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Abstract

Background: With the rise of computer science and artificial intelligence, analyzing large data sets promises enormous potential
in gaining insights for developing and improving evidence-based health interventions. One such intervention is the counseling
strategy motivational interviewing (MI), which has been found effective in improving a wide range of health-related behaviors.
Despite the simplicity of its principles, MI can be a challenging skill to learn and requires expertise to apply effectively.

Objective: This study aims to investigate the performance of artificial intelligence models in classifying MI behavior and explore
the feasibility of using these models in online helplines for mental health as an automated support tool for counselors in clinical
practice.

Methods: We used a coded data set of 253 MI counseling chat sessions from the 113 Suicide Prevention helpline. With 23,982
messages coded with the MI Sequential Code for Observing Process Exchanges codebook, we trained and evaluated 4 machine
learning models and 1 deep learning model to classify client- and counselor MI behavior based on language use.

Results: The deep learning model BERTje outperformed all machine learning models, accurately predicting counselor behavior
(accuracy=0.72, area under the curve [AUC]=0.95, Cohen κ=0.69). It differentiated MI congruent and incongruent counselor
behavior (AUC=0.92, κ=0.65) and evocative and nonevocative language (AUC=0.92, κ=0.66). For client behavior, the model
achieved an accuracy of 0.70 (AUC=0.89, κ=0.55). The model’s interpretable predictions discerned client change talk and sustain
talk, counselor affirmations, and reflection types, facilitating valuable counselor feedback.

Conclusions: The results of this study demonstrate that artificial intelligence techniques can accurately classify MI behavior,
indicating their potential as a valuable tool for enhancing MI proficiency in online helplines for mental health. Provided that the
data set size is sufficiently large with enough training samples for each behavioral code, these methods can be trained and applied
to other domains and languages, offering a scalable and cost-effective way to evaluate MI adherence, accelerate behavioral coding,
and provide therapists with personalized, quick, and objective feedback.
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KEYWORDS

motivational interviewing; behavioral coding; suicide prevention; artificial intelligence; effectiveness; counseling; support tool;
online help; mental health

J Med Internet Res 2024 | vol. 26 | e53562 | p. 1https://www.jmir.org/2024/1/e53562
(page number not for citation purposes)

Pellemans et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:m.j.pellemans@vu.nl
http://dx.doi.org/10.2196/53562
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Motivational interviewing (MI) is a client-centered counseling
style that helps individuals change their behavior by resolving
ambivalence using nondirective conversation techniques. It has
been found effective in improving a wide range of health-related
behaviors [1], such as weight management [2], addictive
behaviors [3], and promoting self-management in patients with
chronic health conditions [4]. During MI, counselors use a
specific set of conversation techniques, most notably open-ended
questions, and reflections, to let clients voice their own
arguments for a particular behavior change. They are encouraged
to elaborate on these reasons. This way, clients reason
themselves into changing their behavior, strengthening their
intrinsic motivation for the behavior change and avoiding the
often-triggered defensive mechanisms when others argue for
such a change. MI is a crucial anchor in guiding the counseling
process during chat-based conversations at the Dutch national
organization for suicide prevention (Dutch: 113
Zelfmoordpreventie).

Despite the simplicity of its principles, MI can be a challenging
skill to learn, and MI requires substantial expertise to apply
effectively [5]. Earlier research has shown that counselors at
113 applied MI techniques consistently during chat
conversations but could not strategically deploy MI techniques
to elicit enough change talk from clients to change their behavior
intrinsically [6]. Therefore, it becomes imperative to improve
the proficiency level of counselors in applying MI techniques
to conduct conversations more effectively, especially, since
eliciting change talk from clients’ accounts for the effectiveness
of MI [7].

One way to achieve this is through the automated evaluation of
counselor responses to clients’ expressed language utterances.
By increasing their behavior awareness, counselors can
significantly reduce cognitive effort and reflect on MI insights
for education. Multiple validated proficiency measures exist
for MI [8], and tools are already in development to measure
treatment fidelity automatically [5,9]. In the context of
chat-based helplines, these tools can provide counselors with
immediate feedback during ongoing chats, potentially improving
the quality of the service. Chat-based helplines also present a
unique opportunity for developing such treatment fidelity tools
due to the availability of extensive databases of written
conversations. Also, Lundahl et al [1] found that MI is a robust
intervention across patient characteristics, which gives these
tools broad applicability in numerous health settings.

