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Abstract

Background: Wearable technologies have become increasingly prominent in health care. However, intricate machine learning
and deep learning algorithms often lead to the development of “black box” models, which lack transparency and comprehensibility
for medical professionals and end users. In this context, the integration of explainable artificial intelligence (XAI) has emerged
as a crucial solution. By providing insights into the inner workings of complex algorithms, XAI aims to foster trust and empower
stakeholders to use wearable technologies responsibly.

Objective: This paper aims to review the recent literature and explore the application of explainability in wearables. By examining
how XAI can enhance the interpretability of generated data and models, this review sought to shed light on the possibilities that
arise at the intersection of wearable technologies and XAI.

Methods: We collected publications from ACM Digital Library, IEEE Xplore, PubMed, SpringerLink, JMIR, Nature, and
Scopus. The eligible studies included technology-based research involving wearable devices, sensors, or mobile phones focused
on explainability, machine learning, or deep learning and that used quantified self data in medical contexts. Only peer-reviewed
articles, proceedings, or book chapters published in English between 2018 and 2022 were considered. We excluded duplicates,
reviews, books, workshops, courses, tutorials, and talks. We analyzed 25 research papers to gain insights into the current state
of explainability in wearables in the health care context.

Results: Our findings revealed that wrist-worn wearables such as Fitbit and Empatica E4 are prevalent in health care applications.
However, more emphasis must be placed on making the data generated by these devices explainable. Among various explainability
methods, post hoc approaches stand out, with Shapley Additive Explanations as a prominent choice due to its adaptability. The
outputs of explainability methods are commonly presented visually, often in the form of graphs or user-friendly reports.
Nevertheless, our review highlights a limitation in user evaluation and underscores the importance of involving users in the
development process.

Conclusions: The integration of XAI into wearable health care technologies is crucial to address the issue of black box models.
While wrist-worn wearables are widespread, there is a notable gap in making the data they generate explainable. Post hoc methods
such as Shapley Additive Explanations have gained traction for their adaptability in explaining complex algorithms visually.
However, user evaluation remains an area in which improvement is needed, and involving users in the development process can
contribute to more transparent and reliable artificial intelligence models in health care applications. Further research in this area
is essential to enhance the transparency and trustworthiness of artificial intelligence models used in wearable health care technology.
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Introduction

Background
Wearable technologies have become indispensable and dominant
in the health care landscape [1]. A notable recent shift in their
use involves leveraging their capabilities for the continuous
monitoring of users, which proves particularly beneficial in
patient care scenarios, such as monitoring patients with diabetes
to preempt hypertension [2] or in the case of athletes, analyzing
heart rate (HR) data to tailor personalized exercise regimes for
enhanced progress [3]. However, to develop such sophisticated
models, machine learning (ML) or deep learning (DL)
algorithms are used, which often function as “black boxes,”
lacking transparency and making them challenging for medical
professionals and end users to comprehend. In this context,
explainability becomes crucial in ensuring the responsible and
ethical use of wearable technologies in health care. By providing
transparent insights into the inner workings of complex
algorithms, explainable artificial intelligence (XAI) empowers
medical professionals and end users to trust and confidently use
these technologies for improved patient outcomes and
personalized interventions [4]. This bridges the gap between
ML experts and health care professionals, empowering the latter
with actionable insights derived from these models.

Despite the growing interest and research on explainability in
2017, the association between artificial intelligence (AI) and
explainability dates back to the mid-80s [5-7]. Over time, the
significance of explainability has grown, recognizing its
immense potential across various domains. In 2018, to further
promote the importance of explainability, organizations such
as the Association for Computing Machinery issued statements
emphasizing algorithmic transparency and accountability [8],
encouraging researchers and institutions to prioritize
explainability when designing AI systems. International
institutes such as the Defense Advanced Research Projects
Agency have also contributed to the focus on explainability by
funding the Explainable AI (XAI) Program [9]. This initiative
emphasizes the importance of transparency and interpretability
in AI systems, further highlighting the growing recognition of
explainability’s significance in the field of AI. As a result of
this, there has been a notable increase in research on
explainability, emphasizing its growing importance in promoting
the ethical use of AI in various domains.

In parallel, the recent emphasis on XAI has sparked interest in
integrating it with wearable technologies. Wearables have
demonstrated significant potential and effectiveness in health
monitoring, paving the way for innovative health care
applications. What sets XAI apart when applied to wearable
data compared to other datasets lies in the unique characteristics
of wearables. Wearables capture highly personalized, granular
data, often in dynamic real-world settings. This personal and
real-time nature introduces complexities that demand a
specialized XAI approach. The interpretability and transparency

of AI models become even more critical as users must
understand not just the decisions but also their impact on health
and well-being. Moreover, wearables often integrate diverse
data types, from physiological signals to activity tracking,
requiring XAI techniques capable of handling multimodal data.
Thus, delving into XAI within the domain of wearables is
essential to address these distinct challenges and harness the
full potential of wearable technology in health care, fitness, and
personal well-being. However, the incorporation of XAI
techniques into wearables remains an emerging research frontier.
A recent review, which analyzed papers from 2011 to 2022,
underscored an existing gap in the field: the lack of XAI research
specifically focused on interpreting 1D biosignals obtained from
wearable devices [10]. To address this gap, this paper aimed to
review the recent literature, exploring the application of
explainability in wearables. By examining how XAI can enhance
the interpretability of generated data and models, this review
sought to shed light on the possibilities that arise at the
intersection of wearable technologies and XAI.

Related Studies
In the current AI era, a notable transformation is being witnessed
in health care [1]. Various applications are powered by AI
systems, leading to the emergence of ML and DL. As AI
complexity increases, the demand for enhanced transparency
is being recognized. This demand is met by the implementation
of XAI, which allows AI model workings to be understood. The
following paragraphs provide a more comprehensive exploration
of the terminology associated with AI, ML, DL, and XAI.
Following this, the paper proceeds to delve into specific research
questions (RQs) that will be addressed.

AI involves the creation of systems and machines designed to
replicate human intelligence, enabling them to perform
real-world tasks effectively. AI systems are trained on data,
allowing them to learn from experience and solve specific
problems. They continuously refine their performance based
on the information they receive. AI applications are diverse and
include advanced web search engines, self-driving cars, gaming,
speech recognition, recommendation systems, and health care
AI systems and applications. AI essentially emulates human
cognitive processes, making it invaluable when dealing with
extensive datasets [1].

ML, a subset of AI, empowers computers to recognize patterns,
make highly accurate predictions, and self-improve through
experiential learning without the need for explicit programming.
Building AI-driven applications relies heavily on ML
methodologies. These models undergo training using extensive
datasets, enabling them to deliver precise predictions [2]. ML
is further categorized into supervised and unsupervised learning,
with supervised learning branching into semisupervised learning
[4] and reinforcement learning [5].

DL, a specialized field within ML, draws inspiration from the
human brain’s structure and functionality. DL effectively uses
both structured and unstructured data for model training. It plays
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a vital role in predicting life-threatening diseases in medical
research, with deep neural networks achieving remarkable
predictive capabilities [11]. Prominent DL models include
convolutional neural networks (CNNs), residual networks, fully

convolutional networks, and long short-term memory (LSTM)
[12]. Figure 1 [13] depicts the relationship among AI, ML, DL,
and XAI.

Figure 1. Relationship among artificial intelligence (AI), machine learning (ML), deep learning (DL), and explainable AI (XAI) [13].

XAI enriches AI models with information comprehensible to
the end users. While AI algorithms enable users to make
informed business decisions, the opacity of these algorithms
often leaves users uninformed about the decision-making
processes [14]. This lack of transparency is where XAI comes
into play. XAI strives to elucidate the inner workings of AI
models, offering users comprehensible explanations of the
methodologies, procedures, and outputs. The term XAI is often
referred to as the “white box” approach due to its emphasis on
revealing the model’s processes.

In the field of XAI, training data serve as input, and users select
the prediction methodology and XAI techniques based on
specific application requirements. The input data vary depending
on their source. For example, they can be electronic health

records, vital sign recordings, medical scans, and wearable data.
This review focuses on wearable data as the training data.
Wearable data vary among physiological, activity,
environmental, behavioral, biometric, and social interaction
data. These techniques shed light on the model’s internal
operations and provide an explanatory interface, as shown in
Figure 2, adapted from the study by Saranya and Subhashini
[13]. In the modified diagram, the input data are changed to
“wearable data” to be more specific to this review. This
transparency empowers users with insights into AI model
outputs, fostering trust [15]. Armed with this understanding,
users can enhance output accuracy and identify model
shortcomings, facilitating informed decision-making to improve
the model.

