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Abstract

Background: In the realm of in vitro fertilization (IVF), artificial intelligence (AI) models serve as invaluable tools for clinicians,
offering predictive insights into ovarian stimulation outcomes. Predicting and understanding a patient’s response to ovarian
stimulation can help in personalizing doses of drugs, preventing adverse outcomes (eg, hyperstimulation), and improving the
likelihood of successful fertilization and pregnancy. Given the pivotal role of accurate predictions in IVF procedures, it becomes
important to investigate the landscape of AI models that are being used to predict the outcomes of ovarian stimulation.

Objective: The objective of this review is to comprehensively examine the literature to explore the characteristics of AI models
used for predicting ovarian stimulation outcomes in the context of IVF.

Methods: A total of 6 electronic databases were searched for peer-reviewed literature published before August 2023, using the
concepts of IVF and AI, along with their related terms. Records were independently screened by 2 reviewers against the eligibility
criteria. The extracted data were then consolidated and presented through narrative synthesis.

Results: Upon reviewing 1348 articles, 30 met the predetermined inclusion criteria. The literature primarily focused on the
number of oocytes retrieved as the main predicted outcome. Microscopy images stood out as the primary ground truth reference.
The reviewed studies also highlighted that the most frequently adopted stimulation protocol was the gonadotropin-releasing
hormone (GnRH) antagonist. In terms of using trigger medication, human chorionic gonadotropin (hCG) was the most commonly
selected option. Among the machine learning techniques, the favored choice was the support vector machine. As for the validation
of AI algorithms, the hold-out cross-validation method was the most prevalent. The area under the curve was highlighted as the
primary evaluation metric. The literature exhibited a wide variation in the number of features used for AI algorithm development,
ranging from 2 to 28,054 features. Data were mostly sourced from patient demographics, followed by laboratory data, specifically
hormonal levels. Notably, the vast majority of studies were restricted to a single infertility clinic and exclusively relied on nonpublic
data sets.

Conclusions: These insights highlight an urgent need to diversify data sources and explore varied AI techniques for improved
prediction accuracy and generalizability of AI models for the prediction of ovarian stimulation outcomes. Future research should
prioritize multiclinic collaborations and consider leveraging public data sets, aiming for more precise AI-driven predictions that
ultimately boost patient care and IVF success rates.
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Introduction

Background
Infertility is a global health issue affecting millions of people
of reproductive age [1]. A recent report from the World Health
Organization (WHO) indicates that 1 in 6 (17.5%) adults
worldwide experience infertility during their lifetime [2]. In the
United States, among married women aged 15 to 49 years with
no prior births, about 1 in 5 (19%) are unable to conceive after
1 year of trying [3]. One of the most common forms of assisted
reproductive technologies is in vitro fertilization (IVF). During
an IVF procedure, the ovaries are first stimulated to produce
multiple eggs. Once mature, these eggs are surgically retrieved,
fertilized with sperm in the laboratory, and finally transferred
back into a woman’s uterus.

The IVF treatment process is lengthy, financially burdensome,
emotionally taxing, and physically demanding for the couple,
all without any guaranteed success of pregnancy [4,5]. The
success rate is influenced by a range of factors, with some
stemming from the patient’s quality of gametes and others
associated with the expertise and the service quality of the clinic.
With increasing age ovarian reserve decreases, leading to a
decline in both natural fertility rates and the success rates of
IVF programs. For instance, the live birth rate after IVF for
women aged younger than 35 years is 41.6%. However, this
rate drops to 29.6% for those aged 35-37 years and diminishes
to just 9.2% for the 41-42 years age group [3]. This declining
probability of success with age adds another layer of uncertainty
and complexity to the expected outcomes of the IVF treatment.

To enhance pregnancy rates in IVF, ovarian stimulation
protocols are used to stimulate the growth of multiple follicles,
allowing the retrieval of several oocytes. This approach permits
the selection of 1 or multiple embryos for implantation. In
addition to their effectiveness, stimulated cycles can lead to
complications such as ovarian hyperstimulation syndrome
(OHSS) [6], a potentially life-threatening condition. On the
other hand, understimulation might result in an insufficient
number of metaphase II (MII) oocytes, thereby reducing the
IVF success rate [6].