Enhancing MI Effectiveness Through Artificial
Intelligence
Artificial intelligence (AI) has made a significant impact in
recent years in many fields, the field of clinical mental health
being no exception. AI offers enormous potential to analyze
large data sets through machine learning (ML) algorithms. By
analyzing data from MI sessions, ML algorithms can identify
successful and unsuccessful applications of MI concepts,
supporting and training MI practitioners. In addition, counselors

can use an AI support tool to evaluate the quality of their
sessions. These tools can help improve and assess counselors’
MI proficiency cost-effectively and tailor additional training to
their needs.

AI can also speed up the coding of MI sessions, making it easier
to analyze and provide feedback during and after a counseling
session. Providing counselors with ongoing feedback seemed
especially important for learning MI [10]. Besides, immediate
feedback has a more powerful impact on skill development than
delayed feedback [9].

Although large amounts of data are typically required to train
ML models to perform well on complex tasks such as capturing
MI behavior, AI has developed techniques that perform well in
domains with limited available data, providing insights into
developing and improving evidence-based health interventions
[11].

Since behavioral coding is often time-consuming, several studies
have explored the automated annotation of MI transcripts in
counseling sessions using ML techniques. Hasan et al [12]
conducted experiments on automating the annotation of weight
loss counseling sessions using the MI Sequential Code for
Observing Process Exchanges (MI-SCOPE) codebook. They
assessed various classification methods, incorporating linguistic,
contextual, and semantic features based on linguistic inquiry
and word count (LIWC) [13]. Their experiments showed that
a support vector machine (SVM) model with these features
achieved 75% accuracy in automatically annotating MI
transcripts containing 17 behavioral codes. Idalski Carcone et
al [14] aimed to develop a classification model to automatically
code clinical encounter transcripts about weight loss using the
MI-SCOPE behavioral code scheme. Their SVM model
achieved a 69.6% F1-score on 17 classes. Tanana et al [15]
introduced 2 ML models for automatically coding MI sessions.
The researchers found that the best-performing ML model had
a good or higher utterance–level agreement with human coders
(Cohen κ>0.60) for open and closed questions, affirmations,
and giving information. However, there was a poor agreement
for client change talk, client sustain talk, and therapist
MI-congruent behaviors. Pérez-Rosas et al [16] presented a
model for predicting MI counselor behaviors in multiple medical
settings. Their SVM classifier performed well for more
frequently encountered behaviors (reflections and questions)
using N-grams, syntactic, and semantic LIWC features [13].
However, the performance varied much per predicted class, also
obtaining lower performance for emphasizing autonomy and
affirmations. Tavabi et al [17] compared the classification
performance of client behaviors throughout MI psychotherapy
sessions with students having alcohol-related problems using
pretrained embeddings and interpretable LIWC features. Their
best-performing model (pretrained RoBERTa) achieved an
F1-score of 0.66 in a 3-class classification. Saiyed et al [5]
developed a Technology-Assisted Motivational Interviewing
Coach incorporating ML models to deliver MI predictions for
counseling sessions about tobacco cessation. Using a novel deep
learning architecture combining a large fine-tuned language
model and graph theory, the automated change talk/sustain
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talk/follow-neutral classifier achieved an accuracy of 0.74 and
an F1-score of 0.75.

For a comprehensive overview of research papers using ML to
classify MI behavior for assessing treatment fidelity, we refer
to Ahmadi et al [18]. Multimedia Appendix 1 provides a
schematic overview of the related work, including study context,
study size, used fidelity measure, and—if reported—the coding
reliability estimate. The application domain significantly varies,
which also applies to the reporting of coding reliability
estimates. Assessing treatment fidelity and reliability holds
enormous relevance for evaluating study quality and the
successful integration of MI into practice. A meta-analysis on
the effect of MI on medication adherence found that
interventions that examined fidelity and provided counselors
with feedback on their fidelity were more effective than those
that did not [19], indicating that a higher fidelity may lead to
improved intervention outcomes. Frost et al [20] highlighted
that fidelity is often poorly measured and reported. Moreover,
MI adherence and fidelity demonstrated considerable variation
across different settings and application domains [20-22].

Despite the promising algorithm performances, predicting
MI-congruent counselor behavior and eliciting client change
talk was challenging [15,16]. Besides, few studies adhered to
best-practice ML guidelines. Although testing methods on
unseen data is an essential measure of method performance in
ML, only a small proportion of studies tested their methods on
holdout data. A holdout subset provides a final estimate of the
ML model’s performance after it has been trained and validated.
Similarly, Ahmadi et al [18] found that almost half of the studies
in their review did not describe how they undertook data
preprocessing.