Figure 2. Process of explainable artificial intelligence (AI) from wearable data, adapted from Saranya and Subhashini [13].
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Despite the recent surge in wearable devices within the health
care sector, there is a notable gap in research on XAI applied
to wearable data. The application of XAI in wearable data
analysis is crucial due to several key factors. First, the high
granularity and personal nature of the data collected via
wearables emphasize the need for transparency. Users must
understand how their data are processed and interpreted to trust
the insights generated. Second, given the inherently personal
nature of wearables, establishing trust becomes paramount.
Users need confidence in the accuracy and privacy of the data
collected, making transparency in algorithms and data handling
essential. Finally, wearables operate in dynamic environments
and integrate diverse data types. XAI can help unravel complex
relationships within these data streams, enabling better insights
and decisions in various health care and well-being applications.
Although recent reviews have explored the broader applications
of XAI in health care, the potential of wearables in this context
has remained somewhat overshadowed. Some of these reviews
have touched on the relevance of wearable biosensors in health
care applications, yet they often fail to fully uncover the diverse
opportunities presented by both commercial and noninvasive
smartwatches [16,17]. Similarly, certain reviews have focused
on health care Internet of Things devices, but they tend to only
scratch the surface regarding the intricate field of wearable
technology [18,19]. The limited number of studies on XAI from
wearable data highlights a significant research gap in this
emerging field. While wearables have gained traction in health
care and other domains for data collection and analysis, the
incorporation of XAI principles to ensure the interpretability
of AI models is an area that holds great potential but has seen
limited exploration. This review aimed to explore the use of
XAI within wearables (RQ 1).

In the domain of wearable technology, these devices offer a
diverse array of data, encompassing activity metrics such as
calorie expenditure and step counts as well as physiological
signals such as electrodermal activity (EDA) and
electrocardiography (ECG). Furthermore, wearables extend
their capabilities to encompass behavioral patterns and
environmental cues, thereby enriching the contextual
understanding derived from the data they collect. Recent reviews
in the health care field have illuminated the widespread adoption
of wearables across various anatomical regions, including the
head, limbs, and torso [20]. These versatile devices have been
instrumental in monitoring a range of medical conditions,
spanning stroke and poststroke rehabilitation to Parkinson
disease, among others [21]. Hence, the adoption of wearables
in health care is evident, yet some studies have delved deeper
and adopted XAI for wearable data. For example, a study used
EDA for pain recognition using the gradient-weighted class
activation mapping technique [22], and another adopted
accelerometer data for fall detection using local interpretable
model-agnostic explanations (LIME) as the explainability
method [23]. This review sought to address the question of
which specific wearable data types have been explored within
the context of explainability (RQ 2). By shedding light on this
aspect, this review sought to bridge the gap and provide insights
into the areas of wearable data that warrant greater attention
from researchers and practitioners in the field of XAI. In
addition, this review sheds light on the various explainability

methods deployed specifically for each type of wearable data
(RQ 3).

Previous reviews on XAI in the health care field have focused
on explainability. They have highlighted the dominance of
feature explanations over textual and example-based explanation
methods. In addition, most explainability methods use the post
hoc approach while focusing on the local rather than the global
scope of the data. This review aimed to identify whether
wearable data follow this trend from previous reviews (RQ 4).

The evaluation of AI models after applying an explainability
method is crucial for ensuring transparency, accountability, and
user understanding. Several researchers have stressed the need
for formal evaluation metrics and a more systematic evaluation
of the XAI methods [5,24]. Evaluation allows for a formal
comparison of the available explanation methods [25] and offers
a formal method to assess whether explainability is achieved
in an application [25]. A previous review focused on the
importance of assessing the explanation, and the results revealed
that only 1 in 3 studies solely relied on anecdotal evidence for
evaluation, whereas 1 in 5 studies incorporated user evaluations
[26]. This highlights the gap in evaluating the XAI outcomes
through either anecdotal evidence or user evaluations. To
address this gap with wearable data, this review aimed to
identify the evaluation methods used for the XAI techniques in
the field of wearable data (RQ 5).

These aspects led to the following RQs, which guided our
survey:

1. In the health care domain, how is XAI being used within
the context of wearables? (RQ 1)

2. What is the predominant data type used in building XAI
models from wearables? (RQ 2)

3. How is the explainability of AI models represented to the
users? (RQ 3)

4. To what extent do model-agnostic, post hoc, and global
explainability methods prevail compared to other
approaches in line with existing literature? (RQ 4)

5. What are the evaluation methods used for various
explainability techniques in the context of wearables and
XAI in health care? (RQ 5)

A Typology of XAI Features

Overview
To guide the exploration of XAI within the domain of wearable
technology, recent reviews on explainability have provided
categorizations of XAI methods. These reviews have extensively
examined various dimensions of XAI. One review focused on
6 dimensions, namely, the type of explanation, type of task,
type of data, type of explainability method, type of problem,
and type of model to be explained [26]. Another review focused
on the application domain, model type, stage, scope, and output
format [16]. We opted to build our survey on those previous
XAI taxonomies [27] as this informs the different forms of
explainability deployed in wearable technology, encompassing
stage, scope, problem type, input data, and output format. This
taxonomy is recent, covers relevant concepts, and has been
highly cited by other researchers.
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The following sections provide a brief definition of each
explainability dimension.

Input Data of the XAI System
The term input data within the context of XAI systems refers
to the data used to train the AI model, as shown in Figure 2
[13]. The nature of these input data can vary based on their
source. In the context of this review, which focuses on wearable
data, the primary source of input data is wearable devices.
Wearable data encompass various forms, including physiological
signals such as HR, ECG, and electroencephalography. In
addition, wearables provide data in the form of activity metrics
such as step and calorie counts. Moreover, wearable technology
captures behavioral and emotional states, allowing users to log
factors such as stress levels. Environmental data, including
temperature and ambient noise levels, can also be collected via
wearables. Furthermore, wearables can capture social data, such
as monitoring the time spent on specific social media apps and
related interactions.

Output Format of the XAI System
Output format of explainability refers to how the explanations
are presented. This can vary from visual representations such
as graphs and images to textual, numerical, rule-based, or mixed
formats [27]. The presentation of explainability encompasses
diverse approaches that depend on several factors, such as the
target population and the nature of the input data. For instance,
when the target population consists of lay users, explainability
must be presented in a simple manner that aligns with their level
of understanding. Conversely, when explainability is intended
for medical professionals or researchers, a more detailed and
in-depth approach is necessary as this population possesses a
higher level of expertise and requires a comprehensive
understanding of the underlying mechanisms and processes
driving the model’s outcomes. In addition, each type of input
data may require specific methods of explanation. The nature
and characteristics of the input data play a role in determining
the most effective approach for conveying their insights and
interpretations.

Stage of Explainability
Stage of explainability refers to the point during the XAI process
(Figure 2 [13]) at which a method generates explanations. The
stage when the explainability is introduced can be post hoc or
ante hoc. Ante hoc methods aim to consider the explainability
of a model from the beginning and during training to make it
naturally explainable. In contrast, post hoc methods maintain
pretrained models without any structural modifications and
introduce explainability mechanisms after the model’s training
phase. The post hoc methods frequently use external explainer
techniques during testing. An example of a post hoc method is
Shapley Additive Explanations (SHAP) [28], which aims to
provide a way to attribute the contribution of each feature to a
model’s prediction. Conversely, an example of an ante hoc
method is recurrent lexicon networks [29], a method that models
lexicons as naïve gated recurrent networks while seamlessly
integrating explainability principles throughout the training
process. This approach ensures that the model inherently
possesses explainability characteristics from the beginning.

Scope of Explainability
The scope of explainability refers to the extent to which an
explanation clarifies the inner workings of the AI model. The
scope of explainability can be either local or global [30]. Local
explainability focuses on clarifying the reasoning behind
individual predictions, offering insights into why a specific
decision was made for a particular instance. For instance, by
using techniques such as LIME [31], a model may reveal that
it diagnosed a rare medical condition for a patient based on a
combination of relevant biomarkers and wearable data.
Conversely, global explainability seeks to provide a broader
perspective, offering a holistic understanding of the model’s
behavior and feature importance across an entire dataset. Using
methods such as SHAP [28], one can analyze the model’s
tendencies in an entire patient population. Thus, local
explainability delves into explaining individual predictions,
whereas global explainability offers insights into the model’s
behavior and feature importance across an entire dataset.

Problem Types Addressed by AI Models
Each AI model that is constructed is tailored to address a specific
underlying problem type, which could fall into either regression
or classification categories. Studies that use regression aim to
predict a continuous numerical value, whereas classification
focuses on categorizing data into distinct classes or groups.
Regression models are valuable for predicting patient outcomes
and estimating essential health parameters. For instance, these
models can be used to predict blood pressure levels in patients
with diabetes based on factors such as food intake, exercise,
and insulin dosage [32]. On the other hand, classification models
are instrumental in disease diagnosis and treatment planning.
For example, ML models can analyze physiological data to
classify an individual’s stress levels [33].

