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Abstract

Background: Large language models have shown remarkable efficacy in various medical research and clinical applications.
However, their skills in medical image recognition and subsequent report generation or question answering (QA) remain limited.

Objective: We aim to finetune a multimodal, transformer-based model for generating medical reports from slit lamp images
and develop a QA system using Llama2. We term this entire process slit lamp–GPT.

Methods: Our research used a dataset of 25,051 slit lamp images from 3409 participants, paired with their corresponding
physician-created medical reports. We used these data, split into training, validation, and test sets, to finetune the Bootstrapping
Language-Image Pre-training framework toward report generation. The generated text reports and human-posed questions were
then input into Llama2 for subsequent QA. We evaluated performance using qualitative metrics (including BLEU [bilingual
evaluation understudy], CIDEr [consensus-based image description evaluation], ROUGE-L [Recall-Oriented Understudy for
Gisting Evaluation—Longest Common Subsequence], SPICE [Semantic Propositional Image Caption Evaluation], accuracy,
sensitivity, specificity, precision, and F1-score) and the subjective assessments of two experienced ophthalmologists on a 1-3
scale (1 referring to high quality).

Results: We identified 50 conditions related to diseases or postoperative complications through keyword matching in initial
reports. The refined slit lamp–GPT model demonstrated BLEU scores (1-4) of 0.67, 0.66, 0.65, and 0.65, respectively, with a
CIDEr score of 3.24, a ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score of 0.61, and a Semantic Propositional
Image Caption Evaluation score of 0.37. The most frequently identified conditions were cataracts (22.95%), age-related cataracts
(22.03%), and conjunctival concretion (13.13%). Disease classification metrics demonstrated an overall accuracy of 0.82 and an
F1-score of 0.64, with high accuracies (≥0.9) observed for intraocular lens, conjunctivitis, and chronic conjunctivitis, and high
F1-scores (≥0.9) observed for cataract and age-related cataract. For both report generation and QA components, the two evaluating
ophthalmologists reached substantial agreement, with κ scores between 0.71 and 0.84. In assessing 100 generated reports, they
awarded scores of 1.36 for both completeness and correctness; 64% (64/100) were considered “entirely good,” and 93% (93/100)
were “acceptable.” In the evaluation of 300 generated answers to questions, the scores were 1.33 for completeness, 1.14 for
correctness, and 1.15 for possible harm, with 66.3% (199/300) rated as “entirely good” and 91.3% (274/300) as “acceptable.”
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Conclusions: This study introduces the slit lamp–GPT model for report generation and subsequent QA, highlighting the potential
of large language models to assist ophthalmologists and patients.

(J Med Internet Res 2024;26:e54047) doi: 10.2196/54047
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Introduction

The slit lamp, a cornerstone in ophthalmology, allows for
detailed examination of the eye’s anterior segment [1]. Using
an illuminated, narrow beam, this noninvasive method facilitates
the evaluation of abnormalities by depth and size. While
instrumental in diagnosing common eye diseases such as
keratitis, conjunctivitis, conjunctival concretions, and cataracts,
interpreting slit lamp results can be challenging for primary
care physicians due to the need for specialized training. This
can result in overlooked abnormalities or misdiagnosis.
Furthermore, ophthalmologists are tasked with interpreting,
documenting, and effectively communicating these results to
patients, a time and effort-intensive process. The scarcity of
experienced ophthalmologists, particularly in rural areas, further
exacerbates the situation [2].

Artificial intelligence (AI) and large language models (LLMs)
have made significant strides in the medical field, enhancing
the capabilities of health care professionals in interpreting, and
analyzing medical imagery. For instance, AI has been
instrumental in advancing the analysis of x-rays [3], magnetic
resonance images [4], ultrasounds [5], and dermatological
images [6]. Generative pretrained transformers (GPT) models
such as ChatGPT [7] and Llama2 [8], have showcased
remarkable capabilities in problem-solving scenarios across a
spectrum of medical applications. These AI models are
instrumental in streamlining clinical documentation [9], refining
patient communication [10], aiding administrative tasks [11],
enriching textual data [12], and bolstering evidence-based
decision-making [13]. Their versatility extends to comprehensive
patient assessments [14], precise disease diagnostics [15],
informed treatment proposals [16], meticulous medical writing
[17], innovative teaching methodologies [18], and robust
question answering (QA) systems [19], embodying a
multifaceted impact on the health care industry.