For readers to assume that ML methods will generalize on future
data, researchers must report these methodological processes
clearly and transparently, including robust coding reliability
and fidelity measures. Previous studies showed the feasibility
of providing feedback to counselors via a support tool [23],
consistently measuring fidelity and reporting Krippendorff’s
alpha estimates for interrater reliability.

This Study
This study aims to investigate the performance of AI models in
classifying MI behavior and explore the feasibility of using
these models in helplines as an automated support tool for
counselors in clinical practice. We use a coded data set of 253
chat-based MI counseling sessions conducted at the chat helpline
of 113 Suicide Prevention. We train and compare different AI
algorithms to classify client- and counselor MI behavior based
on language use to identify the most suitable model for the task.

The key contributions of this paper are as follows: (1) to the
best of our knowledge, this is the first research that combines
AI and MI with a focus on suicide prevention. (2) We aim to
assist counselors in a suicide prevention helpline to overcome
the practical challenges of eliciting change talk and enhancing
awareness of conversation quality by providing feedback. (3)
Our AI approach is described in detail, adhering to the best
practices in the field and establishing a benchmark for
implementing similar techniques in various settings.

Methods

Data Set
This study used a coded data set of 253 chat conversations
(constituting 23,982 chat messages, 12,125 counselor messages,
and 11,857 client messages) from chat-based MI counseling
sessions conducted at 113 between July 2020 and January 2021.
All chats were Dutch language chats and lasted at least 20
minutes. Janssen et al [6] described the exact data collection
procedure.

Participants
Participants in the data set contacted the 113 crisis chat service
in the Netherlands between 8:30 AM and 10:30 PM. All clients
who spoke Dutch, filled out both a pre-and postchat
questionnaire, and reported at least some suicidal ideation on
the prechat questionnaire (score ≥1 on a 7-point Likert scale)
were eligible for participation in the study [6].

Ethical Considerations
The ethics review committee of the VU University Medical
Center in Amsterdam reviewed and approved this study
(2020.105). The national legislation and institutional
requirements did not require written informed consent from the
participants. All nonessential identifying details have been
omitted.

For analysis, we used only (cleaned) text of the chat messages
without any personalized metainformation (including—but not
limited to—age, gender, ethnicity, or clinical diagnosis). There
was no collection procedure for other additional data before,
during, or after a chat conversation. The publication of the
results did not have any negative impact on the participants.
Participants did not receive any form of compensation.

Procedure

Measures
Practical instruments exist to understand the quality and
effectiveness of applying MI in counseling conversations.
Researchers coded the data set with the MI-SCOPE coding
instrument [24]. Researchers created this tool to explore the
relationships between essential theoretical constructs of MI, the
therapy process, and client outcomes. The focus is on analyzing
the relationship between MI-specific interviewer behaviors and
subsequent client behaviors within an MI session. The
MI-SCOPE combines 2 successful coding systems: the MISC
[25] and the commitment language coding system developed
by Amrhein et al [26].

The MI-SCOPE provides 5 indices of treatment integrity,
including the percentage of MI-consistent responses, the relative
amount of open questions, the proportion of complex reflections,
the reflection-to-question ratio, and the proportion of change
talk. Hurlocker et al [8] indicated that reliability estimates for
the MI-SCOPE are generally fair to excellent.

While most studies have used the MISC only [18] or the
well-validated but relatively short MITI, these instruments do
not provide information on the amount of change talk and
sustain talk expressed by the client, whereas the MI-SCOPE
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does. The MI-SCOPE thus covers more aspects of MI,
incorporating both client and counselor behavior, and is more
time-efficient [27]. Had the MITI or the MISC been used instead
of the MI-SCOPE, Janssen et al [6] would not have detected
the insufficiency of MI effectiveness in eliciting client change
talk. Research by Magill et al [28] and Pas et al [29] also
emphasizes the importance of fidelity measures in MI. The
studies suggest that therapist adherence to MI techniques can
influence client engagement and outcomes, and high-fidelity
counseling can improve intervention effectiveness.

Data Set Coding and Reliability
Researchers who coded the data set [6] followed
recommendations by O’Connor and Joffe [30] and described
the exact coding procedure in their paper. Of the total number
of counselor messages, Janssen et al [6] labeled 9177 counselor
messages with fine-grained MI behavioral codes and 2948 chat
messages with less fine-grained codes, indicating only MI
congruency.

