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Abstract

Background: To cope with the enormous burdens placed on health care systems around the world, from the strains and stresses
caused by longer life expectancy to the large-scale emergency relief actions required by pandemics like COVID-19, many health
care companies have been using artificial intelligence (AI) to adapt their services. Nevertheless, conceptual insights into how AI
has been transforming the health care sector are still few and far between. This study aims to provide an overarching structure
with which to classify the various real-world phenomena. A clear and comprehensive taxonomy will provide consensus on
AI-based health care service offerings and sharpen the view of their adoption in the health care sector.

Objective: The goal of this study is to identify the design characteristics of AI-based health care services.

Methods: We propose a multilayered taxonomy created in accordance with an established method of taxonomy development.
In doing so, we applied 268 AI-based health care services, conducted a structured literature review, and then evaluated the resulting
taxonomy. Finally, we performed a cluster analysis to identify the archetypes of AI-based health care services.

Results: We identified 4 critical perspectives: agents, data, AI, and health impact. Furthermore, a cluster analysis yielded 13
archetypes that demonstrate our taxonomy’s applicability.

Conclusions: This contribution to conceptual knowledge of AI-based health care services enables researchers as well as
practitioners to analyze such services and improve their theory-led design.

(J Med Internet Res 2024;26:e53986) doi: 10.2196/53986
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Introduction

We are entering a new health era—an era of digital health
defined by innovative medical solutions and an explosion of
health-related data [1]. Fueled by these amounts of data,
forecasts indicate that artificial intelligence (AI) will soon
exceed today’s capabilities in supporting and transforming
health care systems [2-4]. There is reason to believe that AI will

improve health care at various stages, ranging from disease
detection to treatment [5], so much so that it promises to
facilitate a new generation of health care services [6]. The
proliferation of AI promises to be a panacea for our era’s
multiple health care issues, including the ongoing fight against
the COVID-19 pandemic (eg, studies by Chung et al [7] and
Krämer et al [8]), the long-term health complaints of an aging
population (eg, study by Velazquez et al [9]), and the
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ever-increasing rates of chronic diseases (eg, study by Sekandi
et al [10]). It is unlikely that AI will live up to its hype of being
a miracle cure for all health care–related problems, as its
implementation is not without hurdles. Especially, privacy
concerns due to the sensitive nature of health-related data and
ethical considerations like the risk of biased algorithms leading
to unequal health care outcomes pose significant challenges and
require careful navigation.

Nevertheless, it has the significant potential of not only
disrupting old and dysfunctional services but also providing
new means of managing and perhaps resolving various health
care challenges [2,11,12]. Already, the increasing reliance on
AI is changing the nature of health care services. Indeed, AI is
joining the established actors in health care services [13] and
transforming the ways in which physical, mental, or social
well-being is maintained or restored [14]. When we speak of
AI in this context, it serves as an umbrella term for a broad set
of algorithms [15-17] that use data to perform cognitive
functions previously limited to humans [18,19].

Health care companies have included AI in their service
provisions, which has led to ever-increasing investments in the
development of AI-based health care services [20]. Likewise,
the number of published research papers debating the role of
AI in health care has gone up significantly, and it has done so
in a broad range of disciplines. Despite this multilateral
fascination with AI-based health care services, however, there
is a notable and rather lamentable lack of conceptual insights
into the design characteristics of AI-based health care services,
which is why there is still no clear understanding of its general
properties and potential.

To date, research has mainly focused on investigating the
potential of individual AI applications in the health care sector
[12,21-23]. Yet to be derived from these, however, is an
overarching structure with which to classify the various
real-world phenomena. In the absence of a clear and
comprehensive taxonomy, there has been no consensus on
AI-based health care service offerings, what they have in
common, and how they differ. This lack of a shared
understanding of AI services limits any further analysis of how
AI may affect the health care sector, which in turn limits the
ability of researchers to stay abreast of the life-changing and,
indeed, life-saving developments in this domain [5,17]. Thus,
this study sets out to answer the following research question:
What are the design characteristics of AI-based health care
services?

To answer this, we propose a multilayered taxonomy created
in accordance with both the well-established method of
taxonomy development by Nickerson et al [24] and the recent
extension by Kundisch et al [25]. By exploring both
empirical-to-conceptual (E2C) and conceptual-to-empirical
(C2E) iterations, we pursued a bilateral development for the
structure of our taxonomy, deductively from real-world
examples and inductively from a structured literature review.
Through 4 iterations, we identified 10 key dimensions and their
respective characteristics, all of which we structured into 4
perspectives: agents, data, AI, and health impact. We also
performed a thorough review of the current literature,

particularly the 28 most relevant studies, and considered their
insights with regard to 268 AI-based health care services. We
then conducted a careful evaluation of our taxonomy, as
proposed by Kundisch et al [25].

The taxonomy and the archetypes of AI-based health care
services are of theoretical as well as practical value. With regard
to the former, this study can provide a helpful frame of reference
for the emerging field of digital transformation in health care
by outlining and structuring the general features of AI-based
health care services. With regard to the latter, our taxonomy
makes it possible to map the field of AI-based health care
services, assess their possibilities in a competitive field, and
offer guidance to health care entrepreneurs.

Methods

Overview
To identify the defining features of AI-based health care services
as well as their corresponding archetypes, we formulated a
bilateral methodological approach to develop our taxonomy in
accordance with both the guidelines of Nickerson et al [24] and
their extension by Kundisch et al [25]. In doing so, we achieved
our dual aim of creating a versatile set of tools for the analysis
of both conceptual and empirical observations. Taxonomies
comprise various layers, which in turn include multiple
dimensions, which can again contain diverse characteristics
[24]. They are frequently used (eg, Fischer et al [26] and Gimpel
et al [27] to show how different concepts are connected or to
investigate their relationships [28].

