the clinical information pertaining to each
patient. The Semantic Reasoning Module offers rule-based
reasoning capabilities on the local knowledge graph to generate
CDS-related findings. Additionally, the module establishes an
EHR pathway for each patient to facilitate the collaboration of
multicenter information. This involves connecting intermediate
findings from multiple centers along a virtual timeline using
semantic relationships, ultimately contributing to the final
reasoning process for CDS. The Visualization and Explanation
Module furnishes clinicians with a visualized timeline, aiding
in their comprehension of critical medical information and
evidence pertinent to the CDS.

To support the collaboration of local reasoning results, the
generated findings are transformed into hypernym concept
expressions to isolate original EHR data (eg, using “abnormal
blood potassium” to represent reasoning findings from
hyperkalemia diagnosis, blood potassium test results, or
treatment medicines). Other hospitals will learn about the
abnormality but not the original examination data or
prescriptions. During the construction of the knowledge graph,
candidate hypernym concepts are selected based on hierarchical
relationships and the cosine similarity of their leaf nodes.
Clinical experts review and adjust these candidate hypernym
concepts to ensure information accuracy. The identified findings
are automatically transformed into hypernym expressions during
the knowledge graph reasoning process. Additional technical
details are in Multimedia Appendix 1.

The Distribution Component
The distribution component facilitates collaborative reasoning
between multicenter EHR knowledge graph systems. It extracts
intermediate reasoning results and visit pathway information,
encrypts patient identities, and builds an online subgraph to
synchronize local patient findings with other institutions. As
shown in Figure 2, patient identities are hash encrypted for
multicenter patient alignment. The hash codes of patient
identities are compared to align the same patient across different
hospitals, allowing multicenter findings for the same patient to
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be matched. Medical data nodes are prohibited from being
distributed and are not used for online subgraph construction.
Intermediate reasoning findings, represented by hypernym
concepts, are extracted to build the online subgraph. This allows
the transfer of a patient’s clinical evidence without exposing

original EHR data. Other hospitals receive the online subgraph
to collaborate on multicenter clinical evidence by loading
intermediate findings of the aligned patients. If access control
is required, the online subgraph can be encrypted using
ciphertext policy attribute–based encryption.

Figure 2. Data access of the Distribution Component. The original EHR data and identities are not acquired for online subgraph creation. The encrypted
identity, visit time stamps, and authorized findings are permitted to be constructed as online subgraphs for collaborative reasoning. EHR: electronic
health record.

The Blockchain Network Component
The blockchain network component establishes a blockchain
node and manages the blockchain network. It securely
synchronizes locally generated online subgraphs with other
systems and delivers acquired triples from other hospitals to
the local system, supporting the collaborative reasoning process.
A requirement of the collaborative reasoning process is
broadcast through the blockchain network, allowing each node
to receive the process’s series number. The blockchain method
was chosen because it is a proven approach for synchronizing
data in distributed systems and is already used in medical
domain studies [34,35]. All actions on the blockchain are logged
and traceable. In this study, we used Golang [36] and libp2p
[37] for blockchain platform construction, with proof of stake
as the consensus mechanism.

Multicenter Collaboration Settings of the
EHR-Oriented Knowledge Graph System

Deployment Overview
The EHR knowledge graph systems are deployed in each
hospital and connected through a blockchain network for
collaborative reasoning. Figure 3 illustrates the multicenter
collaboration setting of the system. The EHR knowledge graph
system is implemented in local hospitals and uses local EHR
data sets for reasoning without exposing the original EHR data.
Participating hospitals generate intermediate reasoning results,
represented by hypernym concepts to isolate them from the
original data, and use hash-encrypted identities to build online
subgraphs. The sponsoring hospital receives the online
subgraphs via the blockchain network and conducts patient
alignment by comparing identity hash codes. For every patient,
a comprehensive clinical pathway is established by
amalgamating local evidence and intermediate reasoning
outcomes from participating hospitals. A conclusive summary
reasoning process utilizes the entirety of patient data to furnish
clinicians with comprehensive CDS. Throughout this process,
the original EHR data remain preserved within the local systems.
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Figure 3. Setting of the EHR knowledge graph system in the multicenter environment. The participating hospitals perform local reasoning and pass
the intermediate reasoning results through generated subgraphs. The sponsoring hospital performs local reasoning based on local EHR data and acquired
intermediate findings to generate a comprehensive CDS for application. CDS: clinical decision support; EHR: electronic health record; KG: knowledge
graph.