The coding process for all MI conversations lasted 4 months,
from January 1, 2021, to May 12, 2021. The researchers used
the qualitative data analysis tool ATLAS.ti 9 for the coding
procedure and assessing reliability estimates. Intercoder
reliability was sufficient, as Janssen et al [6] reported a
Krippendorff’s alpha-binary of 0.82 for the percentage of

MI-consistent responses and 0.90 or higher for open questions,
closed questions, and reflections. Generally, researchers consider
an alpha-binary over 0.90 acceptable in all cases, while an
alpha-binary ranging from 0.80 to 0.90 is deemed sufficient.

Code Grouping
To predict counselor behavior congruent with MI, we partnered
with a seasoned psychologist at 113 (listed as the fourth author,
WJ) to group the annotated MI behavioral codes—as outlined
in the MI-SCOPE coding manual [31]—considering the practical
challenges within the counseling process.

We combined all closed questions, negative and neutral
reflections, and positive reflections (simple and complex),
yielding 17 code groups for counselor language. For counselor
language, we created 2 groups of the MI-SCOPE codes based
on whether counselor language elicited client change talk (7477
nonevocative messages; 1700 evocative messages) and whether
it was MI congruent (8765 MI-congruent messages; 3360 MI
incongruent messages; see Table 1). We excluded the labels
Raise Concern and Direct from further analysis due to their low
occurrence in the data set. We did not assign detailed labels to
the 4 client codes (Ask, Follow/Neutral, Change Talk, and
Sustain Talk). Initial data analysis revealed that only 18.52%
of all counselor messages were evocative and 70.33% were MI
congruent.

Table 1. MIa code groups for counselor language and whether or not a code is assigned evocative or MI congruent.

MI congruentEvocativeMI code group

✓×Advise with Permission

××Advise without Permission

✓✓Affirm (Aff)

××Closed Question

××Confront (Con)

✓✓Emphasize Control (Econ)

××Filler (Fill)

××General Information (GI)

✓✓Open Question (OQ+)

✓×Open Question (OQ−)

✓×Open Question (OQ0)

✓×Permission Seeking

✓✓Reflection (+)

✓×Reflection (0−)

××Self-Disclose (Sdis)

✓×Structure (Str)

✓×Support (Sup)

aMI: motivational interviewing.

Analytic Strategy
We trained and evaluated 4 ML models and 1 deep learning
model to classify client and counselor MI behavior based on
language use. ML models benefit from human-extracted

features, while deep learning models learn complex patterns
without feature selection. Although deep learning models have
better performance potential, these models require more data
and have less interpretable reasoning. We further describe the
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feature selection process, the models, and how we addressed
these limitations of the deep learning model.

Feature Selection

Available Features

In total, we extracted 5850 features for each of the MI-coded
chat messages. These features included high-level concepts such
as topic, grammar, and sentiment, as well as low-level concepts
such as counting the occurrence of each word. For a complete
list of all feature categories used for the ML models, see
Multimedia Appendix 1.

Feature Subsets

To gain insight into the impact of each feature category on the
classification performance, we created subsets by adding 1 or
more feature categories to the previous subset, resulting in 8
sets of features that we used to train the ML models, starting
with the initial subset containing only the basic feature
categories and ending with the final set containing all extracted
features.

Train-Validation-Test Split
For each classification problem, we split each group of chat
messages—stratified by class distribution—80%:10%:10% to
create training, validation, and test data sets. To rightly measure
model performance, it is essential to hold out data. We used the
training set exclusively to train the models, evaluated the
training progress on the validation set, and obtained the final
performance using the test set. Table S3 in Multimedia
Appendix 1 shows the number of classes and instances for each
classification problem.

Learning Algorithms
We trained and evaluated 4 different ML models and 1 deep
learning model for each classification problem: a random forest,
an SVM, k-nearest neighbors, a decision tree, and a pretrained
transformer model.

We chose a pretrained transformer model to overcome the
limitations of regular deep learning model architectures.
Transformer models are a type of deep learning network that
can be pretrained on a large amount of data and then fine-tuned
on a smaller, more specific data set to make predictions. By
pretraining on a large data set, the model can learn to understand
the structure and patterns of language, making it easier to adapt
to new domains, which enables the training of complex models
with limited data. Researchers showed that the BERT model
[32] suits this approach particularly. We used a variant of BERT
(Bidirectional Encoder Representations from Transformers),
called BERTje (monolingual Dutch BERT), which already has
been pretrained on a large Dutch text corpus [33], and fine-tuned
BERTje on our domain-specific data set for each classification
problem.