Defining Preliminary Conditions
As proposed by Kundisch et al [25], we began our taxonomy
development by specifying the central phenomenon under
investigation, that is, AI-based health care services. To pay due
attention to all of their various design characteristics as well as
those of our 2 target groups—researchers examining the field
of AI-based health care services and practitioners in the health
care sector who are already integrating or aim to integrate AI
in their service offerings—we define the meta-characteristic
[24], that is, the design characteristics of AI-based health care
services.

In line with the best practices of Nickerson et al [24], we then
define our objective and subjective ending conditions, both of
which are checked after each iteration to assess whether the
taxonomy development process is completed [24]. Nickerson
et al [24] identified a set of ending conditions that can be applied
or adapted to the taxonomy development process, four of which
we selected for this study: (1) all objects of our dataset have
been examined, (2) no new dimension or characteristics were
added in the last iteration, (3) every dimension is unique and
not repeated, and (4) at least one object from our dataset is
classified as having every characteristic of every dimension
[24]. Furthermore, we concur with Nickerson et al [24] regarding
the subjective ending conditions in that the taxonomy should
be concise, robust, comprehensive, extendible, and explanatory
[24].
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Taxonomy Development Process
Our taxonomy development process consists of 4 iterations.
Nickerson et al [24] propose 2 development approaches to this
development. First, inductive, which is to say E2C, and second,
deductive, which is to say C2E [24]. These 2 approaches are to

be executed consecutively in several iterations. Table 1 depicts
details on this taxonomy development process, including the
development approach chosen for each iteration, the objects in
question, the significant changes, and the evaluation of the
ending conditions.

Table 1. Details of the iterative taxonomy development process.

Ending conditionsMajor changesObjectsAppaIteration

Objective and subjective ending conditions not met:Identification of 3 perspectives with
10 dimensions and 35 characteristics
in total

25 AIc-based
health care ser-
vices randomly
chosen from our
sample

E2Cb1

• not all objects were examined
• not robust because it is not grounded in theory, and not

concise because of the many dimensions

Objective and subjective ending conditions not met:Addition of 1 perspective with 2 new
dimensions and 5 new characteristics;
reordering of the dimensions to match
the perspectives

19 papers from a
structured litera-
ture review

C2Ed2

• not all objects were examined
• not all dimensions are unique
• not concise due to the many dimensions

Objective ending conditions not met:Abandonment of 1 dimension; replace-
ment of 2 dimensions due to signifi-
cant overlap; modification of multiple
characteristics

25 AI-based
health care ser-
vices randomly
chosen from our
sample

E2C3

• not all objects were examined

All ending conditions were met:No further modificationThe remaining
sample of 218
AI-based health
care services

E2C4

• objective ending conditions (1)-(4) are met
• the authors have achieved consensus and agree that the

subjective ending conditions are met

aApp: development approach.
bE2C: empirical-to-conceptual.
cAI: artificial intelligence.
dC2E: conceptual-to-empirical.

In our first iteration, we chose an E2C approach since this is
generally agreed to be the best practice when a significant
amount of data can be used to examine a specific research field.
To collect the necessary empirical data when making our
selection of AI-based health care services, we followed a similar
approach to that of Labes et al [29] and Fischer et al [26]. In
doing so, we were aware of the challenge of keeping up with
the fast-changing field of AI in health care, which is why we
identified so-called “top lists” that consolidate the most
promising AI companies in health care. After compiling an
initial list with the help of several internet search engines, using
terms such as “top AI health care companies,” “ranking AI
companies in health care,” and “top list health care and AI,” we
synthesized our results into a single integrated list of AI-based
health care services derived from 6 data sources. Our sample
only included services that describe an activity involving at
least 2 entities with different roles, for example, a patient and

a health care professional, where both use their resources, be it
information or technology [30], in a collaborative process that
serves their mutual benefit. Furthermore, it was not our aim to
compile a complete list of all existing health care start-ups that
use AI in their portfolio. Instead, we wanted to collect a sample
that was as representative and generalizable as possible to serve
as a basis for the taxonomy development. For this reason, we
used 6 different top lists as a data source, which are based on
various evaluation criteria such as growth, funding, and global
impact. Furthermore, we use top lists from the years 2020 and
2023 to also cover a temporal variance. This ensures that our
sample reflects sufficient variance and can be considered
representative. The final list comprised 268 AI-based health
care services. Distinct subsamples were used in iterations 1, 3,
and 4. Tables 2 and 3 illustrate the data sources as well as
exemplary services.
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Table 2. Empirical-to-conceptual data used for our taxonomy development.

Exemplary firms (services)Considered top lists

Bioformis (Biovitals); Karius (Karius-Bloodtest); Viz.ai (Stroke Monitoring)Forbes [31]

Babylon Health (Ask Babylon, Healthcheck); Suki (Digital Assistant; Speech Service)Medical startups [32]

Roam Analytics (Roam Health Knowledge Graph); Sopris Health (Sopris Assistant); Artelus (DRISTi, Hansanet)Startus [33]

Mindstrong (Mindstrong Service); Freenome (Cancer detection); PathAI (Imaging Service)CBInsights [34]

Arterys (Cardio AI, Lung AI) Caption Health (Caption AI); Corti (Audia)QWayHealth [35]

Google Deepmind (Eye Disease Scan); Oncora Medical (Patient Care, Analytics); CloudMedX (AskSophie;
Decision Point)

Medical futurist [36]

268Total services, n

Table 3. Conceptual-to-empirical data used for our taxonomy development.