Deep learning strategies currently used to transform images into
high-quality features include convolutional neural networks
(CNNs), recurrent neural networks (RNNs), transformer
networks, and their variants such as long short-term memory
(LSTM) and gated recurrent units (GRUs). CNNs are often
combined with other networks such as RNNs to generate text
[20]. RNNs and their variants, recognized for their prowess in

handling sequential data, account for element dependencies
within sequences. Despite their effectiveness, RNNs face
challenges with extended sequences and potential gradient issues
which are mitigated by long short-term memories and GRUs
through a gate mechanism. Transformer networks, proposed in
2017, use self-attention mechanisms to manage long sequences
and parallel computations, thus boasting swift training speed at
the cost of substantial computational resources [21].
Bootstrapping Language-Image Pre-training (BLIP), a hybrid
approach leveraging transformer networks’ architecture and
amalgamating natural language processing and computer vision,
enhances model performance via pretraining. BLIP’s principal
strength lies in its multimodal capacity to concurrently handle
image and text data, allowing it to excel in specific tasks such
as image description generation.

In the specific context of slit lamp imaging augmented with AI,
research has primarily concentrated on individual disease
detection and grading, such as in the case of cataracts [22,23],
pterygium [24], and infectious keratitis [25]. However, there is
a noticeable lack of a unified system that uses slit lamp images
for the generation of systematic anterior segment reports and
QA. While the advent of OpenAI’s GPT-4V offered the
possibility of image-based AI medical dialogue, its direct clinical
application has been limited by inaccuracies and the generation
of unreliable information, which was termed “hallucinations”
[26,27]. Additionally, due to its closed-source nature, there is
a constraint on the fine-tuning ability, which is paramount for
medical applications. In response to this, our study has used
Llama2, an open-source model, to harness the anticipated
benefits of a specialized LLM tool that ensures enhanced control
and reliability in the subsequent QA scenarios. Based on our
experience in ophthalmic QA tasks and LLMs, including fundus
fluorescein angiography and indocyanine green angiography
QA [12,28,29] we aim to extend these methodologies to slit
lamp imaging by developing a novel slit lamp–GPT system,
using BLIP and LLMs specifically tailored for ophthalmology,
with dual objectives: to generate reports and to facilitate QA.

Methods

Overview
The flow of our study is outlined in Figure 1.
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Figure 1. Flow diagram of this study.

Dataset
We collected data from a Chinese physical examination center
for this retrospective study, which included both essential
clinical information and annual slit lamp images. We included
slit lamp photographs with corresponding medical reports,
excluding any of inadequate quality. This study used data
collected from a previous study [30], all participants’
information was deidentified per the Declaration of Helsinki’s
guidelines. All slit lamp images, captured via a Haag-Streit
BQ-900 at a 2048×1536-pixel resolution, included at least 4
images per participant showcasing the pupil, upper eyelid, and
lower eyelid. Initial reports, written by ophthalmologists in
Chinese, contained disease diagnoses, recommendations, or
detailed descriptions of ocular signs. A subset of representative
reports from the dataset was selected for translation into English
to form a bilingual dataset.

Model Construction
Similar to other studies [28,29], we initially trained and tested
the BLIP [28] network for report generation. Subsequently, the
generated reports from the test set were input into Llama2 for
QA validation, further evaluating the quality and practicality
of the reports.

During the report generation phase, we used the BLIP
framework, a multimodal transformer model skilled at aligning

visual interpretation with text generation. The model filtered
out noisy data during training and generated slit lamp reports
from paired images and text inputs. Our design incorporated a
vision transformer [31] and BERT [32] as the image and
language encoder and decoder, respectively. The vision
transformer converts an image into encoded patch sequences,
while BERT, trained on extensive unlabeled text data, enables
deep contextualized representation learning. The pretrained
BLIP model was fine-tuned using slit lamp images and
associated reports, with each case providing at least four images
during training, resized to 224×224 pixels. We applied the
AdamW optimizer (the University of Freiburg), using an initial
learning rate of 0.00002, a weight decay of 0.05, and a cosine
learning rate schedule, across 50 epochs on one NVIDIA Tesla
V100 GPU (NVIDIA Corp). The model with the highest BLEU1
(bilingual evaluation understudy) score (detailed in the
performance evaluation part) on the validation set was selected
for testing.