Patient Information Model
The EHR data within an OMOP CDM–based data table undergo
transformation into RDF-type triples, thereby adopting a
patient-centric information model suitable for querying and
semantic reasoning. The structure of this patient information
model is depicted on the left side of Figure 4. It is a 3-level,

patient-visit-treatment semantic structure. It models each
patient’s EHR data into a semantic clinical trajectory, facilitating
patient-level querying and reasoning. The patient information
model transmutes table-based EHR data into semantic graphs,
enabling semantic reasoning, with each data element linking to
its corresponding knowledge nodes.

Figure 4. The semantic structure of the RDF-type patient EHR data. In the local EHR knowledge graph, a patient-visit-treatment structure defines the
semantic structure of EHR information. In the online subgraph, the structure contains only patient nodes with hash identity, virtual visit nodes with visit
dates, and virtual finding nodes with finding types and positive labels. EHR: electronic health record; RDF: resource description framework.
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The Online Subgraph
The online subgraph serves as a streamlined patient information
model designed for online synchronization among multiple
EHR knowledge graph systems. The ontology structure of the
online subgraph is illustrated in the right section of Figure 4.
The entities within the online subgraph mirror those within the
local EHR knowledge graph, focusing solely on information
pertinent to collaborative reasoning to conserve network
resources. Each patient entity comprises solely hash-encrypted
identity values for patient alignment. Virtual visit nodes
exclusively feature visit dates to denote visit records from other
hospitals. Similarly, virtual clinical finding nodes harbor

intermediate reasoning outcomes tailored for collaborative
reasoning purposes.

The Multicenter Collaborative Reasoning Process

Purpose
The multicenter collaborative reasoning process delineates a
systematic interaction protocol for multicenter systems to engage
in collaborative CDS reasoning. Illustrated in Figure 5, the
process encompasses multiple steps, including preparing the
reasoning cohort, aligning patients, defining the reasoning data
period, and conducting semantic reasoning. This procedural
framework ensures the efficacy and efficiency of collaborative
reasoning endeavors.

Figure 5. The overall process of collaborative reasoning. (1) All the centers identify patients meeting the cohort entry criteria. (2) The sponsoring
center aligns patients by hash-encrypted identities. (3) The system creates a complete visit pathway with cohort entry findings for each patient to
determine the ROIs for further reasoning. (4) Each center performs semantic reasoning and generates intermediate findings based on local EHR data.
(5) The intermediate reasoning findings from multiple hospitals are collaborated for final decisions. CDS: clinical decision support; EHR: electronic
health record; ROI: region of interest.

Initiation Protocol
To initiate a collaborative reasoning process, the local system
first executes the initiation protocol as a preparatory step. This
protocol is tailored for the local system to delineate the
reasoning cohort. The process identifies initial clinical evidence
to determine whether a patient needs to join the collaborative
reasoning. Unrelated patients are ruled out to save resources.
The initiation protocol varies from one disease to another.

For example, in an application concerning unconsidered CKD
warnings based on multicenter EHR data, the initiation protocol
mandates each local system to ascertain whether a patient
possesses kidney function test results but has not undergone
nephrology visits. If this criterion is met, the patient becomes
eligible to participate in the collaborative reasoning process.
Subsequently, the local system generates virtual visit nodes
containing abnormal kidney function findings for
synchronization and collaborative analysis.
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Patient Alignment
The patient alignment process is facilitated by the distribution
component of the system. Patients are aligned by comparing
hash-encrypted identities between local patient nodes and the
received online subgraphs. Sensitive patient identities undergo
hash encryption, ensuring that matching can be accomplished
solely using ciphertext. This approach prevents the leakage of
privacy information during data transmission and alignment.
The distribution component maintains a table that records the
mappings between matched patient node uniform resource
identifiers. The records within the table serve as the foundation
for mapping intermediate findings in subsequent steps.
Subsequently, the reasoning outcomes pertaining to the matched
patient are integrated into the local EHR knowledge graph
system to facilitate collaborative reasoning.

Region of Interest Designation
The region of interest (ROI) delineates the disease-related
observation period within the patient’s EHR data, specifying a
temporal window for collaborative reasoning. The sponsoring
hospital consolidates the results of the initiation protocol
reasoning to identify observation periods relevant to disease
risks. Collaborative reasoning concentrates on EHR data within
this designated period to ensure efficient analysis and excludes
irrelevant noise information.