DetailsActivity

(“artificial intelligence” OR “AI” OR “machine learning” OR “deep learning”) AND (“healthcare” OR “health care”
OR “clinical” OR “medicine”) AND (“service” OR “application”)

Search string

Web of Science; forward and backward searchDatabases sources

20 papers found in the initial search; 8 papers found in the forward and backward searches [37]Results

Agrawal et al [15]; Ågerfalk [17]; Reis et al [23]; Fischer et al [26]; Gimpel et al [27]; Bao et al [37]; Baars and Kemper
[38]; Bardhan et al [39]; Brynjolfsson and Mitchell [40]; Chang [41]; Hansen and Baroody [42]; Hofmann et al [43];
Hunke et al [44]; Iansiti and Lakhani [45]; Mantzana et al [46]; Reddy et al [47]; Schuetz and Venkatesh [48]; Tan et
al [49]; Thompson et al [50]; Wani et al [51]; Weglarz [52]; Antoniadi et al [53]; Shamshirband et al [54]; Ali et al
[55]; Qadri et al [56]; Karatas et al [57]; Shatte et al [58]; Bindra and Jain [59]

Papers found

28Total papers, n

In the first iteration, we analyzed a random sample of 25
AI-based health care services to derive relevant dimensions and
characteristics. In the second iteration, we followed a C2E
approach informed by the insights of a structured literature
review [60]; Tables 2 and 3 contain the details. With this 2D
approach to data collection from practical and academic data
sources, we were able to account for the multiple developments
in the rapidly expanding field of AI-based health care services.
To broaden our understanding accordingly and heed the lessons
learned from the research already conducted, we performed a
literature review on the Web of Science. We used an iterative
search process for the literature review. Initially, we had a very
narrow search string to gain an initial understanding of the topic,
which we later expanded again to ensure a more comprehensive
literature review. For the final search, we limited our search to
papers published between 2015 and 2023 in the English
language and excluded book chapters or proceeding papers. By
using the exact search string “(“artificial intelligence” OR “AI”
OR “machine learning” OR “deep learning”) AND (“healthcare”
OR “health care” OR “clinical” OR “medicine”) AND (“service”
OR “application”),” we were able to exclude any literature
irrelevant to our study. This left us with 9318 relevant results.
Furthermore, 2 members of the research team (MB and PK)
then analyzed the title and abstract of each paper. After that, all
those who did not directly address the topic under investigation
were excluded. Since reliability was a guiding principle of this
process, the team screened and classified a random sample of
30 papers in close collaboration. After that, 30 papers were
screened independently, and their classifications were compared
to certify the analytical adequacy. All subsequent papers were
screened individually by one of the team members. Speaking

in numbers, this meant that from the initial set of 9318 papers,
276 had their full text analyzed, and 20 of these were considered
for our taxonomy. In addition, 8 papers were included through
forward and backward searches, which brought the total to 28
papers.

For the third and fourth iterations, we again followed the E2C
approach with 25 randomly selected AI-based health care
services and 218 remaining from our initial sample. After the
fourth iteration, the team agreed that the objective and subjective
ending conditions were all met.

Demonstration and Evaluation Process
As Kundisch et al [25] pointed out, a rigorous demonstration
and evaluation of a newly developed taxonomy require a 2-step
approach. In the first step, 13 researchers with a domain-specific
background in AI or health care, or indeed both, classified
multiple real-world services by using our taxonomy. These
demographics were selected because they constitute the intended
future users of our taxonomy. We measured the agreement
among the individual classifications by means of the percentage
agreement and Fleiss κ [61]. The latter was chosen by virtue of
the fact that it can be used to determine the degree of agreement
between the assessments of more than 2 raters, which is to say
that it works as an extension to Cohen κ [62], provided that the
number of raters per assessed unit remains constant (described
in detail in “Taxonomy Evaluation” in Multimedia Appendix
1). The unweighted κ [61] is determined, that is, each nonmatch

is weighted equally. The calculation of κ [61] ( ) results
from the calculation of the relative agreement of the raters
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( ) and the calculation of the

probability of random agreement ( ).

n describes the number of raters (n=13), N is the number of
considered service offerings per rater, and k is the number of
possible evaluation categories. Aside from being a
well-established procedure to evaluate all manner of taxonomies,
it allowed us to ensure that classifications made with our
taxonomy are not too susceptible to personal bias [27,63].

In the second step, we classified all available services to learn
more about the occurrence rate of each characteristic in our
dataset. This was followed by cluster analysis, a statistical
method of similarity analysis performed to identify groups of
similar objects, so-called clusters, within a dataset [64-66]. The
matching objects are grouped in such a way as to achieve high
homogeneity within clusters and high heterogeneity between
clusters [67]. In our case, this cluster analysis allowed us to
identify archetypes of AI-based health care services by
observing the three necessary specifications: (1) a proximity
measure to calculate similarities or distances between objects,
(2) a clustering method with underlying grouping methods or
fusion algorithms, and (3) the order in which the clusters are
split or merged. It is worth noting, however, that the choice of
the clustering procedure is closely related to the question of the
optimal number of clusters. To determine an appropriate number
of clusters for AI-based health care services, we calculated
several measures discussed in the literature (described in detail
in “Clustering” in Multimedia Appendix 1). For the various
numbers of clusters, each analysis is performed with an
agglomerative hierarchical method that creates a corresponding
cluster solution for any number of clusters between 1 and n,
where n provides the number of services considered in the
sample [68,69]. To this end, we chose the Ward algorithm [70]
as our clustering algorithm and used the Manhattan distance as
our distance measure, seeing as the latter can be applied to
nominally scaled data and has proven to perform well in
connection with the Ward algorithm [70,71]. To ensure the
correct application of the distance measure, we first
dichotomized and then standardized the underlying data by
accounting for the number of characteristics per dimension, thus
also ensuring that all dimensions are equally weighted.