For the question and answering phase, we created a question
set related to slit lamp examination and reporting based on prior
studies [33] and our clinical expertise. These questions, along
with the corresponding reports, were seamlessly input into the
Llama2 model. This integration allowed for QA without the
need for fine-tuning, while enhancing the interpretation of the
generated reports. The process involved instructing the model
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using a specific prompt: “Answer based on: [slit lamp report
content here].”

Performance Evaluation
We used both language-based and disease classification metrics
for quantitative evaluations of report quality, supplemented by
manual assessments for report generation and QA.

For language-based metrics, we used BLEU [34], CIDEr [35],
ROUGE-L [36]), and Semantic Propositional Image Caption
Evaluation [37], each with its strengths. However, traditional
language metrics may be less dependable for medical conditions
due to the infrequent occurrence of disease-related keywords
in reports. To address this, we introduced a classification
evaluation procedure that used a manually curated dictionary
to identify disease-related conditions or postoperative statuses
from both original and generated reports. Disease classification
metrics, such as specificity, accuracy, precision, sensitivity, and
the F1-score, provided a comprehensive performance review of
the model.

Considering the complexity of medical terminology and the
potential harm of inaccurate reporting, manual assessment
remains crucial. For report generation, 100 test set cases were
randomly selected and independently evaluated by 2
ophthalmologists (ZZ and FS) using a 3-point scale, focusing
on “completeness” (how well the generated reports matched
the ground truth conditions) and “correctness” (the accuracy of
diagnosis and condition descriptions). Scores ranged from 1
(excellent) to 3 (poor), with 2 representing an acceptable rating.
The final score was the average of the scores from the 2
evaluators. For QA, 20 prepared human-posed questions and
the translated report were put into Llama2 to generate answers,
which were evaluated based on “completeness,” “correctness,”
and “possible harm.” Scores ranged from 1 (recommendable to

patients) to 3 (not recommendable for patients), with 2 indicating
that minor adjustments could make the answer suitable for
recommendation. The average score was also used as the final
score. For detailed scoring criteria in these 2 sections, refer to
Table S1 in Multimedia Appendix 1.

Ethical Considerations
This study used data collected from a previous study [30]. All
patient data were anonymized and de-identified following the
Declaration of Helsinki. Individual consent was waived due to
the retrospective nature and the thorough anonymization process
of the study. The Institutional Review Board of the Hong Kong
Polytechnic University approved the study
(HSEARS20240301004).

Results

Data
Our final dataset includes 25,051 slit-lamp images and 3409
reports. Most images (12,496, 49.89%) focus on the cornea,
with 32.74% (n=8202) on the upper eyelid and 17.38% (n=4353)
on the lower eyelid. The median age of participants is 65, with
an IQR of 60 to 72 years, and the majority (2009/3409, 58.93%)
are male. The demographics and image types are similar across
all sets.

The distribution of images across years is as follows: 1257
(5.02%) from 2013, 12,206 (48.72%) from 2015, and 11,588
(46.26%) from 2016. The 2013 and 2015 images form the
training set, while the 2016 images are partitioned evenly into
validation and testing sets. There were no significant differences
in demographic characteristics and positioning type between
these datasets. Table 1 provides a comprehensive overview of
the dataset characteristics.

Table 1. Slit lamp images: dataset characteristics.

P valueTestValidationTrainTotal

Participants

78278118463409Number

<.00171.04 (65.47, 77.03)62.04 (59.58, 65.9)65.31 (60.12, 72.13)65.46 (60.52, 72.47)Age, median (Q1a, Q3b)

.002Sex, n (%)

488 (62.4)420 (53.78)1101 (59.64)2009 (58.93)Male

294 (37.6)361 (46.22)745 (40.36)1400 (41.07)Female

Slit lamp images

5601598713,46325,051Number

.002Position, n (%)

1841 (32.9)2046 (34.2)4315 (32.05)8202 (32.74)Upper eyelid

979 (17.5)951 (15.9)2423 (18)4353 (17.38)Lower eyelid

2781 (49.7)2990 (49.9)6725 (49.95)12,496 (49.89)Cornea

aQ1: first quartile.
bQ3: third quartile.