There is a growing body of evidence suggesting that ovarian
stimulation could potentially have adverse impacts on the quality
of oocytes and embryos, ultimately affecting clinical results
[7,8]. It has been proposed that careful tailoring of controlled
ovarian hyperstimulation protocols is crucial for both effective
treatment and subsequently achieving optimized success in IVF
[9,10]. Personalizing controlled ovarian hyperstimulation
protocols involves making a series of critical clinical decisions
that are essential for optimizing the success rate. These decisions
include selecting the most appropriate stimulation protocol,
determining the optimal starting dose of gonadotropins,
assessing the potential need for adjunctive agents, establishing
the frequency of ultrasonographies and blood tests to monitor
follicular growth, and deciding on the optimal time for initiating
final oocyte maturation, as well as selecting the triggering agent
[11,12]. Currently, the common practice for making these
decisions predominantly depends on individual clinician
expertise. While this expertise is valuable, the approach can be

subjective, potentially leading to clinic-to-clinic variability in
outcomes. Consequently, there is an urgent need for more
consistent and data-driven approaches to enhance the precision
of these important decisions during ovarian stimulation, thereby
optimizing IVF success rates.

Artificial intelligence (AI) is being increasingly used in various
fields of medicine, including reproductive medicine [13-15]. In
the realm of assisted reproductive technologies, AI has the
potential to revolutionize by personalizing treatment plans,
enhancing embryo selection accuracy, and developing new
technologies [16,17]. The recent integration of AI into IVF
treatment has significantly expanded the literature on AI models
tailored for IVF procedures. Several machine learning (ML)
approaches, including artificial neural networks, support vector
machines (SVMs), decision trees, and random forests have been
used for clinical decision-making in IVF. These models cover
a wide range of IVF-related tasks, encompassing pretreatment
counseling [18-20], hormone dosage optimization [21,22],
monitoring stimulation responses [23-25], sperm analysis [26],
and evaluating embryo culture and development [27-29].

Research Problem and Aim
With the rapid advancement of AI, many studies used ML as a
promising methodology for tailoring controlled ovarian
stimulation strategies and improving IVF outcomes. Many
reviews have attempted to synthesize the evidence related to
the application of AI models in IVF settings [30-36]. Although
these studies provide valuable insights, they also exhibit several
significant limitations such as, first, the methodological
approach—a significant proportion of these reviews adopted a
narrative literature review approach rather than a systematic
methodology. This choice complicates the extraction of
objective and replicable conclusions. Second, the scope of the
study—the breadth of these reviews often encompassed
outcomes at different stages of IVF treatment. Such a
generalized focus may overlook the significant implications of
ovarian stimulation parameters. Third, AI models’
characteristics—there was a lack of detailed descriptions
regarding the features, types, and specifications of the AI models
used. Furthermore, the characteristics of the clinical data used
for the training and validation of these models were often
neglected. Fourth, search sources—comprehensive searches
across relevant databases, including MEDLINE, IEEE Xplore,
and ACM Digital Library, were not consistently performed.
Finally, clinical application—there was a limited discussion
about the direct clinical applicability and implications of the AI
models in the ovarian stimulation phase, which is essential for
practitioners seeking to implement these findings.

In light of the growing intersection between AI and reproductive
medicine, and to address the limitations of previous review
studies, this scoping review aims to examine the current
landscape of AI models used for predicting ovarian stimulation
outcomes within the context of IVF. Specifically, our study
aims to address the research questions such as (1) what are the
characteristics of AI models currently used to predict ovarian
stimulation outcomes in IVF treatments? (2) What are the
characteristics of IVF treatment cycles incorporated into these
AI models? (3) What are the characteristics of the data used to

J Med Internet Res 2024 | vol. 26 | e53396 | p. 2https://www.jmir.org/2024/1/e53396
(page number not for citation purposes)

AlSaad et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


train these AI models for the prediction of ovarian stimulation
outcomes?

Methods

Overview
To achieve the aim of this study, we conducted a scoping review
in line with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR) [37]. The PRISMA-ScR checklist pertinent to
this review can be found in Multimedia Appendix 1 [37]. The
following subsections present a detailed description of the
methods used in this review.