Ethical Considerations
This study did not require approval from an ethics review board,
as it does not constitute human participants research. In
accordance with the guidelines of the University of Hohenheim,
ethical review is mandated only for research involving human
participants, biological samples, or identifiable personal data.
The focus of this study was on identifying the design
characteristics of AI-based health care services, relying primarily
on a review of existing literature and analysis of established
AI-based health care services. Data from individuals were
collected solely for the purpose of evaluating the proposed
taxonomy, and as such, the study does not meet the criteria for
human participants research as defined by the relevant policies
of the University of Hohenheim (Satzung der Ethikkommission
der Universität Hohenheim).

Results

A Taxonomy of AI-Based Health Care Services

Overview
Following the guidelines of Nickerson et al [24], we developed
the taxonomy of AI-based health care services shown in Table
4. The taxonomy is predicated on the 4 perspectives of agents,
data, AI, and health impact, and it comprises 10 essential
dimensions structured in accordance with these 4 perspectives.
However, whereas Nickerson et al [24] suggest that one should
design all characteristics as mutually exclusive in order for a
single characteristic to be observed per dimension at any one
time [24], we instead decided to adhere to the design principles
of common taxonomies [26,27,44]. Nonexclusive dimensions
could be replaced with binary dimensions for each characteristic.
However, this would drastically increase the size of the
taxonomy and, thus, impair conciseness, which is why we
decided to include nonexclusive dimensions. As a result, we
are able to reflect on the complexity of AI-based services more
appropriately while keeping the taxonomy parsimonious.
Whether or not a dimension is mutually exclusive is also
indicated in Table 4, where we introduce the dimensions and
characteristics in detail.
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Table 4. Taxonomy of AIa-based health care services.

Eb or NcCharacteristicPerspective and dimension

Agents

NService recipient • Patient
• Health care professional

EMode of interaction • AI-driven
• Recipient-driven

Data

NData generator • Patient
• Health care professional
• Object

NData target • Patient
• Health care professional
• Environment

NData type • Structured
• Unstructured

AI

EHardware agnostic • Yes
• No

EAI portfolio integration • Wrapped around product
• Wrapped around service
• Stand-alone solution

NAI capability • Recognizing
• Reasoning
• Predicting
• Decision-making
• Generating
• Acting

Health impact

NApplication area • Prevention
• Diagnostics
• Treatment and care
• Patient enablement

NHealth benefit • Triage
• Physical
• Mental
• Social

aAI: artificial intelligence.
bE: mutually exclusive.
cN: mutually nonexclusive.

Agents Perspective
In this perspective, one looks at the entities involved in the
provision of a service and the ways in which they interact during
this service provision [46,71]. Therefore, this perspective has
2 dimensions, that is, the service recipient and the mode of
interaction. The service recipient is the primary beneficiary of
the service. Even though most health services ultimately aim
to improve or maintain the health of patients, this category refers
to the direct recipient of a given service [37]. Health care

services can have various stakeholders [49], but during the
development process of this study, we learned from our
empirical iterations that only 2 potential entities profit directly
from AI-based health care services, that is, the patient and the
health care professional. How these entities are involved in the
service communication and who triggers the information
exchange is determined in the dimension mode of interaction.
The interaction can be either AI-driven, meaning the service
itself actively initiates interaction and requests information, or
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recipient-driven, meaning the exchange of information is
triggered by the service user [27].

Data Perspective
In this perspective, one examines the data that are generated
during a service. This perspective, then, is predicated on the
foundation of the underlying AI algorithm. It comprises 3
dimensions: the data generator, the data target, and the data
type. As Hunke et al [44] noted, analytics-based services are
characterized by a data generator and a data target. A data
generator describes the entity that actively generates the data,
while the data target describes the source from which the data
emerges [44]. Since this also applies to our topic of
investigation, we incorporated these 2 dimensions into our
taxonomy once we made the necessary adaptations to the new
context of our study. For AI-based health care services, data
can be generated either by the patient, the health care
professional, or an object involved in the service (eg, a
diagnostic device). These data contain information about the
patient, the health care professional, or the patient’s
environment, and it can take the shape of different data types,
being either structured or unstructured [38,52]. Structured data
are characterized by enforced composition to anatomic data
types and can be directly processed, for example, into laboratory
values in electronic health records [42]. In contrast, unstructured
data have neither a structured format nor a conceptual definition,
such as image or audio data.

AI Perspective
From this perspective, one can analyze how AI is integrated
into health care services. It comprises 3 dimensions: hardware
agnostic, AI portfolio integration, and applied AI capabilities.
The dimension of hardware agnostic is based on our E2C
iterations. It allows one to ascertain whether or not a service
relies on specific hardware or specific platform resources,
making the AI-based service either device-independent (“yes”)
or device-dependent (“no”). AI portfolio integration indicates
whether the AI is integrated into a new stand-alone solution,
linked to an existing product, or connected to a current service
that has already been provided [44]. The dimension of AI
capabilities refers to the idiosyncratic characteristics of AI
algorithms that enable cognitive tasks formerly performed by
humans [15,17,18,40,43,45,48]. The identified tasks include
recognizing patterns or concepts, reasoning about relationships
among distinct variables, predicting future outcomes or
conditions, deciding between discrete options, generating
something new, or even just acting.