A grid search technique was used to select the best model
parameters, as initial testing showed that the parameter values
could severely impact model performance. Table S4 in
Multimedia Appendix 1 provides an overview of the models
and the considered parameters. The final analysis excluded
compensating for the imbalance of the class labels in the data,

as initial testing also showed that it did not lead to differences
in the results. To account for this, we evaluated the models using
statistics that can take class imbalances into account.

We used 5-fold cross-validation to validate the models and
applied minimum-maximum scaling before training. We
implemented all ML models in Python 3.8 (developed by Python
Software Foundation) and implemented the fine-tuning of
BERTje using PyTorch Lightning (developed by Lightning AI).

Evaluation Metrics
Computing the confusion matrix and conducting an area under
the receiver operating characteristic curve analysis allowed us
to assess the classifiers and obtain visual and statistical insights
into their predictive performance. We also quantified the kappa
statistic and accuracy for the best-performing models. We
extracted the probability distribution of the predictions from all
classifiers to compute the sample average F1-score. The
probability distribution indicates the confidence or likelihood
of a specific model prediction. For a detailed explanation of
these evaluation metrics, see the study by Zheng [34] and
Figures S1 and S2 in Multimedia Appendix 1 [35,36].

Baseline
The baseline score provides a required point of comparison
when evaluating all predictive algorithms for a classification
task. We consider predicting the majority class as a baseline,
meaning that we select the prediction class with the most
observations and use it as the outcome for all predictions. We
expect the predictive models that learn from the data to perform
substantially better.

Validity
We used identical statistics, training, validation, and test samples
to evaluate the trained models, making the validation of the
results comparable across all models.

Explainability
To interpret the output of the models, we used Shapley Additive
Explanations (SHAP) [37] as a method. SHAP provides a way
to obtain the contribution of each feature in the model’s
prediction for a particular input. Values provided by SHAP
represent a feature’s average marginal contribution toward the
difference between the predicted output and the model’s
expected output. A higher value indicates a higher contribution
to the output and interprets it as a more important feature.

Results

Algorithm Performance
In this section, we present a comprehensive evaluation and
performance analysis of the ML models and the transformer
model BERTje across all 4 classification tasks. We further
interpret the model predictions by deploying SHAP and laying
out the most occurring word combinations for each prediction
class.
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Classifying Counselor Behavior

Fine-Grained Predictions

Figure 1 presents a performance comparison of the learning
algorithms using the best parameters for classifying counselor
behavior. The reported scores represent the average of 5 repeated

runs for each model. The SVM model (γ=0.1, C=10) showed
the highest F1-score of 0.63 among all ML models. Random
forest and SVM models outperformed the decision tree and
k-nearest neighbors. For an overview of the ML model
performances on the different feature subsets, see Table S5 in
Multimedia Appendix 1.

Figure 1. Learning algorithm performance for predicting client- and counselor behavior. The SD for the results yields 0.015 for counselor behavior
and 0.013 for client behavior. CIs for the results are given by performance value ± 2 × SD. DT: decision tree; kNN: k-nearest neighbors; RF; random
forest; SVM: support vector machine.

Incorporating textual information and word-embedding features
resulted in the highest increase in the performance of the ML
algorithms. Among all models tested, the transformer model
BERTje achieved the highest performance with an F1-score of
0.73. Table 2 shows a detailed model performance evaluation
of BERTje. With an accuracy of 0.72, kappa statistic of 0.69,
and area under the curve (AUC) score of 0.95, its results

represent a 350% improvement in accuracy from the baseline.
The AUC scores per class ranged from 0.89 to 0.99. The model
performed best on fillers and affirmations with an AUC score
of 0.99 and lowest on advise without permission and confront
with an AUC score of 0.89. Errors mainly occurred when
predicting neutral, open questions as positive open questions
(14 errors), positive reflections as neutral or negative reflections,
and open questions as closed questions (17 errors).
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Table 2. BERTje: detailed model performance evaluation on all classification tasksa.