The sponsoring hospital initially obtains visits and clinical
findings related to the initiation protocol from other hospitals.
Subsequently, the local EHR knowledge graph system constructs
a multicenter visit timeline incorporating significant clinical
findings. Following this, the system engages in semantic
reasoning to ascertain the periods during which the patient’s
data are pertinent to the disease and require additional
collaborative reasoning for CDS. The ROIs are delineated and
transmitted to other hospitals. Any nonrelated periods are
subsequently excluded to optimize efficiency and conserve
computing resources.

Local Reasoning Process
Throughout the collaborative reasoning process, the local
reasoning process assumes responsibility for leveraging the
local EHR data within the local knowledge graph. Its primary
task involves generating atomic, independent clinical findings
conducive to synchronization. The generated clinical findings
exclusively present conclusions derived from EHR data.
Intermediate findings use higher-level concepts to extract
reasoning results from the original data, with the selection of
these concepts being determined by domain experts and medical

professionals. Other hospitals solely receive intermediate
reasoned conclusions and are not provided with the
corresponding original data or informed about the methodology
used to derive the findings. For instance, the identification of
abnormal blood potassium might be reasoned based on
hyperkalemia, measurement results, or treatment medications,
yet the other hospitals remain unaware of the specific source
behind the reasoned findings.

The Reasoning Module conducts rule-based semantic reasoning,
analyzing diagnoses, medical test results, procedures, and
prescriptions separately at each visit to produce independent
clinical findings. These findings are then converted into
hypernym representation, aligning with semantic relationships
within the knowledge graph, to facilitate multicenter
collaboration. For instance, a <abnormal kidney function> node
might represent a <estimated glomerular filtration rate at g3b
stage> node within the knowledge graph.

The Multicenter Distribution and Summarization
The sponsoring hospital conducts summarization reasoning,
drawing upon intact clinical evidence to generate final CDS
responses. An illustration outlining the distribution and
summarization process is provided in Figure 6.

The online subgraphs transmit intermediate reasoning results
to the sponsoring hospital for collaborative result synthesis.
Upon receiving the subgraphs, the sponsoring hospital maps
the incoming visits and clinical findings as virtual visits and
virtual clinical findings, respectively. This process culminates
in the creation of an integrated medical pathway for each patient,
all achieved without the necessity of gathering original medical
data. The system engages in semantic reasoning using
multicenter collaborated reasoning outcomes. Collaborating on
intermediate findings furnishes comprehensive patient clinical
evidence, empowering the knowledge graph to produce precise
decision support. The resulting CDS responses are presented
in a timeline format, accompanied by explanatory reasoning
details, allowing clinicians to review and interpret the
information effectively.

In instances where decision support necessitates evidence
beyond the scope of semantic reasoning, the system offers an
interface to interact with other nonreasoning protocols to obtain
the requisite evidence. For instance, in the application study,
the garbled circuit algorithm is used to compare 2 test results
without revealing the actual numerical values [38]. The protocol
incorporates its own security mechanism to generate clinical
findings in a data-private manner.
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Figure 6. (A) Local systems generate intermediate reasoning results and collaborate by a blockchain network. (B) The multicenter collaborated findings
support CDS reasoning and provide explainable results to clinicians. CDS: clinical decision support; EHR: electronic health record.

Application to Unconsidered CKD Detection Through
Fragmented EHR Data

Background
An application study assesses the performance and clinical value
of the proposed system. The EHR knowledge graph system
conducts collaborative reasoning on patients’ fragmented EHR
data to identify their CKD-related risks, which were challenging
to recognize using data from individual hospitals alone.

CKD is a prevalent chronic disorder associated with various
complications and has seen a significant increase in prevalence
in recent decades [39]. Epidemiological research indicates that
the prevalence of CKD in China stands at 10.8%, yet only 12.5%
of impacted individuals are aware of their condition [40]. The

early detection of CKD relies on nonnephrology clinicians;
however, it is particularly challenging because early-stage CKD
often exhibits fewer symptoms. However, insufficient CKD
knowledge among nonnephrology clinicians may result in the
oversight of CKD-related risks during routine practice.
Moreover, the extended monitoring required for the chronic
progression of abnormal kidney function presents challenges
for clinicians in timely identifying CKD [41,42]. Patients
frequently seek care at multiple hospitals or clinics over a period,
resulting in fragmented renal function test results and a
disjointed disease history spread across different institutions.
For nonnephrology clinicians with access solely to single-center
data, identifying overlooked CKD becomes challenging. This
situation can lead to delayed diagnosis, the necessity for repeated
tests, and potentially inappropriate treatment. Combining
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fragmented test results and clinical findings while ensuring data
security can facilitate the timely identification of CKD [43].