We used a custom dictionary to extract diagnoses and physical
signs by keyword matching from the Chinese reports. We

identified 50 conditions, including age-related cataracts
(478/2170, 22.03%), cataracts (498/2170, 22.95%), conjunctival
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concretion (285/2170, 13.13%), after intraocular lens
implantation (151/2170, 6.96%), pterygium (144/2170, 6.64%),
conjunctivitis (97/2170, 4.47%), chronic conjunctivitis (93/2170,
4.29%), and other eye conditions with lower proportions. This
led to 1377 Chinese reports primarily featuring diagnostic terms
or descriptions of ocular signs.

Quantitative Model Performance
Language-based metrics are provided in Table 2, with BLEU
(1-4) scores (0.67, 0.66, 0.65, and 0.65) indicating good lexical
accuracy and a ROUGE-L score of 0.61 highlighting effective
content retention. The CIDEr score of 3.24 reflects its ability
to align closely with human judgment on sentence quality, while
a SPICE score of 0.37 demonstrates moderate success in

capturing complex semantic relationships. For disease
classification metrics (see Table 3), our model achieved a
weighted accuracy of 0.82 and a weighted F1-score of 0.64.
However, performance varied across diseases. It was highly
accurate (≥0.9) for conditions of intraocular lens, conjunctivitis,
and chronic conjunctivitis, and had high F1-scores (≥0.9) for
cataracts and age-related cataracts. The model demonstrated
excellent accuracy for positive cases of cataracts and age-related
cataracts. Despite high accuracy, specificity, and precision for
postoperative intraocular lens implantation, sensitivity was
relatively low: a clinically acceptable trade-off. However, for
conjunctival concretions, conjunctivitis, and chronic
conjunctivitis, the model’s overall predictive capacity fell short.

Table 2. Language-based metrics of report generation in the test set (5601 images from 782 participants).

SPICEdROUGEcCIDErbBLEU_4aBLEU_3aBLEU_2aBLEU_1a

0.370.613.240.650.650.660.67

aBLEU: bilingual evaluation understudy.
bCIDEr: consensus-based image description evaluation.
cROUGE: Recall-Oriented Understudy for Gisting Evaluation.
dSPICE: Semantic Propositional Image Caption Evaluation.

Table 3. Disease classification metrics of report generation in the test set.

F1-scoreSensitivityPrecisionAccuracySpecificityCondition

0.840.80.90.790.6Age-related cataract

0.840.790.90.780.58Cataract

0.640.480.960.940.93After intraocular lens implantation

0.40.440.370.70.83Conjunctival concretion

0.20.150.340.90.92Chronic conjunctivitis

0.20.140.340.90.92Conjunctivitis

Qualitative Model Performance

Overview
The score distribution is depicted in Figure S1 in Multimedia
Appendix 2.

Report Generation
Two ophthalmologists scored the model highly for completeness
(mean 1.36, SD 0.61, κ=0.84) and correctness (mean 1.36, SD
0.59, κ=0.72). Reports that received a score of 1 for both
completeness and correctness were defined as entirely good and
constituted 64% (64/100) of the evaluated reports. Reports that
scored either 1 or 2 by both reviewers for both completeness
and correctness were deemed acceptable, representing 93%
(93/100) of the reports. These scores primarily corresponded to
reports detailing specific conditions such as cataracts,
age-related cataracts, and negative findings. However, 7%
(7/100) of reports scored a 3, indicating deficiencies.

We discovered that lower scores were linked to issues such as
limited sample sizes for specific diseases, difficulties in clearly
identifying lesions, and challenges in interpreting diseases or
signs from images due to the unique aspects of slit lamp

photography. These complications were common in conditions
such as xanthomas, trichiasis, after-glaucoma surgery,
lagophthalmos, and some small conjunctival concretions.
Additionally, images not focused on the cornea made it difficult
to detect corneal lesions.

Through our hands-on evaluation, we noticed that the model
sometimes added diagnoses that were not in the original reports
but were still acceptable based on the images. For example, it
sometimes diagnosed mild cataracts even when the images did
not show apparent lens abnormalities. We considered these
decisions acceptable when considering the challenge faced by
an ophthalmologist in making a precise distinction based solely
on images.