Kappa
values

AccuracyMacroaverage
AUC

Microaverage
AUC

Sample

average

F1-score

AUCbF1-scoreClassification task

0.690.720.950.960.73Counselor behavior

0.940.50Advise with Permission (AWP)

0.890.39Advise without Permission (ADW)

0.990.86Affirm (Aff)

0.970.85Closed Question

0.890.31Confront (Con)

0.910.38Emphasize Control (Econ)

0.990.80Filler (Fill)

0.960.67General Information (GI)

0.950.64Open Question (OQ+)

0.970.69Open Question (OQ−)

0.940.72Open Question (OQ0)

0.960.71Permission Seeking (Perm)

0.930.51Reflection (+)

0.970.76Reflection (0−)

0.960.57Self-Disclose (Sdis)

0.970.84Structure (Str)

0.950.69Support (Sup)

0.650.870.920.940.88MIc congruency

0.920.91MI-Congruent (X MI+)

0.920.76MI-Incongruent (X MI−)

0.660.900.920.960.90Evocative language

0.920.73Evocative

0.920.94Nonevocative

0.550.700.890.900.71Client behavior

0.990.81Ask

0.810.61Follow/Neutral (FN)

0.870.66Change Talk (X Csa+)

0.890.74Sustain Talk (X Csa−)

aCells with no numerical value indicate “not applicable.”
bAUC: area under the curve.
cMI: motivational interviewing.

MI Congruency

The fine-tuned BERTje model achieved a sample average
F1-score of 0.88 in accurately predicting counselor behavior as
either MI-congruent or MI-incongruent (see Table 2). In
addition, it demonstrated a high accuracy of 0.87, accompanied
by a kappa value of 0.65 and a macroaverage AUC score of
0.92. These results signify an accuracy improvement of 20.8%
compared with the baseline performance (accuracy=0.72).

Evocative Language

The fine-tuned BERTje model achieved a sample average
F1-score of 0.90 in accurately predicting whether counselor
language is evocative or nonevocative (see Table 2). Moreover,
it demonstrated an accuracy of 0.90, a kappa value of 0.65, and
a macroaverage AUC score of 0.92. These results signify an
accuracy improvement of 9.8% compared with the baseline
performance (accuracy=0.82).
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Classifying Client Behavior
Figure 1 also shows a performance comparison of the learning
algorithms using the best parameters for classifying client
behavior. For an overview of the ML model performances on
the different feature subsets, see Table S6 in Multimedia
Appendix 1. All models improved classification performance
compared with the baseline. The best ML model was an SVM
model (γ=0.1, C=10), reaching a sample average F1-score of
0.65. BERTje outperformed all ML algorithms, reaching a
sample average F1-score of 0.71 with an accuracy of 0.70, Cohen
κ=0.55, and a macroaverage AUC score of 0.89. These results
indicate an accuracy improvement of 70.7% compared with the
baseline. The AUC scores per class range from 0.81 to 0.99 (see
Table 2). Although the lowest occurrence across the client
messages, BERTje predicted the code Ask best (AUC=0.99).
Follow/Neutral was the hardest to predict (AUC score=0.81).
We observed that errors mainly occurred in predicting
Follow/Neutral messages as commitment language.

Feature Contributions
According to the SHAP feature importance analysis conducted
on the best-performing ML models, word-embedding features
held significant dominance. Furthermore, the number of question
marks in a message emerged as a consistently influential factor
for client- and counselor behaviors. Table S7 in Multimedia
Appendix 1 shows the features that contribute most to the
predictions of each class individually. Moreover, this table
shows the top word combinations reflecting the language
character of different client and counselor behaviors. The
inferred prediction classes associated with the MI-SCOPE codes
are generally interpretable. For example, client ambivalence
becomes clear when counselors use reflections with word
combinations such as “on one side,” “on the other side,” and
“conflicted.” Concerning client commitment language, negative
sentiment, and negations contributed to both sustain talk and
change talk. When these features were present, client language
was more likely to be associated with sustain talk rather than
change talk. Contrarily, the absence of these features indicates
more association with client change talk.

Discussion

Interpretation of the Results
The results of this study demonstrate the potential of AI models,
particularly the transformer model BERTje, in classifying MI
behavior in online mental health helplines. BERTje
outperformed all ML models tested, achieving high levels of
accuracy across all classification tasks. Although ML models
obtained lower performance than the BERTje model, their high
explainability adds value for gaining a deeper understanding of
language use concerning specific MI behaviors.