Application Study Design
In the application study, our system was deployed across 3
tertiary A-level hospitals in Hangzhou: the First Affiliated
Hospital, College of Medicine, Zhejiang University (FAHZU);
Zhejiang Hospital; and the Affiliated Hospital of Hangzhou
Normal University (AHHNU). FAHZU is a comprehensive
hospital providing a wide range of general care services.
Zhejiang Hospital and AHHNU specialize in providing focused
care services. By combining these hospitals, the focus is on
addressing the needs of patients who seek care at multiple health
care facilities for various types of medical services.

The study conducted collaborative reasoning on fragmented
medical information from patients who had visited multiple
hospitals, aiming to detect overlooked CKD without

necessitating the gathering of original EHR data. The study
concentrated on patients in nonnephrology departments and
leveraged CKD-related information typically overlooked by
nonnephrology clinicians. This approach aimed to facilitate
early detection of CKD risks. As illustrated in Figure 7, the
collaborative reasoning mainly focused on 2 types of patients
meeting the CKD diagnosis criteria (Textbox 2).

A disease-specific local ontology for CKD and semantic
reasoning rules were developed based on clinical practice
guidelines and CKD management studies [44-47]. Medical
experts from the kidney department of FAHZU contributed to
the creation of the ontology and semantic rules to ensure
accuracy and clinical functionality. The systems analyzed local
test results related to kidney function and identified abnormal
findings, along with occurrences of visits. Primary CKD–related
evidence is detailed in Multimedia Appendix 2.

Figure 7. The multicenter data group focuses on the early detection of unconsidered CKD using collaborated evidence from multiple hospitals. The
transferred group focuses on unconsidered CKD warning at the first visit in the transferred hospital by collaborating evidence from previous hospital
visits. CKD: chronic kidney disease.

Textbox 2. Focus of the collaborative reasoning.

1. Detection through the combination of information from multiple hospitals

These patients’ chronic kidney disease (CKD)–related data are dispersed across multiple hospitals, and only collaborative reasoning that integrates
findings from multiple centers can promptly identify CKD. The collaboration of clinical findings could fulfill the 3-month monitoring criteria for
chronic development. (This group is labeled the “Multicenter Data Group” in the “Results” section.)

2. Detection by bridging the information gap between hospitals

These patients fulfilled the CKD diagnosis criteria during previous visits to one hospital but were overlooked by clinicians. Subsequently, when
transferred to another hospital without access to their prior data, health care providers neglected the patients’ CKD risks for an extended period. (This
group is labeled the “Transferred Group” in the “Results” section.)

Evaluation and Data Source
The evaluation of the application study encompasses the
following aspects of clinical value and system performance:

First, the system’s capacity to identify overlooked patients with
CKD using multicenter EHR data within a secure environment
is assessed. Nephrology experts evaluate the reasoning outcomes
by examining the comprehensive multicenter EHR data to
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determine whether the patients have been confirmed as CKD
positive. The assessment involved identifying patients who had
subsequent EHR data regarding kidney function after the date
recorded in the EHR when the knowledge graph identified the
patients as meeting the CKD criteria. In essence, the assessment
process utilizes EHR data both from the knowledge graph used
for reasoning and subsequent EHR data used as “labels.” As
the study cohort lacks CKD diagnosis labels, it is crucial to
incorporate additional data beyond the utilization of the
knowledge graph to ensure the patients truly exhibit CKD
positivity “in the future.” Relying solely on identical data for
assessment merely evaluates whether the system adheres to
guideline-based rules and generates appropriate outputs. The
selected subset, augmented with additional data, facilitates a
more comprehensive assessment and supports the subsequent
evaluation aspects.

Second, the advantages offered by collaborative reasoning in
terms of discovery lead time, risk coverage, and potential test
reduction are evaluated. Discovery lead time highlights the
system’s capability for early CKD detection, suggesting its
potential to mitigate delayed diagnoses. The lead time tlead(M)

of the multicenter data group is computed as the difference
between the date tCDS of the visit where the knowledge graph
system identified patients meeting the CKD diagnosis criteria
and the date tdiagnosis of the assessment when clinicians diagnosed
CKD using single-hospital EHR data for these patients, as in
the following equation:

tlead(M)=tdiagnosis – tCDS(1)

For patients in the transferred group, the lead time tlead(T) is
calculated as the difference between the date ttransfer of the first
visit to the transferred hospital and the date tdiagnosis of the
assessment when clinicians diagnose CKD using EHR data
from the transferred hospital, as in the following equation:

tlead(T)=tdiagnosis – ttransfer(2)

The risk coverage demonstrates the system’s capability to
furnish abundant evidence of CKD for explanation and review
by clinicians. Collaborative reasoning yields CKD-related risks
r from multiple-hospital EHR data within a 3-month window
at the ROI (tROI). As a baseline, single-hospital reasoning
provides risks using EHR data from the latest 3 months (t3m) as
a comparative baseline. The risk coverage cov is calculated as
a comparison as follows:

The duplicate examination reduction demonstrates the potential
of the system to decrease unnecessary renal function tests for
CKD diagnosis through multicenter collaborative reasoning. It
is calculated based on the additional test records used in the
clinician assessment of single-hospital data. The duplicated tests
are depicted in Figure 7.