Search Strategy
To retrieve relevant studies, we searched 6 electronic databases
on June 13, 2023—Scopus, MEDLINE (through Ovid), Embase
(through Ovid), ACM Digital Library, IEEE Xplore, and Google
Scholar. We then scheduled a biweekly automatic search over
a span of 10 weeks, concluding on August 22, 2023. Due to the
extensive number of results from Google Scholar, which ranks
them by relevance, we only assessed the top 100 entries,
equivalent to 10 pages. To ensure a thorough review, we
screened the reference lists of our primary selected studies (ie,
backward reference list checking) and considered studies that
referenced our primary selections (ie, forward reference list
checking). Our search criteria were composed of 2 main
categories of terms—terms associated with IVF (eg, in vitro
fertilization, assisted reproductive technologies, and
intracytoplasmic sperm injection) and terms related to AI (eg,
artificial intelligence, machine learning, and deep learning).
The detailed search queries for each of the databases can be
found in Multimedia Appendix 2.

Study Eligibility Criteria
This review focused on studies that investigated the use of AI
methods to predict and monitor the outcomes of the ovarian
stimulation phase during IVF cycles. We did not set any
limitations based on age or ethnicity. However, we excluded
studies related to non–IVF-assisted reproductive technologies,
natural conception, individuals without fertility issues, or those
using IVF solely for fertility preservation, egg freezing, or egg
donation. We included studies that used AI models exclusively
fed with data from the stimulation phase. Studies that
incorporated variables into their prediction models beyond the
ovarian stimulation phase—such as oocyte fertilization, embryo
culture, embryo grading, cryopreservation, and luteal phase
support, which take place post-oocyte retrieval—were not
considered.

In terms of predicted outcomes, our focus was on two categories,
(1) intermediate IVF outcomes, including the number of oocytes
retrieved, the number of mature oocytes, follicle count and size,
the number of fertilized oocytes, and the number of top-quality
embryos and (2) IVF cycle clinical outcomes namely
implantation, chemical and clinical pregnancy, and live birth
rates. We excluded papers that focused on post-IVF cycle
outcomes, such as neonatal health and complications, maternal
health post delivery, menstrual cycle regularity post-IVF

treatment, the impact on subsequent IVF cycles, and long-term
ovarian health.

Our review focused on studies using any AI form, ranging from
ML, deep learning, and supervised and unsupervised learning,
particularly within the IVF ovarian stimulation phase. We
excluded studies that did not deploy AI or ML techniques, as
well as those relying solely on statistical methods. Additionally,
we excluded studies that did not provide sufficient details about
the AI technique used or its specific role in the ovarian
stimulation process.

In terms of study design, this review encompassed both
retrospective and prospective study designs. Regarding the type
of publication, we included peer-reviewed articles, theses,
dissertations, and conference articles. We excluded
non–peer-reviewed articles, preprints, reviews, opinion papers,
research letters, commentaries, editorials, case studies,
conference abstracts, posters, and protocols. Studies were limited
to those published in English, with no constraints on the year
of publication.

Study Selection
The study selection was conducted in 3 phases. First, we used
EndNote X9 (Clarivate) to eliminate duplicates from the
retrieved studies. Then, we screened the titles and abstracts of
the remaining articles. In the final phase, we evaluated the full
texts of the studies shortlisted in the preceding step. Two
reviewers independently undertook the selection process,
resolving disagreements through discussions. To measure the
level of agreement between the 2 reviewers, we used Cohen κ
[38], which yielded a value of 0.86.

Data Extraction
Two reviewers used Microsoft Excel to independently gather
data on study metadata, IVF treatment cycles, AI algorithms,
and data used in AI algorithm development. Disagreements
were settled through discussion. The data extraction form for
this review was piloted with 5 studies and can be found in
Multimedia Appendix 3.

Data Synthesis
We synthesized the data extracted from the included studies
using a narrative approach, summarizing and detailing the
information through text, tables, and figures. First, we outlined
the metadata of the included studies, such as the publication
year and country. We then presented the characteristics of the
IVF treatment cycles featured in the studies, including aspects
like fertilization procedures, stimulation protocols, trigger
medications, and outcome measures. Next, we summarized the
AI algorithms used, identifying their aims, types, and validation
methods. Finally, we detailed the specifics of the data used for
AI algorithm development, covering aspects like sample size,
number of features, data sources, and data types.