Methods

Study Design
We followed a systematic review design using qualitative
methods. We adhered to the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) statement
[34].

Data Sources and Search Strategy
At the time of conducting our study, we captured the most recent
publications in the rapidly evolving fields of XAI and wearable
devices. Since the Defense Advanced Research Projects Agency
introduced the XAI program in 2017, there has been an increase
in papers focusing on XAI. Recent reviews have shown a
significant rise in publications in the field of XAI during the
period from 2018 to 2022, highlighting the growing research
interest and developments [13] in the field, and this trend
continues today. In this review, we collected publications
covering 3 years, from January 1, 2018, to December 31, 2022,
and then conducted the analysis and reporting process. We deem
the qualitative outcomes of our review also representative of
more recent publications in the field. We collected the
publications from ACM Digital Library, IEEE Xplore, PubMed,
SpringerLink, JMIR, Nature, and Scopus. The selected
publishers are renowned for their high-quality and impactful
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research across computer science, engineering, health care, and
interdisciplinary studies. In addition, our preliminary search
indicated the potential of these publishers to provide research
on XAI and wearable data. The search strategy encompassed a
comprehensive range of terms from various domains. These
included explainability concepts, AI (Medical Subject Heading;
MeSH) terminology, target population (MeSH) descriptors,
wellness (MeSH) terms, and technology (MeSH) keywords.
XAI, ML, and DL were considered alongside target populations
such as patients and physicians. Wellness-related terms such as
physical activity, sleep, and exercise were also incorporated. In
addition, technology aspects encompassed wearable electronic
devices and sensors. Multimedia Appendix 1 provides detailed
keywords for each database.

Eligibility Criteria
The inclusion criteria for this review encompassed
technology-based research involving wearable devices, sensors,
and mobile phones. The studies were required to incorporate
explainability or ML or DL techniques and use quantified self
data. The quantified self domain, which began in 2007, uses
technology such as apps and wearable smart devices to monitor,
measure, and quantify different aspects of daily life [35]. In
addition, the focus of the studies needed to be medical, and they
had to be proceedings, book chapters, or peer-reviewed journals;
written in English; and published between 2018 and 2022. On
the other hand, the exclusion criteria included duplicate studies,
review articles, and books, as well as workshop papers, courses,
tutorials, and talks. Textbox 1 provides detailed information.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Technology-based research (eg, wearable devices, sensors, and mobile phones)

• Studies incorporating explainability

• Studies incorporating machine learning or deep learning techniques

• Studies using quantified self data

• Medical-based studies

• Studies published in peer-reviewed journals

• Proceedings or book chapters

• Studies written in English

• Studies published from 2018 to 2022

Exclusion criteria

• Duplicate studies and review articles

• Books

• Workshop papers

• Courses

• Tutorials

• Talks

Study Screening
Screening of potentially eligible studies was performed in 3
steps: duplicate removal, title and abstract screening, and
full-text screening. Duplicates were removed using Rayyan
(Rayyan Systems Inc) [36]. Additional duplicates that were not
removed during this process were removed manually. Two

review authors (YA and MA) independently screened the titles
and abstracts for inclusion using the predefined inclusion and
exclusion criteria specified previously. The other 2 review
authors (DA-T and AB) independently screened a random 30%
(n=197) of the included studies. Agreement among all authors
was confirmed using a Cohen κ test. Table 1 provides more
details.
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Table 1. Cohen κ test of reviewer agreement.

ABMADA-TYAAuthor initials

YA

0.7810.63—aCohen κ

96.5810094.17—Percentage of agreement

DA- T

0.630.63—0.63Cohen κ

94.1794.17—94.17Percentage of agreement

MA

0.78—0.631Cohen κ

96.57—94.17100Percentage of agreement

AB

—0.780.630.78Cohen κ

—96.5794.1796.58Percentage of agreement

aNot applicable.

All studies not discarded through this process were then screened
by 1 review author (YA) in a full-text review process from
which studies were identified for inclusion. Subsequently, a
backward and forward referencing approach was used to further
uncover potentially relevant papers. Conflicts among the 4
review authors were addressed through a majority vote system
where a 3-versus-1 decision was made. Only 3 papers were
found to have 2-versus-2 conflicts, which were subsequently
resolved through discussions with each review author. Full data
extraction, categorization, and labeling of papers were performed
by 1 author (YA) and validated by 2 authors (MA and AB).

Feature Extraction
During the analysis, various features were extracted from
different perspectives. Metadata features provided information

about the publication and dissemination of the selected studies.
Explainability features delved into the specific problem, the AI
model used, and the input data used, following the taxonomy
[27]. Evaluation of explainability included whether it was
evaluated through user studies. For studies involving user
evaluations, additional features such as the materials used,
participant count, data collected, and outcome of the evaluation
were extracted. Technology features focused on the type of
wearable device used and its placement on the body. Table 2
provides detailed information. All features except the
explainability features were created by the authors to fit the
topic.
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Table 2. Feature extraction.

DescriptionViewpoint and feature

Metadata (PRISMA Flowchart and Selection Statistics and Geographic and Time Statistics sections)

Country of the article based on the affiliation of the first authorCountry

Targeted domain of the study, such as a specific disease or medical condi-
tion (eg, diabetes or stress management)

Domain

When the article was publishedPublication date

Explainability [27] (Analysis Using the Typology of XAI Features section)

Type of MLa or DLb model that was used for performing the primary taskModel

Methods for explainability can vary according to the underlying problem
(classification or regression)

Problem type

Form of explanation generated for the model’s outcomeOutput format

The group targeted by the explainability generatedTarget group

Type of quantified self data used, such as step count or caloriesInput data

Refers to the stage at which a method generates explanations; can be either
ante hoc or post hoc

Stage

Refers to the scope of an explanation; can be either global or localScope

Evaluation (Human-Centered Evaluation section)

Method of evaluation; can be with or without end usersEvaluation method

The study design used for verifying the explainabilityStudy design

The method used, such as qualitative, quantitative, or mixed methodsStudy method

Number of participants recruited for collecting data to build the modelParticipants for building the model

Number of participants recruited for collecting data to test the modelParticipants for testing the model

Participant types, such as healthy or disease or condition specificType of participants

Methods used to collect the data for the user studyData collection methods

Duration of the user studyDuration of the study

Medium used to communicate the explainabilityMedium of interaction

The intervention of the user studyStudy procedure

Techniques used for analyzing the user studyData analysis

Technology (Technologies for Capturing Quantified Self Data section)

Different types of wearable technology used, such as Empatica E4 wrist-
band or Fitbit wearables

Type of technology

Position of the wearable device, such as on the wrist or armPosition of the wearable

aML: machine learning.
bDL: deep learning.

Data Synthesis and Analysis
We used descriptive statistics to describe the metadata,
explainability features, human-centered evaluation, and
technology used.

Results

PRISMA Flowchart and Selection Statistics
The study selection sequence is outlined in a PRISMA
flowchart, which is shown in Figure 3. Our search yielded 690

articles, of which 32 (4.6%) were identified as duplicates and
removed. After screening abstracts, a further 609 (88.3%) were
excluded, leaving 49 (7.1%) assessed for eligibility via full-text
review. Among these, 29 (59.2%) were excluded. Forward and
backward citation searching yielded an additional 6 included
papers. A total of 25 studies met the inclusion criteria after
completing the backward and forward citation check. Refer to
Multimedia Appendix 2 for the PRISMA checklist.
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Figure 3. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the systematic review. DL: deep learning;
ML: machine learning.

Geographic and Time Statistics
Table 3 illustrates the distribution of the 25 included papers,
with 10 (40%) originating from the United States, 8 (32%)
originating from various European countries, 1 (4%) originating
from China, and 6 (24%) originating from South Korea. This
widespread interest and research focus on explainability in

wearable devices indicates its global significance and relevance
in diverse regions. Furthermore, Figure 4 highlights that the
selected papers were primarily published between 2019 and
2022, indicating a recent uptrend in research activity in this
field. This recent attention highlights the growing recognition
and importance of integrating explainability with wearable
technologies for advancing health care applications.
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Table 3. Distribution of studies per country (N=25).

Publications, n (%)Country

10 (40)United States

6 (24)South Korea

2 (8)The Netherlands

2 (8)Switzerland

1 (4)China

1 (4)Italy

1 (4)Norway

1 (4)Turkey

1 (4)United Kingdom

Figure 4. Distribution of included papers per year.