Health Impact Perspective
In this final perspective, one focuses on the delivery of an
AI-based service and its impact on health care [47]. There are
2 dimensions to this: one must identify the exact application
area in the health care sector as well as the health benefit
achieved by the service. After all, the incorporation of AI in the
provision of health care services can impact different application
areas in the health care sector. By fostering healthy lifestyles
or avoiding unhealthy habits, AI-based services can help humans
prevent new diseases. They can also help medical professionals

refine their disease diagnosis and improve their treatment and
care of patients [50]. Furthermore, our empirical investigation
of AI-based health care services has shown that AI techniques
can empower patients or professionals to actively handle a
disease or reduce the adverse impact of a disability. In addition,
this positive impact is scalable to a broad range of health care
domains, where AI-based health care services can leverage
various health benefits. In accordance with the World Health
Organization’s definition of health [14], AI-based health care
services can impact the physical and psychological as well as
the social aspects of health. Indeed, AI techniques can even
refine medical triage to facilitate a more targeted treatment.

Demonstration and Evaluation
To validate the robustness of classifications made with our
taxonomy, we recruited 13 researchers in the fields of AI, health
care, or both. The overall demonstration phase took 3 weeks
and was analyzed by 2 of the authors (MB and PK). We tasked
the 13 researchers to classify 4 service offerings from our dataset
anonymously. In choosing the service offerings for the
application of our taxonomy, we made sure to cover a wide
range of characteristics to provide a holistic evaluation of the
taxonomy. Each service provider supplied the participating
researchers with a brief description of their service along with
a few images to illustrate how it works. As a further quality
control measure, we made sure that there could be no confusion
about the task assigned to the participants by giving them
descriptions of all the dimensions and characteristics that they
would have to consider when using the taxonomy, and we tested
the comprehensibility of the questions as well as the
appropriateness of the supplementary texts in advance. As a
result of these measures, the percentage agreement among all
authors and concerning all dimensions was an excellent 93.4%.
Complementarily, the overall percentage agreement among all
participants was 88% [72]. Fleiss κ is 62%, indicating a
“substantial” agreement among participants [73]. For a detailed
overview of percentage agreement and Fleiss κ across all
individual dimensions, see “Taxonomy Evaluation” in
Multimedia Appendix 1 [61]. It is suffice it to say that we
conclude the taxonomy to be concise, robust, comprehensive,
extendible, and explanatory [24].

In the following phase, we classified all 268 health care services
to reveal the absolute and relative frequencies of all
characteristics. When analyzing the relative frequencies, as
presented in Table 5, some significant observations can be made,
such as the health care professional is a direct recipient in 70%
(n=186) of services, and the service recipient triggers the
exchange of information in 79% (n=211) of services. Also
noteworthy is that 74% (n=198) of data generators are objects,
such as wearable devices. In 95% (254) of services, the primary
data target is the patient, while 70% (n=188) of the data
underlying the service are unstructured. As for the role of AI,
84% (n=223) of services are hardware agnostic, which is to say
that they do not require a specific device to deploy the service.
Also of interest in this context is the statistic that 83% (n=222)
of the services in our sample were offered as a stand-alone
solution.
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Table 5. Absolute and relative frequencies of the characteristics of 268 AIa-based health care services.

Frequency (N=268), nb (%c)CharacteristicPerspective and dimension

Agents

Service recipient •• 96 (36)Patient
•• 186 (70)Health care professional

Mode of interaction •• 56 (21)AI-driven
•• 211 (79)Recipient-driven

Data

Data generator •• 72 (27)Patient
•• 26 (10)Health care professional
•• 198 (74)Object

Data target •• 254 (95)Patient
•• 7 (3)Health care professional
•• 23 (9)Environment

Data type •• 95 (36)Structured
•• 188 (70)Unstructured

AI

Hardware agnostic •• 223 (84)Yes
•• 44 (16)No

AI portfolio integration •• 22 (8)Wrapped around product
•• 23 (9)Wrapped around service
•• 222 (83)Stand-alone solution

AI capability •• 257 (96)Recognizing
•• 34 (13)Reasoning
•• 28 (10)Predicting

• •Decision-making 75 (28)
•• 89 (33)Generating

• •Acting 30 (11)

Health impact

Application area •• 57 (21)Prevention
•• 163 (61)Diagnostics
•• 83 (31)Treatment and care

• •Patient enablement 16 (6)

Health benefit •• 25 (9)Triage
•• 231 (87)Physical
•• 18 (7)Mental

• •Social 4 (1)

aAI: artificial intelligence.
bAbsolute frequency.
cRelative frequency.

A deep dive into AI capabilities revealed that 96% (n=257) of
services can recognize patterns within audio, video, or other
health-related data. At 33% (n=89), the second most frequent
AI capability is to generate something new based on available
input data. Examples are structured consultation protocols based
on sound recordings or descriptions of injuries based on image
files. Approximately 28% (n=75) of observed services include
the AI capability to perform decision-making, for instance, to
decide between multiple treatment alternatives. Another 13%
(n=34) of observed services have the AI capability of reasoning,

which offers the medical professional the significant benefit of
delegating the task of explaining the link between bad habits
and potential diseases. The rarest observed AI capabilities were
acting (n=30, 11%), for example, calling emergency staff for
help, and predicting (n=28, 10%), for example, being able to
tell in advance whether people with specific characteristics will
develop a particular disease. The final statistic of note is that
most of our sample services are used for diagnostics (n=163,
61%). Second in demand (n=83, 31%) is the type of service
used in treatment and care. At 87% (n=231), the vast majority
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of our sample services are used to treat physical illness or injury.
In comparison, 9% (n=25) are used for medical triage. Only a
minority of our sample services use AI to improve mental (n=18,
7%) or social (n=4, 1%) health.

Archetypes and Interpretation
To ensure that our taxonomy can identify separable archetypes
despite its extensive range, we performed the cluster analysis
analogous to Gimpel et al [27], which is to say that we
performed it for each of the identified dimensions separately.
This cluster analysis revealed 13 archetypes of AI-based health
care services that differ in their dominant design characteristics.
We identified 2 archetypes in the agent perspective, 5 archetypes
in the data perspective, 2 archetypes in the AI perspective, and
4 archetypes in the health impact perspective. Table 6 presents
the respective number of services that can be assigned to each
archetype as well as the absolute and relative frequencies of
their characteristics.