Results

Search Results
Figure 1 illustrates the search results from the preselected
databases, totaling 1348 records. From this number, 444 were
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identified and eliminated as duplicates using reference
management software (EndNote X9). A review of the titles and
abstracts of the subsequent 904 articles led to the exclusion of
829. Among the 75 left, full texts for 3 articles were unavailable.
Upon full-text screening of the 72 accessible full texts 46 were

discarded for various reasons, as shown in Figure 1. An
additional 4 articles were identified through backward and
forward referencing. In total, 30 articles were selected for
inclusion in this review [39-68].

Figure 1. Flowchart of the study selection process. AI: artificial intelligence; IVF: in vitro fertilization.

Characteristics of Included Studies
The studies included were published between 2000 and 2023
(Table 1). The largest number of studies were published in 2022
(n=11, 37%) and 2021 (n=6, 20%). The included studies
originated from 13 different countries (Table 1). China was the
leading country of publication with over a quarter (n=11, 37%)
of the studies, followed by the United States (n=6, 20%). Of
these, 87% (n=26) were peer-reviewed journal articles, while
the remainder 13% (n=4) were conference papers. Regarding
the research design, 77% (n=23) of the studies were

retrospective and 23% (n=7) were prospective. As for data
collection sites, single-site studies constituted the majority at
80% (n=24) whereas, multisite studies accounted for 17% (n=5).
The number of participants in the studies varied from 4 to
30,278, with an average of 4798.5 (SD 8004.4; Table 1). The
mean age of participants, reported in 20 studies, ranged from
18 to 50 years, with an average of 34.6 (SD 2.7). In the 16
studies that reported the mean BMI, the range was between 14.4
and 50.9, with an average BMI of 23.1 (SD 1.0). Multimedia
Appendix 4 [39-68] provides detailed characteristics of each
included study.
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Table 1. Characteristics of the included studies.

ReferencesValuesFeature

Study characteristics

Year of publication, n (%)

[55,59,64,68]4 (13)2023

[42-47,49,52-54,60]11 (37)2022

[39,48,61,63,66,67]6 (20)2021

[41,51,57,58,65]5 (13)2020

[50]1 (3)2018

[40]1 (3)2016

[56]1 (3)2013

[62]1 (3)2000

Type of publication, n (%)

[40-49,51-60,62,64-68]26 (87)Journal article

[39,50,61,63]4 (13)Conference paper

Country of publication, n (%)

[42,47,49,53-55,59,64-67]11 (37)China

[44,45,48,51,52,58]6 (20)United States

[46,60]2 (7)Greece

[57,62]2 (7)United Kingdom

[39-41,43,50,56,61,63,68]9 (30)Others

Study design

Research design, n (%)

[41-45,47-54,57-61,63-68]23 (77)Retrospective

[39,40,46,55,56,62]7 (23)Prospective

Single or multisite, n (%)

[39-42,47-49,51-67]24 (80)Single-site

[43-46,68]5 (17)Multisite

[50]1 (3)NRa

Number of participants

[40,42,44-46,48-50,52-54,56-68]4798.5 (8004.4)Mean (SD)

[40,42,44-46,48-50,52-54,56-68]4-30278Range

Patient characteristics

Women’s age (years)

[41-43,46-49,52-58,60,62,64,65,67,68]34.6 (2.7)Mean (SD)

[39,40,44,45,50,52,59,61,63,66]18-50Range

Women’s BMI

[41-43,46-49,51,53-56,60,64,65,68]23.1 (1.0)Mean (SD)

[39,40,44,45,50,52,57-59,61-63,66,67]14.4-50.9Range

aNR: not reported.