Application Domains
In this systematic review, certain domains received more
exploration and attention in the context of explainability in
health care monitoring compared to others, as shown in Table
4. When assessing the depth of investigation, certain domains
stand out, with health conditions and diseases being the most
extensively studied, accounting for 24% (6/25) of the research
focus. Notably, these studies delved into conditions such as
kidney disease, multiple sclerosis, influenza, sarcopenia,
osteopenia, and the ongoing COVID-19 pandemic. Similarly,
sleep and activity monitoring attracted some research interest,
constituting 24% (6/25) of the reviewed studies. These
investigations provided valuable insights into individuals’sleep
patterns, personal health, and activity levels. Vital sign and
health monitoring, encompassing parameters such as blood
pressure and blood glucose levels, shared a comparable portion
of the research landscape, also constituting 24% (6/25) of the
total. This attention stems from the critical role of vital sign and
health monitoring in the early detection and management of
various health conditions, including diabetes. In comparison,
domains such as mental health, stress management, and weight
management collectively accounted for 16% (4/25) of the

research focus. While these areas received some attention, they
stood slightly behind the aforementioned domains. Finally,
domains such as activity recognition, neurological monitoring
(specifically brain signals), and substance abuse detection with
a focus on opioid detection collectively constituted 12% (3/25)
of the reviewed papers. These domains, while important,
received relatively less exploration within the context of
explainability in health care monitoring.

The explainability of wearable devices was applied in various
health domains. It was widely used in the physical activity and
health domain, such as predicting user-specific health risks [35]
and identifying effective representations of fitness goals to
enhance user physical activity and trust in the system. Wearable
devices were also extensively used for diabetes control. For
example, some studies (2/25, 8%) used the wearable device
Empatica E4 and glucose monitoring to detect hypoglycemia
[37] and hyperglycemia [2] with a lead time of up to 60 minutes.
Another study focused on detecting eating moments and
explaining glucose levels using wearables [32]. Similarly, other
studies (2/25, 8%) focused on blood pressure monitoring and
generated personalized lifestyle recommendations based on the
user’s blood pressure [38,39]. It is worth noting that there were
not many studies exploring XAI for weight management [40].
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This is interesting because it could have practical applications
for a large user base, including nonexperts. One possible reason
for this gap in research might be that weight-related data are

relatively easy to understand for most people and something
that can be easily measured. In contrast, more complex data
types received more attention in the field of XAI.

Table 4. The different wearable data applications using explainability.

Studies, n (%)Applications

6 (24)Vital sign and health monitoring

6 (24)Sleep and activity monitoring

6 (24)Health conditions or diseases

3 (12)Mental health

1 (4)Opioid abuse and detection

1 (4)Weight management

1 (4)Neurological and brain signals

1 (4)Human activity recognition

Stress detection and management also received attention in
wearable research. A study focused on stress detection and
coping strategies [33], whereas another explored the prediction
of next-day perceived stress using physiological signals such
as ECG [41]. Comparative studies were also conducted to
compare the effectiveness of different wearables in stress
detection [42]. Furthermore, wearables were used in medical
applications such as opioid detection [35] and identifying
COVID-19 [43]. These studies highlight the diverse applications
and potential of explainable wearable devices in health care.

Analysis Using the Typology of XAI Features

Overview
The following sections aim to provide concise descriptions of
the primary categories of explainability methods identified in
this systematic review (Multimedia Appendix 3 [2,3,33,38-53]).
This is followed by a summarization of their stage, scope,
problem type, input data, and output format. Figure 5 provides
a summary of the 25 included articles, categorizing them into
the five explainability features identified in the study.

Figure 5. Overview of the explainability features.
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Input Data of the XAI System
This systematic review identified 5 primary categories of input
data used in the research, including physiological signals (eg,
HR), activity data (eg, steps), sleep data (eg, sleep duration and
stages), nutritional data (eg, calorie intake), and mood (measured
through surveys). Among these categories, physiological signals
emerged as the most used input data for developing AI models,
as shown in Figure 6 [44,54]. This prevalence can be attributed
to the widespread use of wearable technology for collecting
quantified self data. Commercial wearables such as Fitbit and

Apple Watch excel in capturing physiological information such
as HR, whereas medical wearables such as Empatica E4 offer
advanced capabilities for gathering signals such as EDA,
photoplethysmography, HR variability, and accelerometer data.
Several studies in the reviewed literature (3/25, 12%) opted for
a multisource approach, using various input data types to obtain
a comprehensive understanding of the user’s health, as shown
in Figure 6 [44,54]. For instance, researchers incorporated a
combination of physiological signals, activity data, and sleep
metrics into their analyses [43].

Figure 6. UpSet diagram [45,46] of the various combinations of input data.

The input data in this review can also be classified into manual
and automatic data collection methods, as shown in Textbox 2.
Automatic data collection involves using technological devices
such as wearables or mobile apps to gather data without direct
user involvement, whereas manual data collection requires users
to actively provide information or respond to specific queries.
For instance, nutritional data are manually entered by users to
estimate calorie intake [32], and mood data are collected through

questionnaires to identify stress levels [33]. By considering both
manual and automatic data collection, researchers can obtain a
comprehensive and diverse set of input data, leading to a more
holistic understanding [39]. Automatic data collection occurs
with devices such as continuous glucose monitoring systems,
which continuously measure and record glucose levels. Some
studies in this review (3/25, 12%) used devices such as Freestyle
Libre for blood glucose monitoring [2,32,37].
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Textbox 2. Categorization of input data into automatically and manually captured.

Automatic (sensor signals)

• Physiological signals

• Activity

• Mobility

• App use

• Environmental data

• Sleep

Manual (logs)

• Weight

• Food intake

• Mood

Output Format of the XAI System

Overview
The following sections delve into the various explainability
methods found in this review. Figure 7 summarizes the various
output formats in this review. Among the reviewed studies, 64%

(16/25) primarily used visualizations for explanations, whereas
16% (4/25) relied solely on text. A total of 12% (3/25) of the
studies combined visual and textual explanations, and only 4%
(1/25) used rule-based explanations, highlighting the diversity
in interpretability approaches for health care–monitoring AI
models.

Figure 7. Overview of the explainability formats used in the studies included in this review.
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Visual Explanations
Visual explanations provide a natural and engaging means of
conveying information and are highly effective in facilitating
understanding. They are particularly useful in explaining
complex concepts or processes as they can leverage the power
of visual imagery to enhance comprehension. In the context of
explainability, visual explanations can play a crucial role in
explaining the “black-box” models in simpler means. Figure 7
shows the prevalence of visual explainability methods,
highlighting their significance in the field. These methods use
graphical tools and visual representations to provide insights
into how a model operates and arrives at its predictions or
decisions.

In some cases, additional visual aids such as graphs and scatter
plots are used to generate visual explanations. For instance, a

study focusing on COVID-19 detection used a gradient boosting
prediction model based on decision trees. To illustrate the
importance of different variables in the detection process, a bar
plot was used, allowing researchers to visually identify the
feature significance, as shown in Figure 8 [43]. Similarly,
frequency bubble plots were used in certain studies to visualize
glucose levels in healthy individuals, as shown in Figure 9 [32].
This visual representation assists in supporting individuals’
self-management of their health by providing clear and easily
interpretable information about their glucose levels [32]. Overall,
visual explanations offer a powerful and accessible approach
to communicating complex concepts, system behavior, and
feature importance, enabling better understanding and informed
decision-making.

Figure 8. Explainable gradient boosting of COVID-19 symptoms using bar charts [43].
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Figure 9. Shapley Additive Explanations explainability using a bubble frequency plot [32].

Textual Explanations
Textual explanations are another intuitive and widely used
method for providing explanations. They are presented as natural
language statements, whether written or spoken. Figure 10 [55]

shown the significant use of text in the explainability of AI
models. In various studies (3/25, 12%) [39,55-57], textual
explanations enhanced transparency and trust in different
domains.

Figure 10. Fitness tracker goals displayed as plain text [47].
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For example, one study compared 2 textual formats for
suggesting fitness tracker goals, focusing on improving the
transparency of step goal computation, thereby fostering user–AI
model understanding and trust [55]. Furthermore, textual
explanations were used to generate comprehensive summaries
of personal health data, enhancing their explainability [56].
These summaries involve generating natural language
descriptions of temporal trends and patterns from time-series
health data. Such summaries help users evaluate their health
data and compare them to their goals or general health
guidelines. In addition, pattern-based summaries help identify
hidden behaviors and provide explanations to the user. A
linguistic summarization approach leveraging time-series
protoforms was used to generate these summaries [56].
Protoforms act as sentence templates with placeholders

automatically selected to reflect trends and patterns supported
by the data.