First, the agent perspective includes the 2 archetypes,
“AI-initiated” and “recipient-initiated.” Service offerings of the
AI-initiated archetype actively request information from the
user. They are designed for use by both the patient (27/57, 47%)
and the health care professional (35/57, 61%). In contrast, the
recipient-initiated archetype targets the medical professional in
the majority of cases (152/211, 72%).

Second, the data perspective includes 5 archetypes. These
mainly differ from one another in the origin and the type of the
used data. What the archetypes have in common, however, is
that their data are primarily related to the patient. The “structured
object” archetype is characterized by the use of structured data
(100%) that are provided by an object (100%). Almost
one-quarter of services also use the patient (8/44, 18%) or
medical professionals (3/44, 7%) as a source of information. In
contrast, services in the “unstructured object” archetype work
with unstructured data (100%) that is primarily available in
audio or image formats. Occasionally, this data include
information about the patient’s environment (13/145, 9%) but
rarely about the responsible medical personnel (1/145, 1%).
The “structured nonobject” archetype contains structured data
concerning the patient (100%). These data are primarily
provided by the patient (32/34, 94%) and less so by the treating
physician (6/34, 18%). Services of the “unstructured nonobject”
archetype work exclusively with unstructured data (100%).
However, compared to the “structured nonobject” archetype,
they are almost twice as likely (9/28, 32%) to be generated by
the responsible health care professional. As for the

“structured-unstructured” archetype, this one is characterized
by the simultaneous processing of structured and unstructured
data (100%) that are obtained from objects (12/17, 71%), health
care professionals (8/17, 47%), and patients (7/17, 41%).

Third, the AI perspective comprises the 2 archetypes,
“device-dependent” and “device-independent.” The former
includes the majority of services in the sample (222/268, 82.8%)
and operates with generic hardware. Services belonging to this
archetype are primarily offered as stand-alone solutions
(206/222, 93%). The underlying AI can recognize patterns and
other correlations (215/222, 97%), decide between separate
alternatives in approximately one-third of the cases (64/222,
29%), or generate output (79/222, 36%). To a lesser extent, it
is also able to provide reasons for correlations (27/222, 12%),
make predictions (23/222, 10%), and execute actions on its own
(24/222, 11%). Services of the “device-dependent” archetype
require the use of application-specific hardware. If supported
by such hardware, this archetype can recognize contexts in a
similar number of cases (44/46, 96%) as the previous archetype,
but it makes decisions (10/46, 22%) or generates objects (10/46,
36%) in far fewer cases.

Fourth, the health impact perspective comprises 4 archetypes:
“physical,” “diagnostic-physical,” “treatment,” and “triage.”
Health care applications of the “physical” archetype provide
material benefits to the patient (30/40, 75%). These are often
achieved by means of preventive measures (28/40, 70%) or
measures that help the patient to be more independent and
self-determined in everyday life (11/40, 28%). Services of the
“diagnostic-physical” archetype also focus on physical
complaints (100%). In contrast to the previous archetype,
however, they almost exclusively aim at disease diagnosis
(131/132, 99%). Typically, services classified as belonging to
the “treatment” archetype are used after the patient has been
diagnosed (75/76, 99%). Another typical feature of these
services is that they have a physical benefit in as much as 87%
(66/76) of cases and a psychological benefit in as little as 13%
(10/76). As for services of the “triage” archetype, these address
patient referral to the appropriate health care specialist (100%).
Given the comparatively small number of services in our sample
(n=20), the underlying data may not be representative of
real-world services. However, in three-quarters (15/20, 75%)
of the cases, the occurrence of this archetype is closely linked
to the diagnostic process. Other use cases are found mainly in
the prevention (4/20, 20%) and treatment (9/20, 45%) of
previously diagnosed diseases.
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Table 6. Archetypes of 268 AIa-based health care services.

Frequency (N=268), nb (%c)CharacteristicsArchetype and dimension

Agents

AI-initiated (n=57)

Service recipient • 27 (47.4)• Patient
• 35 (61.4)• Health care professional

Mode of interaction • 57 (100)• AI-driven
• 0 (0)• Recipient-driven

Recipient-initiated (n=211)

Service recipient • 69 (32.7)• Patient
• 152 (72)• Health care professional

Mode of interaction • 0 (0)• AI-driven
• 211 (100)• Recipient-driven

Data

Structured object (n=44)

Data generator • 8 (18.2)• Patient
• 3 (6.8)• Health care professional
• 44 (100)• Object

Data target • 42 (95.5)• Patient
• 2 (4.5)• Health care professional
• 1 (2.3)• Environment

Data type • 44 (100)• Structured
• 0 (0)• Unstructured

Unstructured object (n=145)

Data generator • 4 (2.8)• Patient
• 1 (0.7)• Health care professional
• 145 (100)• Object

Data target • 137 (94.5)• Patient
• 3 (2.1)• Health care professional
• 13 (9)• Environment

Data type • 0 (0)• Structured
• 145 (100)• Unstructured

Structured nonobject (n=34)

Data generator • 32 (94.1)• Patient
• 6 (17.6)• Health care professional
• 0 (0)• Object

Data target • 34 (100)• Patient
• 0 (0)• Health care professional
• 5 (14.7)• Environment

Data type • 34 (100)• Structured
• 0 (0)• Unstructured

Unstructured nonobject (n=28)

Data generator • 22 (78.6)• Patient
• 9 (32.1)• Health care professional
• 0 (0)• Object
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Frequency (N=268), nb (%c)CharacteristicsArchetype and dimension