Lastly, the visualization and explanation of decision support
were emphasized. A user interface was developed for
information review and explanation of CDS results. An example
of an overlooked patient with CKD identified through
collaborative reasoning was presented to demonstrate the
functionality of the visualization and explanation. The evaluation
of blockchain performance is detailed in Multimedia Appendix
3 to underscore its suitability for the collaborative reasoning
process.

The application study used EHR data from March 2008 to
November 2020, provided by FAHZU, Zhejiang Hospital, and
AHHNU. The study cohort comprised patients who had visited
at least two of these hospitals. Cohort patients were selected
and aligned using hash-encrypted identities. Patients with at
least one decreased kidney function test result were included in
the cohort. Patients who had either a nephrology visit or a kidney
disease diagnosis record during the observation period were
excluded. The EHR data, initially in the OMOP CDM format,
were converted into the local EHR knowledge graph system.

Ethics Approval
The study was approved by the Clinical Research Ethics
Committee of FAHZU (approval number 2020-330) and was
exempt from informed consent for the following reasons: (1)
the identity information of the data was either removed or
encrypted before utilization; (2) the study did not involve
commercial interests, and the data were not publicly disclosed;
and (3) the data were used solely for system evaluation, and the
study did not impact the health status of the patients.

Results

Study Cohort Characteristics
The cohort for multicenter reasoning of unconsidered patients
with CKD included individuals from FAHZU, Zhejiang
Hospital, and AHHNU, spanning from March 2008 to November
2020. All patients had visit records at FAHZU as well as visit
records at either Zhejiang Hospital or AHHNU. Patients with
a test record of an estimated glomerular filtration rate lower
than 60 mL/min or a urine albumin-to-creatinine ratio higher
than 30 mg/g were included in the cohort. Exclusion criteria
were having a diagnosis record of any kidney disease or having
a visit record from the kidney department. The cohort comprised
a total of 1185 patients. Table 1 presents the characteristics of
the patients at the time of cohort entry.

J Med Internet Res 2024 | vol. 26 | e54263 | p. 11https://www.jmir.org/2024/1/e54263
(page number not for citation purposes)

Shang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Characteristics of the study cohort.

ValuesCharacteristics

Target cohort

1185Patients, n

Age (years)

219 (18.48)18-59, n (%)

966 (81.52)>60, n (%)

68.52 (11.35)Mean (SD)

Sex, n (%)

470 (39.66)Female

715 (60.34)Male

Measurement, mean (SD)

4.27 (0.46)Blood potassium (mmol/L)

109.24 (59.86)Serum creatinine (μmol/L)

57.20 (16.81)Estimated glomerular filtration rate (mL/min)

7.55 (3.64)Blood urine nitrogen (mmol/L)

5.97 (1.92)Blood glucose (mmol/L)

1.21 (0.37)High-density lipoprotein cholesterol (mmol/L)

2.53 (0.92)Low-density lipoprotein cholesterol (mmol/L)

4.60 (1.13)Total cholesterol (mmol/L)

44.69 (110.36)Albumin-to-creatinine ratio (mg/mmol)

Diagnosis, n (%)

160 (13.50)Diabetes mellitus

281 (23.71)Hypertension

106 (8.95)Cardiovascular disease

29 (2.45)Hyperlipidemia

Visit departmenta (top 10 most), n (%)

130 (11.43)Cardiovascular medicine

119 (10.47)Emergency department

64 (5.63)Gastroenterology

59 (5.19)Ophthalmology

56 (4.93)Orthopedics

56 (4.93)Endocrinology

54 (4.75)Urology

50 (4.40)Respiratory medicine

46 (4.05)Cardiology

39 (3.43)Infectious disease

aThe percentages were calculated based on the 1137 patients who had a specific visit department at the cohort entry visit. In total, the cohort included
visits to 39 different departments.