About QA
Our constructed questionnaires included 20 items, addressing
a breadth of topics such as diagnosis, pathologic localization,
severity grading, visual impairment, prognosis, associated
complications, therapeutic recommendations, suggested further
examinations, preventive advice, and scientific education
pertinent to slit lamp examination (Table S2 in Multimedia
Appendix 1).
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We selectively curated 15 representative English reports on
conditions including cataracts, conjunctival concretions,
conjunctivitis, postintraocular lens implantation, and pterygium,
as well as their mixed states. Each report contributed 20
questions, culminating in a total of 300 questions.

Our model scored well on completeness (1.33, κ=0.84),
correctness (1.14, κ=0.71), and possible harm (1.15, κ=0.82).
Similarly, QA responses that scored a 1 in completeness,
correctness, and possible harm were defined as entirely good,
representing 66.3% (199/300) of the QA responses. Responses
scoring either 1 or 2 across these categories were considered
acceptable, comprising 91.3% (274/300). Less than 9% (26/300)
of the 300 questions scored a 3 in any category. These were

typically related to reports focusing more on physical signs than
diagnoses or conditions and statements about binocular
intraocular lenses. Figure S2 in Multimedia Appendix 3 provides
examples of generated answers with different scores.

Discussion

Principal Findings
Our study introduces a novel method for analyzing slit lamp
images through the integration of a multimodal transformer
with an LLM. This approach has enabled the accurate
identification of common anterior segment eye diseases and
supports a QA system that directly addresses symptoms,
diagnosis, and treatment options, as illustrated in Figure 2.

Figure 2. Demonstration of the question-answering system. (A) Input image, ground truth, and model prediction. (B) Question answering. Blue highlight:
corresponds to accurate diagnosis matches. Yellow highlight: supplementary predicted information (not in the manual report but correct).

LLMs represent a breakthrough in AI with large knowledge
bases and strong logical reasoning abilities. They have exhibited
efficacy across various natural language processing tasks,

including text generation, summarization, translation, and QA.
However, in the medical realm, the quality of these answers
warrants further scrutiny. Previous research has shown mixed
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results for the ability of LLMs to pass ophthalmology
examinations. The study of Kung et al [38] indicates that
ChatGPT can pass the United States Medical Licensing
Examination without any specialized training or reinforcement.
However, Thirunavukarasu’s [39] attempt to assess ChatGPT’s
proficiency in the FRCOphth (Fellowship of the Royal College
of Ophthalmologists) examination showed subpar performance,
thereby underscoring the inability of LLMs to replace physicians
in highly specialized fields. Conversely, in advising patients
about symptoms or ongoing conditions—tasks less demanding
of expertise—ChatGPT seems to demonstrate competence.
Many patients turn to the internet for self-diagnosis before
consulting a health care professional [40]. The use of LLMs for
medical consultations can increase patient independence and
potentially aid in accurate diagnosis. The release of GPT4V
represents an innovative leap in the realm of LLM integration
with computer vision, with promising prospects for extensive
application in the medical field. Wu et al [26] assessed images
from eight modalities across 17 human body systems and
concluded that while GPT4V excels at identifying image
modalities and anatomical structures, it encounters significant
challenges in disease diagnosis and comprehensive report
generation. In another study, we used a similar 1-3 evaluation
scale to assess GPT4V’s performance on ophthalmology-related
tasks, including image interpretation and QA [27]. The model
performed best in analyzing slit lamp images; however, it only
reached 42% (42/100) in accuracy, 38.5% (34.7/90) in usability,
and 68.5% (61.7/90) in safety of the responses. These results
are significantly lower than the “entirely good” rates we reported
previously—64% (64/100) for report generation and 66.3%
(199/300) for QA. This discrepancy underscores the need for
models tailored to ophthalmology to ensure high-quality
outcomes. To address this gap, we implemented an experimental
model, slit lamp–GPT, harnessing the BLIP and Llama2
frameworks. This initiative represents merely the first step in a
broader journey toward refining AI applications in
ophthalmology.