• 26 (92.9)
• 2 (7.1)
• 3 (10.7)

• Patient
• Health care professional
• Environment

Data target

• 0 (0)
• 28 (100)

• Structured
• Unstructured

Data type

Structured-unstructured (n=17)

• 7 (41.2)
• 8 (47.1)
• 12 (70.6)

• Patient
• Health care professional
• Object

Data generator

• 17 (100)
• 0 (0)
• 0 (0)

• Patient
• Health care professional
• Environment

Data target

• 17 (100)
• 17 (100)

• Structured
• Unstructured

Data type

AI

Device-independent (n=222)

• 222 (100)
• 0 (0)

• Yes
• No

Hardware agnostic

• 1 (0.5)
• 15 (6.8)
• 206 (92.8)

• Wrapped around product
• Wrapped around service
• Stand-alone solution

AI portfolio integration

• 215 (96.8)
• 27 (12.2)
• 23 (10.4)
• 64 (28.8)
• 79 (35.6)
• 24 (10.8)

• Recognizing
• Reasoning
• Predicting
• Decision-making
• Generating
• Acting

AI capability

Device-dependent (n=46)

• 0 (0)
• 46 (100)

• Yes
• No

Hardware agnostic

• 9 (19.6)
• 0 (0)
• 37 (80.4)

• Wrapped around product
• Wrapped around service
• Stand-alone solution

AI portfolio integration

• 44 (95.7)
• 6 (13)
• 5 (10.9)
• 10 (21.7)
• 10 (21.7)
• 7 (15.2)

• Recognizing
• Reasoning
• Predicting
• Decision-making
• Generating
• Acting

AI capability

Health Impact

Physical (n=40)
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Frequency (N=268), nb (%c)CharacteristicsArchetype and dimension

• 28 (70)
• 1 (2.5)
• 1 (2.5)
• 11 (27.5)

• Prevention
• Diagnostics
• Treatment and care
• Patient enablement

Application area

• 1 (2.5)
• 30 (75)
• 6 (15)
• 3 (7.5)

• Triage
• Physical
• Mental
• Social

Health benefit

Diagnostic-physical (n=132)

• 18 (13.6)
• 131 (99.2)
• 0 (0)
• 0 (0)

• Prevention
• Diagnostics
• Treatment and care
• Patient enablement

Application area

• 5 (3.8)
• 132 (100)
• 2 (1.5)
• 0 (0)

• Triage
• Physical
• Mental
• Social

Health benefit

Treatment (n=76)

• 5 (6.6)
• 17 (22.4)
• 75 (98.7)
• 2 (2.6)

• Prevention
• Diagnostics
• Treatment and care
• Patient enablement

Application area

• 0 (0)
• 66 (86.8)
• 10 (13.2)
• 1 (1.3)

• Triage
• Physical
• Mental
• Social

Health benefit

Triage (n=20)

• 4 (20)
• 15 (75)
• 9 (45)
• 3 (15)

• Prevention
• Diagnostics
• Treatment and care
• Patient enablement

Application area

• 20 (100)
• 4 (20)
• 0 (0)
• 0 (0)

• Triage
• Physical
• Mental
• Social

Health benefit

aAI: artificial intelligence.
bAbsolute frequency.
cRelative frequency.

In summary, the agent archetypes differ mainly in how and by
whom information is requested. It is worth noting that
approximately 8 (80%) out of 10 services require manual process
initiation, which means they need human interaction. This
reliance on the interaction between humans and AI is also
predicated on the fact that both archetypes are directed at trained
health care professionals in more than half the cases. When it
comes to the “data” perspective, we found the distinguishing
characteristics to be the type of data and the data generator.
Potentially, this can be explained by the fact that all 5 archetypes
focus predominantly on patients as data targets. This is logical
since information about a patient’s complaints, symptoms, or
medical history concerns that patient directly. It is questionable,
however, whether AI-based applications in the health care sector

are still making insufficient use of some of the available data,
for example, environmental information about a patient’s
working or living conditions. As for the archetypes of the “AI”
perspective, they distinguish between health care service
offerings according to their dependency on specific hardware.
This is consistent with the aforementioned high proportion of
applications for image file interpretation, as these typically do
not involve hardware components. Another reason for the high
proportion of device-independent applications could be the
complexity and cost of product development. This brings us to
the final point—the archetypes in the “health impact”
perspective. Their analysis focuses on patient benefit and shows
that, to date, AI-based applications are primarily used for the
diagnosis of physical illnesses. Given the increasing life
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expectancy of most industrialized nations, it is conceivable that
the importance of AI in treatment and care, especially in geriatric
care, might grow considerably in the near future. As for the
other seismic shift in the technologically advanced West—our
rapidly increasing awareness of mental health as a medical,
social, and indeed political issue, it remains to be seen whether
the number of services for the diagnosis and treatment of mental
illnesses will also increase in the future.

Discussion

Principal Findings
To account for the phenomenon of AI-based health care services,
we developed a new taxonomy based on the latest science [24],
a structured literature review, and an extensive sample of
real-world instantiations. As our rigorous demonstration and
evaluation confirmed, this due diligence in the development of
our taxonomy ensured its broad applicability and central
positioning in the intended research field. As a result, this study
contributes to the knowledge of how to incorporate AI into
health care services successfully. Furthermore, it provides a
clear and comprehensive structure to a fast-developing research
field. Although there may be questions about the usefulness of
taxonomy in such a dynamic field, this study indicates that a
phenomenon does not have to be static for it to benefit from a
taxonomy. As we have seen in similarly fast-developing research
areas, such as the Internet of Things [26], FinTechs [27],
analytics-based services [44], or Blockchain [74], there have
been considerable benefits as a result of taxonomy development.