Multicenter Reasoning of Unconsidered CKD
The evaluation study results are presented in Table 2. The EHR
knowledge graph systems performed collaborative reasoning
across the 3 hospitals and identified 124 patients who met the
CKD diagnosis criteria based on the combination of multicenter

medical information. In the multicenter data group, 69 patients
met the CKD diagnosis criteria through the collaborative
reasoning of fragmented EHR data. The data from either hospital
alone would not support the diagnostic criteria for CKD. In the
transferred group, 55 patients met the CKD diagnostic criteria
during early visits to one hospital, but their CKD positivity was
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identified much later at another hospital. Clinicians overlooked
their CKD risks during the initial hospital visits. The information
gap prevents doctors at subsequent hospitals from making
prompt diagnoses. Collaborative reasoning could alert clinicians
to previously neglected CKD risks during the initial visit.

A total of 91 patients were assessed by nephrology clinicians.
These patients were selected if subsequent EHR data were
available beyond what were used by the knowledge graph
reasoning. These additional EHR data served as “labels” to

further confirm CKD. The results demonstrated that the
proposed system effectively identified patients’ CKD risks
through collaborative reasoning. The false positives in the
assessment were primarily due to CKD recovery. These patients
had undergone surgery or long-term treatment, resulting in
temporarily reduced kidney function. After the treatment ceased
and no longer affected the renal system, kidney function
recovered, leading to false positives. Nonetheless, these patients
required kidney function monitoring at the time of reasoning
to prevent chronic risks.

Table 2. Evaluation results of collaborative reasoning of patients with unconsidered CKDa.

Unconfirmed CKD by assessment, nConfirmed CKD by assessment, n (%)Assessed patientsb, nPatients, nGroup

1378 (86)91124Patients meeting CKD
diagnosis criteria (full
cohort)

832 (80)4069Multicenter data groupc

546 (90)5155Transferred groupd

aCKD: chronic kidney disease.
bThe patients’ CKD was assessed by clinicians using subsequent electronic health record data that were dated later than the reasoned CKD date in
accordance with CKD guidelines.
cThe CKD status of patients in this group was determined through collaborative reasoning using findings from multiple hospitals.
dThe CKD of patients in this group was overlooked at one hospital, and the information regarding their CKD risk did not transfer to another hospital
during subsequent visits.

Advantages of Multicenter Reasoning
Table 3 presents the benefits of collaborative reasoning
compared with single-hospital data analysis, encompassing
discovery lead time, risk coverage comparison, and duplicate
examination reduction. The discovery lead time and potential
examination reduction are calculated based on subsequent EHR
data following the data used in the reasoning process. The
discovery lead time demonstrated that the system could identify
CKD risks early on, long before clinical assessment. By
leveraging multicenter fragmented medical information, the
system delivered timely CDSs for cross-departmental clinicians.
Consequently, it has the potential to reduce delayed or missed
diagnoses during routine practice and address information gaps
stemming from data fragmentation and security issues.

The CKD-related risk coverage highlights the system’s ability
to furnish comprehensive information for clinicians to review

and assess the significance and progression of CKD risks. Part
of the comparison between identified CKD-related risks in
multiple-hospital collaborative reasoning and single-center
reasoning is depicted in Figure 8. Each column indicates the
number of patients found to have the specific risk. For instance,
a history of acute kidney injury (an essential risk factor for
CKD) from other hospitals may go unnoticed in single-hospital
reasoning, leading clinicians to miss a crucial reference point
in evaluating the patient’s condition.

The potential examination reduction suggests that collaborative
reasoning can effectively leverage multicenter fragmented
information, using previous tests to identify overlooked CKD
and offer decision support. This has the potential to reduce
duplicate tests resulting from information gaps and facilitate
prompt treatment.
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Table 3. Discovery lead time and comparison between multicenter collaborative reasoning and single-center data analysis.

Transferred groupMulticenter data groupVariables

Discovery lead timea (days)

208 (219)434 (363)Mean (SD)

121364Median

Reduced duplicate examinationsb

3.56 (4.12)3.34 (2.72)Tests, mean (SD)

Risk coverage comparisonc

165133Ratio, %

aThe discovery lead time of the multicenter data group is calculated as the difference between the date of chronic kidney disease reasoning finding and
the date of clinician assessment results. Conversely, the discovery lead time of the transferred group was calculated as the difference between the date
of the first visit to the transferred hospital and the date of clinician assessment results.
bTest reduction refers to the additional tests required for clinicians to assess chronic kidney disease based solely on single-hospital data, compared with
using multicenter collaborative reasoning.
cUsing single-center reasoned chronic kidney disease–related risks as the baseline.