Multimodal Explanations
In explainability research, tailoring the presentation to end users
is crucial for effective comprehension and engagement. One
approach involves leveraging familiar and user-friendly graphics
to convey information in an accessible manner. Figure 11A [37]
shows the use of activity rings from the Apple Watch, which
are already well known to users [39]. In the context of
hypoglycemia detection for patients with diabetes, the nearly
closed violet ring in the visual representation serves as a warning
sign for low blood glucose levels. This intuitive approach
incorporates the individual’s physiological state as a significant
factor in identifying hypoglycemia.

Figure 11. (A) Stress-monitoring app [37] using a ring chart; (B) detecting hypoglycemia using wearables [33] displayed as text and emoticons; (C)
blood pressure monitoring and lifestyle recommendations given as plain text and bar and line charts [38].

Similarly, when developing an app for stress prediction, it is
essential to ensure that end users can easily interpret the results
of the AI model. Visual representations prove valuable in
illustrating the level of stress experienced by the user. Figure
11B [33] showcases how different colors and graphical elements
can be used to enhance the explanation of the model’s outcomes
and ultimately support the user in managing their stress levels
effectively [33]. Another notable application of multimodal
explainability lies in providing personalized recommendations
to end users. Researchers introduced a multimodal explainability
approach in a study investigating the relationship between blood
pressure and lifestyle factors [38]. This approach generates a
report summarizing the relevant blood pressure features and
offers tailored lifestyle modifications to improve blood pressure.
An example of such a report can be observed in Figure 11C
[38], which combines textual and graphical elements to present
comprehensive and actionable information to the user. By using
user-friendly graphics, visual representations, and multimodal
explanations, researchers aim to optimize end-user
understanding, engagement, and decision-making processes.
These approaches leverage familiar and intuitive formats to
convey complex information effectively, empowering users to
monitor their health, manage stress, and make informed lifestyle
choices.

Stage of Explainability
In this systematic review, the application of different
explainability methods in health care monitoring varied, with
some methods being more extensively explored than others. A
total of 88% (22/25) of the reviewed studies used post hoc
methods, whereas only 12% (3/25) used ante hoc methods.
Model-agnostic methods were used in 60% (15/25) of the
reviewed studies, and the rest were distributed between
specific-domain (3/25, 12%), attention-based (3/25, 12%),
gradient-based (3/25, 12%), and general explainability (1/25,
4%) methods, as seen in Table 5. Among the model-agnostic
methods, SHAP was the most widely applied method, appearing
in 48% (12/25) of the studies. SHAP aims to provide
interpretable explanations for individual predictions made by
complex ML models [28]. This also highlights its prevalence
as a post hoc method in explainability research. In contrast, only
4% (1/25) of the studies explored an ante hoc explainability
approach, specifically the explainable gradient boosting method.
This method involves modifying or enhancing the original
Extreme Gradient Boosting algorithm to enhance interpretability,
indicating a limited use of ante hoc techniques in the reviewed
studies.
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Table 5. Distribution of explainability methods.

Studies, n (%)

15 (60)Model-agnostic methods

3 (12)Specific-domain methods

3 (12)Attention-based methods

3 (12)Gradient-based methods

1 (4)General model explanation methods

aNot applicable.

Gradient-based methods garnered attention in 12% (3/25) of
the studies, encompassing explainable gradient boosting [43],
deep learning important features [58], and layer-wise relevance
propagation [45], with each technique being featured once.
Explainable gradient boosting represents an advanced iteration
of the gradient boosting algorithm, integrating mechanisms to
render transparent insights into its decision-making process and
feature significance [59]. Deep learning important features, on
the other hand, serves as a technique that dissects a neural
network’s output prediction for a specific input, unraveling the
contributions of all network neurons to each feature of the input
[60]. Layer-wise relevance propagation, functioning as a
framework, facilitates the deconstruction of deep neural network
predictions on a sample into relevance scores [61]. These
methods collectively serve the purpose of unveiling the
significance of individual features and comprehending the
intricate decision-making of complex models. While their
numbers are limited, these techniques remain instrumental in
providing invaluable insights into model behavior.

Attention-based methods were also studied in 12% (3/25) of
the studies, involving interpretable LSTM-attention [46], CAM
[47], and interpretable recurrent neural network [40]. In the case
of interpretable LSTM-attention, an attention model is used to
assign varying weights to input features of financial time series
at each time step. This attention feature is then used to
effectively select relevant feature sequences for input into the
LSTM neural network, aiding prediction in subsequent time
frames [62]. Meanwhile, CAM is an explainability technique
used to identify significant regions within an input image that
contribute to specific class predictions within CNNs [63].
Furthermore, the concept of an interpretable RNN emerges as
a variant of the RNN architecture aimed at providing transparent
insights into its decision-making process and internal
representations, thereby enhancing its interpretability [64].
These methods excel in capturing salient regions and identifying
sequential dependencies in health care data. Their use is driven
by the need to understand how the model focuses on specific
areas or patterns when making predictions.

Specific-domain methods such as GNNExplainer for graph
neural networks and temporal summaries for time-series data
were investigated in 12% (3/25) of the studies [47,48,56]. These
methods cater to the unique characteristics of specific domains,
allowing for domain-specific insights. Temporal summaries, in
particular, were applied twice [56,57], emphasizing the
significance of time-series data in health care monitoring.
Finally, general model explanation methods were explored in
a single study [65]. This broader category encompasses various

techniques, but its limited application in this review suggests
that researchers focused more on domain-specific or
model-specific approaches in health care monitoring. The
variation in the number of studies that applied each method
indicate the varying levels of interest and emphasis placed on
different explainability techniques. Researchers may choose
certain methods based on their effectiveness in providing
understandable explanations, compatibility with the data type,
or the specific requirements of the health care monitoring
domain being studied.

Scope of Explainability
This review encompassed studies using 15 local explainability
methods and 10 global explainability methods applied in the
context of health care monitoring. The inclusion of a larger
number of local explainability methods, accounting for 60%
(15/25) of the studies, indicates the significance of understanding
individual predictions and the specific factors influencing them.
These methods provide granular insights into model behavior
and help build trust by explaining the rationale behind individual
decisions. However, the presence of global explainability
methods is also noteworthy as they offer a broader perspective
on model behavior, identifying general patterns and highlighting
features that consistently contribute to predictions across the
entire dataset. The balance between local and global
explainability methods in this review demonstrates the
importance of both instance-level interpretability and a
comprehensive understanding of model behavior in the context
of health care monitoring. Researchers recognize the need for
a multifaceted approach to ensure transparency, reliability, and
generalizability in interpreting the outcomes of health care
models.

Problem Types Addressed by AI Models
Overall, classification emerged as the most prevalent underlying
problem in the reviewed studies, accounting for 52% (13/25),
followed by regression at 28% (7/25). In addition, 4% (1/25)
of the studies used a rule-based approach [56], whereas another
(1/25, 4%) used a model explanation [65] as the underlying
problem type. It is noteworthy that the combined total of
regression and classification studies exceeded the total number
of reviewed papers (N=25). This disparity arises from certain
studies using models for both classification and regression tasks
(3/25, 12%). The predominance of classification problems
(16/25, 64%) in the reviewed studies indicates the significance
of accurately categorizing health care data for diagnostic,
predictive, or decision-making purposes. Gradient boosting
emerged as the most frequently used algorithm for classification
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(5/25, 20%), highlighting its effectiveness in achieving high
predictive performance and capturing complex relationships
within health care datasets. Support vector machine (SVM) was
also commonly used (3/25, 12%), known for its ability to handle
both linear and nonlinear classification problems [66]. SVM
generally exhibits improved performance when applied to
smaller datasets [67]. In addition, decision trees, Neural
Structured Learning, graph neural networks, and CNNs were
selected for specific classification tasks (5/25, 20%), reflecting
the diversity of approaches used to tackle different health care
monitoring challenges.

In regression problems (13/25, 52%), the reviewed studies used
various algorithms to predict continuous or numerical outcomes
relevant to–health care. Gradient boosting, known for its
powerful ensemble learning capabilities, was the most prevalent
algorithm (3/25, 12%), indicating its effectiveness in capturing

nonlinear relationships and providing accurate regression
predictions. Random forest (5/25, 20%) and SVM (1/25, 4%)
were also used for regression tasks, leveraging their ability to
handle complex datasets and capture intricate relationships
between input features and target variables. Furthermore, CNNs,
fully convolutional networks, ExtraTree, and RNNs were each
used in specific regression studies (4/25, 16%), showcasing
their suitability for capturing temporal or spatial patterns and
making accurate predictions in health care monitoring contexts.
It is worth noting that decision trees are generally considered
more interpretable or transparent compared to some other ML
models. The distribution of problem types observed in this
review reflects the complexity and diversity of health care
monitoring tasks (Figure 12). By leveraging these algorithms
effectively, researchers can develop robust and accurate health
care–monitoring models that cater to different types of problems.