The successful application of a fine-tuned transformer model
in classifying MI behavior is consistent with other recent studies,
such as by Saiyed et al [5] and Tavabi et al [17], who also used
a fine-tuned transformer model to classify MI behavior in
counseling sessions. Both studies also used some form of model
interpretation to understand how the models make predictions
and what features or words characterize each class. Our study

extends this line of research by using a different data set, coding
scheme, and transformer model than the previous studies. Both
related studies used the MISC codebook for data annotation
and did not provide any estimates of coding reliability. In
contrast, our study offers an in-depth account of the procedures
and methodology, including reporting on coding reliability and
fidelity measures. Studies that also used the MI-SCOPE (eg,
Idalski Carcone et al [14]) used a small data set and obtained
lower F1-scores than this study, highlighting the importance of
using larger data sets to improve the performance of AI models
in predicting MI behavior.

Our study contributes to the growing evidence base for MI as
an effective intervention for various health-related behaviors.
We showed that the AI models can accurately identify the
effective ingredients of MI, such as client change talk and
sustain talk, counselor affirmations, and reflection
types—facilitating valuable counselor feedback. Furthermore,
this study is the first to apply such a model to the domain of
suicide prevention, which poses specific challenges and
opportunities for MI. For example, counselors in a suicide
prevention helpline need to adhere to MI but also balance
building rapport; exploring ambivalence; focusing on
engagement, collaboration, and empathy; and ensuring client
safety.

Strengths and Limitations
This study held several notable strengths. In our methodology,
we adhered to the best AI practices. We used a holdout test set
to evaluate the performance of the AI models, providing a
realistic estimate of their generalization ability. Using diverse
statistics to evaluate the model performances, we make the
validation process comparable across all models. We clearly
described the analytic strategy, ensuring transparency and
reproducibility of the research process substantiated by the
comprehensive supplemental material.

In the context of generalizability, classifying MI behavior could
relatively easily be deployed in other domains and other
languages. These days, large language models are being
pretrained on many texts in multiple languages. From an AI
point of view, implementing these methods in other online
mental health helplines is relatively effortless.

While this study holds several strengths, there are also
limitations. The data set used in this study is relatively small,
which could lead to higher variance in the test set. Some MI
code groups were underrepresented in the data set (eg, less
evocative statements occurred in the text than nonevocative
statements). This limited data set size may restrict the model’s
ability to generalize to a broader range of MI conversations. It
is important to note that the model’s performance in this specific
domain of suicide prevention does not guarantee its effectiveness
in other settings. To assess and train the model performances
in another domain’s context, it is still necessary to gather
domain-specific data.

Another limitation is that human experts coded the data set used
for training and evaluation. While the expertise of human coders
adds value, it is essential to acknowledge that the labeling
process can still be subjective. Although not applicable to this
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study (since the intercoder reliability was sufficient, see section
“Data Set Coding and Reliability”), individual coders may
interpret and classify MI techniques and behaviors differently,
potentially leading to inconsistent or inaccurately labeled data.
This subjectivity in labeling could impact the performance of
the automatic coding system and introduce errors or biases. A
possible solution could be active learning—in which the AI
model can interactively query a domain expert to label new data
points with the desired outputs—or reinforcement learning with
human feedback [38,39]. Reinforcement learning with human
feedback has emerged as a powerful technique for refining these
models. After initial training, the models receive feedback from
human evaluators, enabling them to refine their approach.

A final limitation is the disregard for demographic traits of
clients and counselors, such as age and cultural background.
These characteristics could influence language use and model
predictions. Further research is needed to refine the AI models
with these factors, but these are not without ethical concerns
[40]. In addition, years of counselor experience and MI
proficiency could affect model effectiveness, with less
experienced counselors likely benefiting more from the model.

Implications for Clinical Practice

Leveraging AI Models for Clinical Support
There are several potential ways to incorporate AI models into
clinical practice to enhance MI proficiency in online helplines
for mental health:

By integrating AI models into chat-based counseling platforms,
counselors can receive instant feedback on their MI behavior
during sessions. This feedback allows counselors to review their
generated messages before sending them and make necessary
adjustments, such as changing a closed question to an open one.
Initial results suggest that counselors find such systems
acceptable [41], but more studies are needed to evaluate the
reception and impact of these tools in different settings and
populations.

By offering postsession feedback and training to counselors,
they can reflect on their performance and pinpoint areas where
they may require additional training or support. By analyzing
data from multiple counseling sessions, AI models can detect
patterns or trends in counselor MI behavior and develop tailored
training programs that offer recommendations for training or
support. This integration can assist counselors in identifying
areas where they may need to modify their approach or apply
MI techniques more effectively.