Figure 8. (A) Identified CKD-related risks of the Multicenter Data Group. (B) Identified CKD-related risks of the Transferred Group. The collaborative
reasoning identified more CKD-related risk identification, while single-hospital reasoning missed some clinical evidence during decision support. AKI:
acute kidney injury; BUN: blood urea nitrogen; CKD: chronic kidney disease; UA: uric acid; UP: urinary protein.

Visualization and Explanation of CDS Results
The user interface depicted in Figure 9 showcases an example
of an overlooked patient with CKD identified by the system.
At the top of the page, patient information and a table format
of local EHR data are presented for review. On the lower part
of the page, a graphical timeline illustrates the patient’s medical
pathway, accompanied by reasoning footage providing an

explanation of the CDS for overlooked CKD. Additional
interfaces can be found in Multimedia Appendix 4.

The patient with ID 11046406 visited FAHZU in April 2019,
May 2019, and May 2020, and visited other hospitals (Zhejiang
Hospital in this case) in August 2019 and January 2020. The
system established an ROI meeting the CKD diagnosis criteria
from April 4, 2019, to August 2, 2020. Local findings and
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remote findings are distinguished by different filling styles. The
local EHR data revealed abnormal estimated glomerular
filtration rate test results and several CKD-related risks during
that period. Findings from other hospitals indicated abnormal
kidney function and several additional CKD-related risks. The
system aggregated these findings and concluded that the patient

met the CKD diagnosis criteria, exhibiting several significant
risk factors. The reasoning footage and essential risks within
the ROI are listed beneath the timeline for review. Despite the
limited information provided by the remote system, it aids
clinicians in identifying abnormalities and making targeted
inquiries.

Figure 9. The system interface with information timeline and the reasoning footage for clinicians to review (translated version).
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Discussion

Principal Findings
In this study, we introduced an EHR-oriented knowledge graph
system designed for use in a medical information-sensitive
environment. The proposed framework enables knowledge
graph systems to collaborate on clinical evidence across multiple
hospitals, facilitating comprehensive CDS without the need for
model aggregation. Several studies have highlighted the
significance of addressing data fragmentation in clinical
decision-making for improving health care outcomes [19,48].
Our proposed pilot framework was designed to address this
issue and was implemented in a real-world application scenario.
The application demonstrated that the system could identify
chronic disease risks using multicenter fragmented information,
a capability that single-hospital reasoning alone cannot achieve.

As an enhancement to our previous study, we introduced a
collaborative reasoning framework to the system. This
framework adopts a decentralized design, eliminating the need
for a coordination center and offering flexibility for
implementation across hospitals [49]. The knowledge graph
within the hospital is a fully functional system equipped with
data transformation and semantic reasoning capabilities,
enabling local reasoning and CDS. The distribution component
and blockchain facilitate the participation of the local system
in collaborative reasoning. The local knowledge graph is
responsible solely for handling reasoning on local triples, while
the distribution component manages the collaboration of the
multicenter reasoning process.

The application study on warning unconsidered patients with
CKD underscored the clinical value of the proposed system.
Fragmented EHR data of a patient present challenges for
clinicians in obtaining a comprehensive view of multicenter
evidence, potentially resulting in delayed or missed diagnoses
[8,9]. The proposed systems were capable of identifying
overlooked CKD in advance, particularly benefiting
nonnephrology clinicians who might overlook patients’ renal
risks. The results of the application study indicated that the
proposed system could (1) counter delayed or missed diagnoses,
(2) potentially reduce redundant tests, and (3) provide complete
information for clinicians to review.

During the application study, 69 patients were identified as
meeting the CKD diagnostic criteria. Furthermore, clinician
assessment revealed that 80% (32/40) of the evaluated patients
exhibited positive CKD symptoms and test results. This suggests
that a significant number of patients could benefit from the
multicenter EHR knowledge graph system for timely CDS,
thereby facilitating prompt treatment and enhancing health care
quality. Conversely, another group of patients highlights the
challenge posed by the information gap between hospitals. The
system identified 55 patients with overlooked CKD during
previous hospital visits. These patients either remained
undiagnosed during subsequent visits to another hospital or
received diagnoses much later. Patient transfers between
hospitals often result in an information gap. The proposed
system has the capability to transmit information between

hospitals, alerting clinicians to risks and offering CDS during
the initial visit after transfer.