Figure 12. (A) Overview of problem types in the reviewed papers; (B) regression and classification problem types with the corresponding machine
learning or deep learning model application. CNN: convolutional neural network; FCN: fully convolutional network; GNN: graph neural network;
LSTM: long short-term memory; NSL: neural structured learning; RNN: recurrent neural network; SVM: support vector machine; TCN: temporal
convolutional network.

Training Dataset
In the development of AI models, they can be constructed using
either user datasets, which are derived from real-world user
interactions and activities and capture user behaviors and
characteristics, or benchmark datasets, which are widely
recognized standards for comparison and evaluation within the
field [68]. Irrespective of the dataset used to train the AI model,
some explainability models were evaluated with end users,
whereas others were not. As the primary goal of explainability
is to enhance user interaction with AI models, real-world
evaluation involving lay users is essential.

Table 6 provides an overview of the datasets used in training
AI models for health care monitoring, where 80% (20/25) of
the studies used user datasets in comparison to 20% (5/25) of
the studies, which used a benchmark dataset. Researchers
adopted various strategies when selecting these datasets. Some

chose to create custom datasets gathered by having users wear
devices such as the Empatica E4 wristband to capture
physiological signals while performing specific tasks.
Conversely, others used benchmark datasets, exemplified by
the MyFitnessPal food log dataset, comprising 587,187 days of
food log data across 9000 users for 180 days [69]. The decision
to use benchmark datasets often stems from resource constraints,
such as limited time or access to participants. Conversely, the
creation of custom datasets was preferred when specific testing
conditions such as unique population groups or environments
were not covered by existing datasets. Of the 25 studies
reviewed, 20 (80%) opted to construct models using a dataset
created by the authors, whereas 5 (20%) chose established
benchmark datasets, such as the Floodlight Proof-of-Concept
dataset used in the study by Creagh et al [45], the MyFitnessPal
dataset used in the study by Harris et al [56], the MHEALTH
dataset used in the study by Uddin and Soylu [49], the
Continuous Glucose Monitoring Intervention in Teens and
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Young Adults With Type 1 Diabetes study dataset [70], and the
Human Activity Recognition database [71].

An analysis of the experimental setups for training datasets
revealed distinct approaches, as shown in Table 6. It is
noteworthy that the evaluation environment, whether conducted
in the real world or in a controlled setting, plays a role in shaping
the evaluation process. In this review, data collection occurred
in real-world settings in 80% (20/25) of the studies, reflecting
the natural environmental conditions in which users typically
interact with the technology, such as registering the food they
consume in a day [56]. Conversely, 20% (5/25) of the studies
opted for a controlled environment for their data collection.
This controlled setup involves specific conditions designed to
eliminate external influences and noise. For instance, a study

collected gait signals using sensors embedded in shoe insoles
along a 27-meter straight corridor, ensuring a controlled and
consistent testing environment [50]. In addition, physiological
signals such as photoplethysmography and EDA were gathered
using wearable wristbands such as Empatica E4 or Samsung
Gear within soundproof rooms, eliminating auditory and visual
distractions [42]. In another instance, during a private study,
EDA and HR signals were collected using Empatica E4 devices
within the controlled environment of a hospital setting [58].
After training the model, some studies went a step further and
tested the explainability model with lay users. Of the 25 studies,
only 5 (20%) tested the explainability output with potential end
users. The Human-Centered Evaluation section explores the
different aspects of the human-centered evaluation methods.

Table 6. Experimental setup of the user and benchmark datasets.

Total datasets, n (%)Experimental setup, n (%)Training dataset

ControlledIn the wild

20 (80)4 (16)>16 (64)User dataset

5 (20)0 (0)5 (20)Benchmark dataset

—a5 (20)20 (80)Total experimental setup

aNot applicable.

Human-Centered Evaluation

Overview
The following sections focus on the 20% (5/25) of the studies
(Table 7) included in this review that evaluated the user

perception of explainability. They examined key aspects, such
as the studied population, materials and methods, study duration,
design, medium of interaction, and type of interaction. Table 7
summarizes the results of the 20% (5/25) of user studies.

Table 7. Human-centered evaluation of the explainability model.

Type of interac-
tion

Medium of inter-
action

MethodStudy designStudy durationMaterialsStudied popula-
tion

Study

InteractiveAppsMixed methodsPretest-posttest
study

30-min introduc-
tory session,
25-day Mind-
Scope use, and
50-min follow-
up interview

Interviews,
questionnaire,
and use logs

Healthy partici-
pants

Kim et al [33]

PassiveAppsMixed methodsBetween sub-
ject

3 min 35 s to 5
min 43 s

SurveyHealthy partici-
pants

Wozniak et al [55]

PassiveSMS text mes-
sages

QuantitativeBetween sub-
ject

6 moSurvey and data
logs

Patients with
prehypertension
or hypertension

Leitner et al [39]

PassiveNo instrumentsQuantitativeWithin subjectNot mentionedSurveyHealthy partici-
pants

Harris et al [56]

InteractiveEmailsQuantitativeBetween-sub-
ject and pretest-
posttest study

1 moData logPatients with
hypertension

Chiang et al [38]

Studied Population
In all the studies (5/5, 100%), the primary focus was on
providing explainability to end users who were not medical
experts, researchers, or AI experts. The emphasis was on
ensuring that the explainability methods used were simple and
easily understandable for the target audience. Of these 5 studies,

3 (60%) specifically targeted healthy individuals [33,55,56].
The focus of these studies was on monitoring and addressing
aspects such as stress levels, promoting trust in AI-generated
step goals, and providing fitness summaries. The goal was to
provide simple and interpretable explanations to help individuals
monitor and improve their overall well-being. The remaining
studies focused on patients with stage-1 hypertension [38,39],
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which is when the blood pressure of an individual ranges from
130 to 139 mm Hg systolic or 80 to 89 mm Hg diastolic most
of the time. In these studies, the primary objective was to
provide explainability for lifestyle recommendations aimed at
managing and improving blood pressure. The goal was to
empower patients with understandable explanations regarding
the recommended lifestyle changes, facilitating their active
participation in their health management. While many
explainability papers center on creating models for clinicians,
such as opioid detection [35] and multiple sclerosis ambulatory
characteristics [45], none of the reviewed studies specifically
addressed this target audience. This observation highlights a
gap in the current research landscape as there is potential for
further exploration and development of explainability models
tailored to the needs and understanding of clinicians and other
health care professionals.

Instruments for Delivering Explainability
In the reviewed studies, explainability was presented and
communicated to the users through various instruments and
platforms. Most of the studies (7/25, 28%) opted for a mobile
app to deliver the explainability components to the users
[33,39,55]. Only 20% (1/5) of the studies used email as the
medium for presenting the explainability [38]. This suggests
that alternative communication channels can be used to deliver
explainability, such as computers or wearable wristbands,
depending on the specific study context and target audience.
By using different instruments for delivering explainability, the
researchers demonstrated their flexibility in tailoring the
presentation of information to suit the needs and preferences of
users.

Type of Data Collected
In the user studies, various types of data were collected to gather
insights and perspectives from the participants. These methods
included interviews, questionnaires, and use logs, which
provided qualitative and quantitative information about user
experiences, preferences, and use patterns [33]. In addition,
surveys were used to gather structured feedback and opinions
from the participants [55,56]. Examples of surveys include the
Perceived Stress Scale [72] used in the study by Kim et al [33],
the Goal Commitment Scale [73], and the Trust Scale [74] used
in the study by Wozniak et al [55]. In one study, a combination
of surveys and data logs was used to capture both subjective
responses and objective use data [39]. Certain studies (1/5, 20%)
also used data logs to record and analyze user interactions and
behavior [38]. It is worth noting that this diverse range of data
collection methods reflects the adaptability of researchers in
selecting appropriate tools for evaluating explainability models,
with no discernible pattern emerging from the reviewed studies
in terms of preferred data types.

Duration of the Study
The data collection duration in the user studies varied. In one
study, the time for data collection per participant ranged from
3 minutes and 35 seconds to 5 minutes and 43 seconds,
indicating brief interactions or tasks [55]. Another study
involved a 30-minute introductory session followed by a 25-day
MindScope use study and concluded with a 40-minute follow-up

interview, allowing for a more extensive examination of
participant experiences [33]. In addition, data collection occurred
over 1 month in a specific study [38], providing a medium-term
perspective on user engagement. One study spanned a longer
duration of 6 months [39], enabling researchers to
comprehensively assess user experiences and outcomes over
an extended period. These variations in data collection duration
highlight the diverse approaches used in user studies and provide
insights into the range of participant engagement and the depth
of data collection achieved in each study.