Figure 2 shows a schematic overview illustrating the proof of
concept of the support tool. Studies can investigate the feasibility
of such a tool using a Wizard-of-Oz approach, where an
experienced counselor acts as the support tool to simulate a
best-case scenario. This setup could serve as a preliminary test
for the viability of the support tool without requiring the
development of a fully equipped AI tool for examining the
potential advantages or disadvantages.

Figure 2. Schematic overview illustrating the proof of concept of the support tool.

Madeira et al [42] proposed such a tool, and Salmi et al [41]
examined it in focus groups with counselors and tested viability
in a simulated environment. Studies emphasize the significance
of tools that can help ease the workload of counseling [43,44].
Several studies also highlight relevant elements concerning the
viability of AI in mental health counseling [43,45,46]. Therefore,
a comprehensive evaluation of feasibility is necessary.

Helpline administrators or supervisors could also use AI models
to monitor and evaluate the quality of counseling services
provided by their organization. Using AI models to classify MI
behavior and providing counselors with feedback offer a scalable
and cost-effective solution for enhancing MI proficiency in
helplines and other counseling settings. Many helplines struggle
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to find good staff, and the turnover is high, so reducing the time
to proficiency is very valuable.

Evaluating the Effectiveness of AI Models in Clinical
Practice
One way to evaluate the effectiveness of AI models in clinical
practice would be to conduct pilot studies or randomized
controlled trials analyzing changes in counseling outcomes over
time. By comparing data from counseling sessions before and
after the introduction of AI models, it would be possible to
determine whether using these models leads to improved health
outcomes for individuals seeking help.

Another way to evaluate the effectiveness of AI models would
be to monitor changes in counselor MI behavior over time. By
analyzing data from multiple counseling sessions, it would be
possible to determine whether counselors who receive feedback
from AI models improve their proficiency in applying MI
techniques.

Feedback from counselors and clients could also provide
valuable insights into the effectiveness of AI models in
enhancing MI proficiency in chat-based counseling sessions.
Counselors could provide feedback on the usefulness and
accuracy of the provided feedback by the AI models, while
clients could provide feedback on the quality of their interactions
with counselors.

Next Steps to Take
Clinicians or researchers interested in leveraging AI for their
specific use case in online helplines for mental health can
already take initial steps to get started. A crucial first step in
leveraging AI to enhance MI proficiency is to collect data from
counseling sessions, such as chat transcripts and relevant
metadata. Another important step is connecting with other
clinicians and researchers in the field. By joining an active
community of professionals working with MI and AI, one can
benefit from the knowledge and resources created by others.
These resources may encompass pretrained AI models,
guidelines for collecting and analyzing data, and opportunities
to collaborate and share knowledge with others in the field.

Future Directions
While the results are promising, additional research is needed
to evaluate the performance of these models on larger data sets
with sufficient representation of each class. Future studies may
explore alternative modeling techniques that better capture the
conversational structure in classifying MI behavior. For instance,
graph-based models can store information about the relationships
between messages within and across conversations.

While this work and earlier research successfully quantified
and validated the technical aspects of MI, it is also relevant to
consider fundamental principles of MI. These principles contain
the conversational processes that guide interactions between
counselors and clients. Adhering to these processes ensures that
counselors do not exceed the level a client is comfortable with
and adapt their behavior appropriately based on the specific
context. For instance, an appropriate question during the
engaging process (building rapport between client and
counselor) may become counterproductive during the evoking
process, where the main goal is to elicit change talk. In these
processes, concepts such as collaboration, engagement, and
empathy also play a significant role. Recent work is already
exploring integrating these concepts into AI models in the
context of online helplines for mental health [44,47,48].

Furthermore, applying the methods used in this study to other
languages and institutions could provide valuable additional
validation of the study findings. A final point of future work
would be to investigate and measure the potential improvement
of MI quality in the chat helpline before and after counselors
used MI insights during their conversations over time. This
could also be combined with a support tool for MI feedback in
a randomized controlled trial.

Conclusions
The results of this study demonstrate that AI techniques can
accurately classify MI behavior, indicating their potential as a
valuable tool for enhancing MI proficiency in online helplines
for mental health. Provided that the data set size is sufficiently
large with enough training samples for each behavioral code,
these methods can be trained and applied to other domains and
languages, offering a scalable and cost-effective way to evaluate
MI adherence, speed up behavioral coding, and provide
therapists with personalized, quick, and objective feedback.
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