Features of IVF Treatment Cycles
In the studies we examined, fertilization was accomplished
through either IVF, intracytoplasmic sperm injection (ICSI), or

a combination of both. Specifically, IVF was used in 14 out of
30 studies (47%), ICSI in 3 out of 30 (10%), and a combination
of IVF and ICSI in 11 out of 30 studies (37%; Table 2).
Regarding the stimulation protocols used, the
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gonadotropin-releasing hormone (GnRH) antagonist protocol
was the most prevalent which featured in 57% (n=17) of the
studies. Following closely behind was the GnRH agonist
protocol which was used in 47% (n=14) of the studies. In terms
of trigger regimen, human chorionic gonadotropin (hCG) was

the most common, used in 67% (n=20) of the studies. GnRH
agonist was noted in 10% (n=3) of studies, while one-third
(n=10, 33%) of the studies did not specify the trigger medication
used.
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Table 2. Features of IVFa treatment cycles.

ReferencesStudies, n (%)Feature

Fertilization method

[40,43,45,51-56,58,61,63,65,68]14 (47)IVF

[41,42,46,47,49,57,59,62,64,66,67]11 (37)Mix of IVF and ICSIb

[44,48,60]3 (10)ICSI

[39,50]2 (7)NRc

Stimulation protocol

[41,42,44,47-49,51-58,64-66,68]17 (57)GnRHd antagonist protocol

[40,42,47-49,51-54,56,58,59,62,66]14 (47)GnRH agonist protocol

[48,60]2 (7)Natural cycle IVF

[48,53]2 (7)Mild stimulation protocol

[39,43,45,46,50,61,63,67,68]9 (30)NR

[47,49,52,54,66]5 (17)Others

Trigger medication

[40-42,47,48,51-60,62,64-67]20 (67)hCGe

[41,42,52]3 (10)GnRH agonist

[39,43-46,49,50,61,63,68]10 (33)NR

Outcome measures

[43-45,48,52-55,60,63-66,68]14 (47)Number of oocytes retrieved

[48,56,58,64,68]5 (17)Blastocyst development

[40,41,46]3 (10)Live birth delivery

[50,61,62]3 (10)Number and size of follicles

[49,51,57]3 (10)Treatment management and optimization

[47,67]2 (7)Clinical pregnancy

[42,55]2 (7)Moderate or severe OHSSf incidence

[45,59]2 (7)Hormone levels poststimulation

[39]1 (3)Oocyte viability

Ground truth reference

[39,42-45,48,50,52-58,60,63-66,68]20 (67)Microscopy images

[40,47,51,61,62]5 (17)Ultrasonography scans

[45,47,51,59]4 (13)Laboratory tests

[40,41,46,67]4 (13)Live birth delivery

[49]1 (3)Medications

aIVF: in vitro fertilization.
bICSI: intracytoplasmic sperm injection.
cNR: not reported.
dGnRH: gonadotropin-releasing hormone.
ehCG: human chorionic gonadotropin.
fOHSS: ovarian hyperstimulation syndrome.

The outcome measures targeted by these studies spanned a broad
spectrum, categorized into 9 primary groups (Table 3). The
most frequently recorded outcome was the number of oocytes
retrieved, reported in 47% (n=14) of the studies. Other

significant outcomes included blastocyst development in 17%
(n=5); live birth delivery, number and size of follicles, and
treatment management and optimization each in 10% (n=3) of
the studies.
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Table 3. Features of AIa algorithms.

ReferencesStudies, n (%)Feature

Aim of AI algorithm

[42,44,52-55,57,60,63-68]14 (47)Prediction of ovarian response

[43,45,48,49,51,52,57,59]8 (27)IVFb treatment management and optimization

[39,40,50,53,56,61,62]7 (23)Follicular monitoring or assessment

[40,41,46,67]4 (13)Prediction of live birth

[58]1 (3)Prediction of fertilization and embryo development

[47]1 (3)Prediction of pregnancy

AI algorithm used

[39,40,49-51,53,54,59,66]9 (30)Support vector machine

[51,52,56-58,63,64,66]8 (27)Random forest

[47,48,52,63,66,68]6 (20)Gradient boosting

[42,43,45,52,55,63]6 (20)Linear regression

[41,53,58,63,66]5 (17)Decision tree

[40,44,52,53,63]5 (17)K-nearest neighbors

[46,51,59,65,66]5 (17)Logistic regression

[49,51,54,66]4 (13)Artificial neural networks

[41,46,53,62]4 (13)Multilayer perceptron

[39,53,61]3 (10)Convolutional neural network

[40,51,52,61,67]5 (17)Others

[60]1 (3)NRc

Type of validation

[39-49,51-56,59-67]27 (90)Hold-out cross-validation

[44,48,57,64,65,67,68]7 (23)K-fold cross-validation

[40,50]2 (7)Leave-one-out cross-validation

[58]1 (3)NR

Evaluation metrics

[39-49,51-56,59-68]16 (53)Area under the curve (AUC-ROC)