The model demonstrated proficiency in identifying and reporting
common anterior segment eye diseases within our dataset.
However, its performance on rare conditions highlighted a
critical area for improvement, suggesting that its effectiveness
is closely tied to the diversity and representation of conditions
in the training data. Per report generation, suboptimal
performance was linked to specific diseases such as trichiasis,
postglaucoma surgery complications, and corneal pathologies.
Given our dataset’s origin in routine health examination data,
these conditions were underrepresented, likely contributing to
the poor performance. Another hypothesis considers the dynamic
nature of slit lamp examinations in clinical settings, where
ophthalmologists manually focus to obtain the best diagnostic
view, a process not fully captured by static images. Instances
of misdiagnosed keratitis, where images did not focus precisely
on the cornea, support this assumption. Integrating our model
with a broader spectrum of ophthalmic imaging
techniques—such as indocyanine green angiography, fundus
fluorescein angiography, ocular ultrasound, optical coherence
tomography, and fundus photography—may enhance diagnostic
alignment with actual clinical observations and further improve
overall performance.

The current results suggest potential applicability in cataract
screening, particularly in regions with a shortage of
ophthalmologists. Previous studies have primarily focused on
applying deep learning to the diagnosis and grading of cataracts,
fundamentally using classification models. In contrast, our
model is a natural language processing system capable of
generating free-text reports. It not only provides descriptive
insights but also achieves cataract classification accuracy similar
to existing models [41,42]. Beyond this, our model could
function as an educational tool for patients. In bustling eye
clinics, patients may lack sufficient time to fully comprehend
their examination reports and medical conditions. As
demonstrated in this study, the slit lamp–GPT can provide
patients with basic clinical explanations and recommendations
concerning causes, abnormalities, treatment, and follow-up,
indicating its potential to reduce medical consultation
expenditure and bolster the use of remote health care services.

The manual evaluation suggests that slit lamp–GPT exhibits a
promising capacity to assist participants with minimal risk.
During the QA stage, 89.3% (268/300) of the responses were
deemed completely harmless, surpassing the performance of
GPT4V. However, the potential risks of using LLMs are yet to
be thoroughly understood. A common problem with LLMs is
that they sometimes generate inaccuracies and false statements,
which are often referred to as “hallucinations” in the field [43].
These incorrect assertions can appear to be true, which could
harm patients. This was reflected in our study, where the model
sometimes created content. For example, the Llama2 model
wrongly identified a binocular intraocular lens as a disease
instead of a postoperative condition, creating the nonexistent
“binocular intraocular lens syndrome.” This led to poor scores
on the related 20 questions, highlighting the need for specialized
fine-tuned LLM and knowledge-based generation [44].
Nonetheless, it is important to recognize that LLMs should serve
as adjuncts or supplements in the clinical diagnosis and
treatment process, not as fully trusted entities devoid of
physician oversight. As LLM technology evolves, it is
incumbent on stakeholders to collaboratively establish best
practice standards to ensure patient safety.

Limitations
This study has a few limitations. First, the dataset used is
skewed, coming mainly from routine health checks of healthy
people. The small sample size for certain diseases might affect
the effectiveness of classification. Using datasets from
high-quality outpatient clinics could lead to better results.
Second, as with other language models, our model sometimes
produces repetitive text, and the accuracy of the responses it
generates can be inconsistent. At times, the model’s answers
show logical errors. For instance, it diagnosed both a
postintraocular lens implantation status and a senile cataract in
the same eye. These issues might be addressed by incorporating
expert knowledge and fine-tuning LLMs. There are also notable
concerns about bias, as a single mistake in report generation
can lead to multiple errors during the question-and-answer
process. This highlights the need for further improvements to
increase the accuracy and completeness of report generation.
Lastly, creating a standardized manual evaluation process for
these types of models is challenging [45,46]. This study was

J Med Internet Res 2024 | vol. 26 | e54047 | p. 7https://www.jmir.org/2024/1/e54047
(page number not for citation purposes)

Zhao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


limited to slit lamp anterior segment images, indicating a need
for future research to include diverse datasets. This will help
evaluate the model’s applicability across various types of
imaging.

Conclusion
This research underscores the effectiveness and potential of
using LLMs for slit lamp image report generation and QA tasks,
showcasing their viability in ophthalmic medical image analysis.
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