Study Design
The user studies incorporated various study designs to evaluate
the effectiveness of the explainability models. These designs
included pretest-posttest studies where data were collected
before and after participant interactions with the system to assess
any changes or improvements [33]. Between-subject and
between-subject vignette designs involved dividing participants
into different groups to compare the impact of different
conditions or scenarios [39,55]. Within-subject designs allowed
participants to experience multiple conditions or treatments,
enabling comparisons within individual contexts [56]. In
addition, between-subject designs and pretest-posttest studies
were combined in some studies (1/25, 20%) to evaluate the
system’s impact across different groups comprehensively [38].
The review should reflect a clear preference or consistent pattern
in the selection of a specific study design. However, the choice
of study design seems to be driven by the researchers' individual
preferences and the specific objectives of their investigations.

Challenges Reported
Researchers reported several challenges while conducting user
studies. One notable issue pertained to the experimental design,
wherein participants had limited interaction with each
explanation type, restricted to 5-day intervals [33]. This
abbreviated time frame may not have been sufficient to
adequately assess the varying impacts and distinctions among
different explanation methods. To address this limitation, a
longitudinal study could be considered to offer a more
comprehensive understanding. Another challenge centered on
the need for a control group [33]. The inclusion of a control
group would enable a clearer differentiation of the effects of
prediction and explanation on stress reduction and management
outcomes. Moreover, the task of counterbalancing the diverse
explanations also posed a challenge [33]. Ensuring that each
participant receives explanations in a balanced manner could
enhance the validity of the findings. Furthermore, some studies
(2/5, 40%) had a restricted participant demographic, such as
solely involving college students [33] or relying on a single
platform such as Mechanical Turk [75] for data collection [55].
In addition, some studies (2/5, 40%) had to contend with a
limited number of participants [38,39]. These challenges
collectively underline the importance of carefully addressing
methodological constraints to ensure the robustness and
generalizability of the study’s conclusions.

Technologies for Capturing Quantified Self Data
Among the wearable devices reviewed, the wrist was the most
common placement location (13/25, 52%), as illustrated in
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Figure 13. Some studies (4/25, 16%) used commercially
available devices such as Fitbit and Galaxy Watch [43,46,48,55],
which gather data such as step count, distance traveled, calories
burned, weight, HR, sleep stages, active minutes, and even
location. On the other hand, research-based wristbands such as

the Empatica E4 focus on capturing data such as EDA, blood
volume pulse, HR, and interbeat interval [35,37,58]. In addition,
wearables were predominantly utilized in the studies (16/25,
64%), while mobile applications were used in a smaller
proportion (7/25, 28%), as shown in Figure 14.

Figure 13. Sources of the data collected.

Figure 14. Data collection medium.

In addition, other wearables were identified, specifically
arm-based devices (6/25, 24%) such as glucose monitoring
devices (eg, Freestyle Libre and BioStampRC) [2,41]. These
devices serve the purpose of monitoring glucose levels.
Furthermore, arm-based devices were also found to collect blood
pressure data, with the Omron EVOLV wireless blood pressure
monitor being one notable example [39]. In a couple of studies
(2/25, 8%), the researchers explored the use of sensors
embedded within the shoe insole to capture quantified self data
[50,51]. This approach allowed for the collection of data related
to foot movement and pressure distribution. In several other
studies (7/25, 28%), the focus shifted toward using mobile apps

for gathering quantified self data [40,47,52,56,57]. These apps
often leveraged GPS data and logs to obtain information about
user activities and movement patterns. Overall, this systematic
review revealed a wide range of technologies used to capture
quantified self data, with wristbands, arm-based devices, shoe
insole sensors, and mobile apps playing prominent roles in the
collection process.
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Discussion

Principal Findings

Overview
The emergence of wearable technologies has revolutionized the
field of health care, enabling the collection of vast amounts of
quantified self data and opening new possibilities for AI models.
However, the inherent “black box” nature of AI models has
hindered their seamless integration into medical practices and
public acceptance. This emphasizes the critical role of
explainability in bridging the gap between health care
professionals and AI experts. In this review, we delved into the
adoption of explainable models in health care, with a specific
focus on wearable technologies and quantified self data. The
following sections provide a comprehensive exploration of the
3 main themes: wearables, explainability, and human-centered
evaluation.

Wearables and Data
To address RQs 1 and 2, the widespread application of wearables
in the health care field has been extensively explored in various
reviews [20,76]. These wearable applications encompass a
diverse range, from assessing wearables’ usability [77] to using
wearable cameras for self-management [78], revealing their
limitless potential. However, despite their prevalence and
versatility, the aspect of explainability in wearable technologies
has received less attention. Previous reviews on wearables in
health care have attracted the interest of researchers, covering
a wide range of research papers. Reviews focusing on wearables
have yielded many papers, such as 82 [20] or 73 [79] reviewed
papers, whereas reviews on explainability have produced even
more extensive results, such as 91 [13], 93 [80], or 196 [81]
reviewed papers. In contrast, this review specifically delved
deeper into the investigation of explainability in wearables, and
thus, the number of relevant results decreased significantly,
with only 25 papers. This discrepancy highlights the relatively
limited focus on explainability within the realm of wearable
technologies despite their vast potential and relevance in the
health care domain. Notably, explainability is particularly vital
for the lay public and health care professionals, who form the
primary target audience for wearable devices.

Despite the limited focus on explainability in wearables, this
review revealed that some of the findings align with general
trends observed about wearables. Notably, wrist-worn wearables
have emerged as the most commonly used technology, as seen
in the Technologies for Capturing Quantified Self Data section,
which is in line with previous research [82,83]. Specifically,
Fitbit and Empatica E4 wristbands were identified as the most
used wearables, with Fitbit being more dominant than Empatica
E4 in the literature [82,83]. This can be due to the high cost of
Empatica E4 in comparison to Fitbit devices [84] as it costs an
average of US $1700, whereas the Fitbit Sense costs US $170,
which is 10 times cheaper. However, the reason for choosing a
specific wearable depends on the use case and aim of the study
as some signals are not captured by Fitbit, such as those from
temperature sensors and accelerometers. For example, the
Empatica E4 wristband stands out for its promising potential

in the unobtrusive measurement of HR variability [85]. The
data collected from these wearables predominantly consisted
of physiological signals, making them the most used input data
for developing AI models. User-generated datasets significantly
outnumbered benchmark datasets. When examining the
experimental setups, it became evident that most studies (20/25,
80%) operated within uncontrolled real-world settings. A recent
review underscored the constraints associated with imbalanced
datasets primarily stemming from publicly available sources
rather than real-world data [13], which is contrary to the findings
of this review.

While wearables in health care have shown immense promise,
there are critical considerations and recommendations to ensure
their effective use while aligning with the goals of explainability.
First, there is an urgent need to prioritize the development of
XAI models and user interfaces for wearables. This is essential
to bridge the gap in understanding between users and the insights
derived from wearable data, thereby enhancing trust, reliability,
and usability—key components of explainability. Second, when
choosing wearables for health care applications, researchers
and practitioners must carefully assess their specific data
requirements against factors such as cost, comfort, and data
capture capabilities. This strategic selection of wearables can
significantly impact the quality and relevance of collected data,
contributing to transparency and fairness in data collection.
Moreover, it is crucial to continue emphasizing the use of
real-world data in wearable studies. Such data better reflect the
complexity of health care scenarios and enhance the practicality
of research findings, ensuring that causal relationships and
privacy concerns are appropriately addressed. By adhering to
these recommendations and aligning them with the goals of
explainability, we can ensure that wearable technology in health
care not only realizes its potential but also serves users
effectively, ethically, and transparently.

Explainability for Wearable Data
To address RQs 3 and 4, various explainability methods were
explored, and a noticeable trend emerged toward using
model-agnostic approaches (15/25, 60%) such as SHAP, as seen
in the Stage of Explainability section. Model-agnostic methods
have gained popularity due to their ability to be applied to a
wide range of ML models regardless of complexity or type,
unlike other methods such as gradient-based or attention-based
methods. These methods provide explanations independently
of the model’s internal workings [86]. Interpretable models face
a trade-off between accuracy and interpretability [87].
Model-agnostic interpretability treats the model as a black box,
creating a separation between interpretability and the model.
This approach allows the model to be flexible and versatile,
accommodating diverse ML methods, including complex ones
such as deep neural networks [86]. Decoupling interpretability
from the model enables a balance to be achieved between
accuracy and interpretability, providing a valuable tool for
understanding and explaining the model’s behavior [86].
Furthermore, this approach empowers medical professionals to
gain valuable insights into the decision-making process and
understand the impact of different features on predictions for
conditions or diseases. By understanding how the AI models
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arrive at their conclusions, medical professionals can build trust
and confidence in using AI technology [88].