The discovery lead time revealed that patients with overlooked
CKD were neglected for an extended period. This underscores
the detrimental effects of EHR data fragmentation across
institutions. Valuable disease information remains obscured
and underutilized due to fragmentation. Without comprehensive
evidence, clinicians face limitations in identifying
cross-departmental risks, leading to prolonged neglect.
Implementing the proposed system across an extensive network
encompassing medical centers and primary clinics has the
potential to facilitate collaboration and early detection of disease
risks by leveraging valuable information. Improved risk
coverage can also furnish clinicians with a comprehensive
background, enabling them to conduct thorough inquiries and
assessments.

The study’s main concepts revolve around distributed local
reasoning and the collaboration of intermediate reasoning results
to facilitate comprehensive CDS. For an evidence-based
approach, it is crucial to gather complete findings from multiple
centers to elucidate the rationale behind decision support
creation. However, information exchanges do occur during the
collaborative process. The framework implemented 3 major
data security measures: (1) It ensured isolation between
reasoning findings and original data. The intermediate findings
generated by the local reasoning process do not disclose the
source of the data. Remote hospitals only receive analysis results
(eg, abnormal blood potassium and abnormal blood glucose
findings) without information about how these findings were
derived, whether from diagnosis or measurement. (2) The
clinical findings used for cross-hospital collaboration are
high-level concepts carefully chosen by domain experts during
the development of the disease’s local ontology. This selection
aims to minimize the level of detail in the findings and obscure
the relationship between reasoned findings and their original
records. (3) The online subgraph is encrypted during the online
synchronization phase, ensuring that only authorized hospitals
on the network can receive the intermediate findings and
protecting against cyberattacks. During clinical practice,
clinicians also conduct inquiries to gather medical history from
patients. Concerns about information exposure are manageable
through patients’ authorization of medical record usage and the
implementation of proper security measures.

While the application study concentrated on unconsidered CKD
warning, the proposed system can be adapted to other
application domains for various clinical purposes. For instance,
leveraging multicenter information aids in the sensitive and
precise identification of type 2 diabetes, while collaborative
reasoning offers risk warnings for general practitioners, and so
forth. We are committed to further enhancing the proposed
system to ensure its reliability and security in real-world
applications. Implementing a more implicit collaboration method
would foster better system adoption, particularly in
data-sensitive environments.

Limitations
This study has its limitations. When deploying the system across
an extensive network of hospitals and clinics, communication
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efficiency may encounter bottlenecks. Additionally, the network
and computational resource costs may escalate due to patient
alignment and semantic reasoning of numerous subgraphs. To
address these challenges, further systematic design and
application of the Hyperledger method could facilitate the
widespread deployment of the system. Furthermore, the patient
alignment process relies on unique identifiers, which may pose
challenges when unique citizen IDs are absent in the records.
To enhance system adoption, alternative approaches using
nonunique identifiers for similar patient alignment are necessary
[4].

Comparison With Prior Work
In this study, we introduced a framework for knowledge graph
systems to collaborate on multicenter fragmented clinical
evidence to generate comprehensive CDS without sharing
original data. First, our method focuses on collaborating local
reasoning findings rather than original EHR data. By contrast,
existing studies on patient record completion primarily
concentrate on securely sharing EHR data through blockchain
and selective encryption, encountering challenges related to
data privacy and property rights [50,51]. Second, our proposed
framework leverages multicenter fragmented information during
the CDS application phase. Previous studies on using multicenter
EHR data primarily focus on enlarging the model training set
through federated learning to enhance model performance.
However, these methods often fall short in addressing
incomplete patient information from single centers when models
are applied in daily practices [31,32,52]. Third, our proposed

method uses knowledge graphs for explainable CDS and
conducts local reasoning for local clinical findings. Current
multicenter knowledge graph studies predominantly emphasize
federated embedding learning, which trains embedding models
without centralizing diverse knowledge graphs to ensure data
security [25,26]. However, these methods also encounter
challenges related to data incompleteness during model
application.

To our knowledge, only a few studies have addressed the
collaboration of fragmented medical information during CDS
in practical settings. We introduced a pilot framework and
reported clinical application results demonstrating the value of
using multicenter fragmented information for CDS. This
approach may assist nonnephrology clinicians in identifying
patients with CKD risks in advance.

Conclusions
This study introduced an EHR-oriented knowledge graph system
for collaborative CDS. The research demonstrated that the
system effectively leverages fragmented patient EHR data from
multiple hospitals, enabling the generation of CDS with intact
clinical evidence without the need to share original data, thus
addressing security and privacy concerns. The application study
showcased a valuable scenario of detecting overlooked CKD
using multicenter clinical information. Patients derived benefits
from collaborative CDS for early-stage chronic disease
warnings, all while safeguarding data security, an aspect
unsupported by single-hospital data.
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