Meanwhile, our research results have theoretical as well as
managerial implications. From a theoretical point of view, our
research is the first to investigate the structure of AI-based health
care services based on perspectives, dimensions, respective
characteristics, and overall archetypes. The taxonomy supports
academics and practitioners alike in that it enables them to
recognize and re-evaluate the multiple forms of AI-based health
care services, either to use those services to their full practical
potential or to use the taxonomy for further theorizing. The
archetypes we have identified in each perspective reveal various
service offerings to have recurring patterns. These patterns
advance the current understanding of how digital technologies
transform the health care sector with the use of AI. Most
importantly, this study incentivizes more extensive research on
application areas in which AI has not yet been used to its full
potential. Doing so encourages scholars to explore the multiple
opportunities to apply AI in the ever more significant sector of
digital health care.

From a practical point of view, our taxonomy and archetypes
provide multiple use cases for practitioners. First, it is worth
noting that practitioners who have already integrated AI into
their health care service may find our taxonomy helpful in
classifying this service and comparing it to any other offerings
by their competitors. Second, practitioners who wish to
introduce new AI-based health care services can use our
taxonomy to gain an overview of possible applications, be it to
find suitable options that are already out there or to find
inspiration for potential new applications in their working fields.
By analyzing numerous real-world examples, we were able to

shed light on the intricacies of AI-based health care services
and the general distribution of their design characteristics. By
using our archetypes along with our insights into their
frequencies, practitioners can identify which potential AI
adoption fields are already widely used and might, therefore,
be easier and more accessible areas in which to implement their
services. While this focus provides limited potential for future
innovations, our taxonomy facilitates the assessment of
alternative possibilities in less common adoption fields, where
it can be used for the dual benefits of orientation and structure.
Third, the insights derived from our taxonomy on the
characteristics of AI-based health care services carry substantial
implications for health policy and delivery. By categorizing AI
services based on their unique features, policy makers can make
informed decisions on resource allocation, regulation, and
integration into existing health care systems. This taxonomy
facilitates the identification of targeted interventions for
improving patient care, such as personalized treatment plans
and enhanced diagnostic accuracy. Fourth, understanding the
characteristics of AI-based services aids in the development of
policies that address ethical considerations, privacy concerns,
and the need for transparency in health care AI implementation.
Fifth, in the context of population health, the taxonomy enables
the strategic deployment of AI technologies to address specific
health challenges, reduce disparities, and optimize overall health
outcomes. This discussion underscores the practical relevance
of our taxonomy, extending beyond theoretical considerations
to directly influence health care policy making and health care
delivery.

Of course, this study is also subject to certain limitations that
require careful consideration to ensure the correct interpretation
of our results. The first of those limitations to address is that
our classification, as to whether or not a service is AI-driven,
is based on the external appearance given by the service
provider’s website or information supplied by other media. It
cannot, therefore, be guaranteed that all of the services
considered in this study meet the academic criteria to be
classified as AI-driven. There is a hidden benefit in this putative
limitation, however. Our research approach does not focus on
how AI is seen in research but rather on how AI is perceived
and applied in practice. The second limitation to discuss is that
AI is a rapidly evolving field, and as new developments overtake
the research presented in these pages, our taxonomy may need
to be adapted and extended accordingly. For example, the
sample of service offerings that we analyzed has a noticeably
high frequency of diagnostics-related services due to our
definition of the term service and AI algorithms that were
primarily used for making decisions and classifying symptoms.
However, current developments in the topics of generative AI
or robotics might shift this trend toward treatment and care or
patient enablement. With that in mind, we were especially
thorough in our structured analysis of current AI adoption and
emphasized the extensibility of our taxonomy to provide the
necessary guidance for future adaptations and extensions in
research and practice. The third limitation worth considering is
that we based our research on empirical insights from top lists.
While our data collection was rigorous, our selection of the
publicly available AI-based health care services only represents
a subset of the current services. As for the fourth limitation of
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this study, while we are confident that our taxonomy offers a
good representation of the current AI landscape in health care,
it will undoubtedly need to be changed and adapted due to rapid
developments at a technical level [75]. This could particularly
affect the dimensions of AI capability and the combination with
the application area. However, the most significant change will
probably be seen in the archetypes. A comparison between the
current and future status would undoubtedly be interesting for
future research.

Conclusions and Outlook
Being a relatively new paradigm in health care, AI has been
heralded as a panacea, yet only the future will tell if it can
deliver on those lofty expectations. In the meantime, we have
developed a taxonomy that serves as a structuring tool for
researchers in the field of AI and as an innovation map for
practitioners. It provides a simple yet potent method of
classifying current and future AI-based health care services.
Such classification allows the user to better situate and evaluate
these services by attributing their distinct characteristics to 10
potential dimensions, such as service recipient, mode of
interaction, data generator, data target, data type, hardware

agnostic, AI portfolio integration, AI capability, application
area, and health benefit. Having tested our taxonomy with
representatives of its intended future users in order to classify
268 AI-based health care services and identify all relevant
archetypes, we were able to ascertain its applicability and assess
the potential for AI integration in current health care services.

By way of conclusion, then, it remains only to be said that this
study was conducted in the intellectual tradition of Nickerson
et al [24] and Kundisch et al [25]. As such, it contributes to the
expert literature by providing a common understanding of
AI-based health care services and offering a taxonomy that
promises to assist in the development of AI-based health care
services and the assessment of their potential in this competitive
field. It bears repeating, however, that the implementation of
AI in health care is a young and rapidly developing research
field, so although we are convinced that this taxonomy can serve
as a useful analytical tool in the present, its future usefulness
will depend on its adaptation to relevant advances in the field.
We hope that our work here will inspire the future research
required to identify those advances and make the necessary
adaptations to our taxonomy.
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