SHAP stands out as a widely used model-agnostic method
(12/25, 48%), offering feature importance values based on the
Shapley value from the cooperative game theory [28]. This
framework helps interpret the impact of individual features on
model predictions [28]. The trends in explainability identified
in this review align with previous findings in the literature. A
previous review categorized explainability into different types,
such as feature, example-based, and textual explanations [89].
Feature explainability involves techniques such as SHAP, LIME,
and CAM. In this review, a similar pattern emerged, with feature
explainability being more prevalent. However, the choice of
explainability method depends on the specific use case, the
model in question, and desired interpretability levels. While
model-agnostic methods such as SHAP have gained popularity,
other techniques such as rule-based models, decision trees, and
feature importance analysis may be more suitable for certain
scenarios.

In this review, it was observed that post hoc explainability
methods were more commonly used (22/25, 88%) than ante hoc
explainability methods (3/25, 12%) in the field of wearables,
as seen in the Stage of Explainability section. This trend is
attributed to the fact that post hoc methods can be applied to
any existing model regardless of its initial explainability
capabilities. On the other hand, ante hoc methods require models
to be designed and trained with explicit explainability
mechanisms, making these methods less prevalent. These
findings align with those of previous studies, which have
reported a higher prevalence of post hoc methods [81,89].
However, compared to reviews generally focusing on
explainability, ante hoc methods are used more frequently than
post hoc methods [26,90]. This discrepancy may be attributed
to different research contexts and objectives.

Furthermore, it was observed that most of the explainability
methods reviewed in this study had a local scope (15/25, 60%)
rather than a global one (10/25, 40%), as seen in the Scope of
Explainability section. Local explainability methods focus on
providing explanations for individual predictions or instances,
allowing for a detailed understanding of how the model arrived
at a specific decision. On the other hand, global explainability
methods aim to provide insights into the model’s overall
behavior and decision-making process. The prevalence of local
explainability methods in this review suggests a more targeted
approach to understanding specific model predictions, which
can be valuable in practical applications in which users may be
more interested in individual predictions rather than a holistic
view of the entire model. When discussing local and global
explainability, it is valuable to consider and present both types
together rather than focusing on only one [91].

The explainability of models was often conveyed through visual
formats (17/25, 68%) using different types of graphs. Visual
explainability has demonstrated greater prominence when
compared to other outputs such as numerical, rule-based, and
textual explanations [26,81,92]. This preference for visual
representations highlights the effectiveness of using
visualizations to enhance the interpretability and understanding

of complex AI models. The level of explainability output is
linked to the end-user audience. For instance, when the end user
comprises the public, the output is tailored to be visually
engaging, interactive, and user-friendly, as seen in the
Multimodal Explanations section. In contrast, when the intended
audience consists of researchers or medical professionals, the
explanation may be presented through more technical means,
such as data-rich visualizations (eg, heat maps), as seen in the
Visual Explanations section.

Model explainability is paramount in the evolving landscape
of AI research. The decisions in this realm are critical.
Model-agnostic methods, notably SHAP, have garnered attention
for their adaptability. A significant proportion of studies (24/25,
96%) adopted post hoc explainability as it offers the convenience
of integration after model development. While there is a
discernible tilt toward elucidating local predictions, a holistic
approach encompassing both local and global perspectives is
essential. Visual presentations stand out as the preferred mode
to enhance the comprehension of AI models. From the findings,
given that the datasets used in building the AI models were
mostly from users (20/25, 80%) rather than benchmark datasets
(5/25, 20%) and the emphasis on using local (15/25, 60%) rather
than global (10/25, 40%) explainability, this showed a distinct
move toward personalization. This shift is anticipated given the
growing momentum of precision medicine on the global stage
whether in research or practice and the emphasis on the
importance of patient-centered health care.

Human-Centered XAI Needs More User-Based
Evaluation
To address RQ 5, the primary objective of explainability is to
create models that are transparent and understandable for end
users, making it crucial to involve them in the validation process.
However, in this review, of the 25 papers analyzed, only 5 (20%)
reported user studies, indicating a limited focus on user
evaluations. This trend aligns with findings in the broader
literature, where only 1 in 5 papers included user evaluations
[26]. Furthermore, the user evaluations conducted in the
reviewed studies primarily targeted healthy individuals and
patients with hypertension, limiting the representation of other
populations. Despite the diversity of domains in the studies, the
scope of user evaluation still needs to be narrower. Expanding
the range of user evaluations across various populations is
essential to enhance the real-world applicability and acceptance
of AI models in the health care domain.

Assessing the explainability of wearables is crucial. As
wearables rapidly evolve into essential tools for persistent health
monitoring, they produce massive amounts of data daily. These
complex data necessitate clear interpretation to make
well-informed decisions [93]. As these devices become more
woven into a person’s daily life, the decisions based on their
data significantly affect health and well-being. Such decisions
are deeply personal. Hence, it is imperative not just to have
accurate data interpretation but also for users to easily
understand, use, and trust the results. If users, including medical
professionals, cannot comprehend or have confidence in these
insights, they might hesitate to act on them or could make
incorrect choices.
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Considering the personal and intimate nature of data from
wearables, user studies are essential. Furthermore, gauging
XAI’s effectiveness with users is paramount to foster trust,
customize explanations to the users’needs, understand the users’
context, and ensure overall usability [93]. This assessment not
only supports and evaluates the alignment with AI’s ethical and
regulatory standards but also enhances its overall acceptability.
However, in-the-wild user studies remain a notable gap in this
area [94]. The design, development, and evaluation of AI and
ML systems must transition to real-world applications. This
shift calls for interdisciplinary collaboration and multiple design
and evaluation iterations [95]. While real-world evidence is
beneficial for patients, caregivers, medical professionals, and
society at large, adopting a human-centric approach can be
challenging due to the sociotechnical aspects involved [53].

Limitations
While our literature search was comprehensive, the application
of strict inclusion and exclusion criteria resulted in a relatively
low number of studies being included in the review. We also
stopped the collection and started the analysis and reporting
work on December 31, 2022. This selection process, while
ensuring the quality of the included studies, may limit the
generalizability of our findings to a broader population of
studies. In addition, the limited number of studies involving
end users in our review underscores the need for caution when
concluding this subset of the data. To address these limitations
and enhance the robustness of the findings, further research
with more extensive and diverse samples is recommended.

Implications for Practice and Future Development
The findings of this review have several implications for both
current practice and future development in the field of XAI in
wearable technologies for health care. For practice, this review
highlights the importance of incorporating explainability into
the design and implementation of wearable technologies used
in health care. As these technologies become more prevalent in
medical settings, medical professionals and end users must
understand how AI models arrive at their decisions. By
providing interpretable and transparent explanations, medical
professionals can gain insights into the decision-making process
of complex models and build trust and confidence in using AI

technology. This, in turn, can lead to more effective and
informed decision-making in patient care and treatment.

Moreover, this review emphasizes the need for more user
evaluation and involvement in the development of XAI models.
Understanding the perspectives and needs of end users is
essential to ensure that the explanations provided by the models
are meaningful, useful, and user-friendly. Future development
should focus on integrating user feedback into the design
process, enabling personalized explanations. In addition, this
review highlights the significance of visual outputs for
presenting explainability. While the current research landscape
in XAI primarily relies on visualization and text-based
explanations, there needs to be more exploration into alternative
modalities for XAI, such as audio or gamification. To advance
future development in this field, it is imperative to shift our
focus from existing trends toward addressing these gaps. Instead
of solely concentrating on established approaches, we should
actively investigate novel methods that may offer more effective
means of conveying complex model behavior to diverse
audiences, including medical professionals and patients. By
diversifying our approach to XAI and considering alternatives
such as audio or gamification, we can strive to create simpler
and more user-friendly explanations that not only foster greater
understanding but also enhance the acceptance and adoption of
AI technologies in health care.

Conclusions
This review highlights the nascent and growing significance of
XAI in wearable technologies for health care, with 25 research
papers included over the last 5 years. The results highlighted
that, while wrist-worn wearables such as Fitbit and Empatica
E4 are commonly used, the focus on explainability is relatively
limited. Post hoc methods such as SHAP emerged as popular
choices due to their versatility. Visual outputs are commonly
used for user-friendly representations. However, this review
highlighted the limitations in user evaluation and the importance
of involving users in the process. The small number of
human-centered evaluation studies limits the generalizability
of the results. Overall, further research in the area of XAI and
wearables can pave the way for more transparent and reliable
AI models in health care applications.
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