[39,40,50-53,55,59,60,65]10 (33)Sensitivity

[39,40,50-53,58,60]8 (27)Accuracy

[39,40,50,53,55,59,60,65]8 (27)Specificity

[40,51-53,59,60,65]7 (23)Positive predictive value (PPV)

[41,49,54,57,64,68]6 (20)Root mean squared error or mean squared error

[44,45,52,63,68]5 (17)Mean absolute error

[40,53,59,60,65]5 (17)Negative predictive value (NPV)

[42,48,66]2 (7)C-index

[44-46]2 (7)R-squared

[63,68]2 (7)Mean absolute percentage error

[39,59]2 (7)Precision

[49,60]2 (7)Correlation coefficient (r)

[43,53,54,61]4 (13)Others

[62]1 (3)NR
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aAI: artificial intelligence.
bIVF: in vitro fertilization.
cNR: not reported.

To determine these outcomes, diverse tools were used as ground
truth references. These references were categorized into 5
primary groups. The predominant reference was microscopy
images, used in 67% (n=20) of the studies, followed by
ultrasonography scans and laboratory tests, used in 17% (n=5)
and 13% (n=4) of the studies respectively. Multimedia Appendix
5 [39-68] shows features of IVF treatment cycles in each
included study.

Features of AI Algorithms
The AI algorithms in the analyzed studies primarily focused on
6 main objectives (Table 3). The most common aim was the
prediction of ovarian response (n=14, 47%). This was followed
by IVF treatment management and optimization in 27% (n=8)
and follicular monitoring or assessment in 23% (n=7).

Different AI algorithms were used across the studies (Table 3).
The SVM was used in 30% (n=9), while random forest
algorithms were applied in 27% (n=8). Gradient boosting and
linear regression each appeared in 20% (n=6) of the studies.

When it comes to the validation methods of the AI algorithms,
the hold-out cross-validation approach dominated, being used

in 90% (n=27) of the studies. Other methods like k-fold
cross-validation were reported in 23% (n=7) and leave-one-out
cross-validation in 7% (n=2) of the studies.

Different evaluation metrics were adopted across the studies
(Table 3). The area under the curve (AUC) was the most
prominent, used in 53% (n=16) of the studies. Following that,
sensitivity was featured in 33% (n=10) of studies, while both
accuracy and specificity were used in 27% (n=8) of the studies.
For a detailed view, Multimedia Appendix 6 [39-68] provides
insights into the features of AI algorithms across each study.

Features of Data Used in AI Algorithms Development
The vast majority of studies (n=29, 97%) specified the sample
size used as an input for AI algorithms (see Table 4). These
sizes varied widely, ranging between 24 to 37,062 records,
encompassing diverse categories such as women participants,
follicles, cycles, or images. On average, the sample size was
5666.6 (SD 9525.0). Notably, no studies used public data sets;
all opted for closed data sets, which are not available to the
public.
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Table 4. Features of data used in artificial intelligence algorithms development.

ReferencesValuesFeature

Sample size

[40-68]5666.6 (9525.0)Mean (SD)

[40-68]24-37062Range

Data sources, n (%)

[39-68]30 (100)Closed

N/Aa0 (0)Open

Data types, n (%)

[41-49,51-55,57,59,64-68]22 (73)Demographics data

[41-47,49,51-56,59,62,64,65]18 (60)Laboratory data

[44,45,48,50-54,57,60,61,63-65,68]15 (50)Radiology data

[41-43,45-47,51,53,63-68]14 (47)Medical history

[41-45,47,48,51,53,59,63-65]13 (43)Anthropometry data

[52-54,58,64,66]6 (20)Medications

[45,48,53,64,66-68]6 (20)IVFb cycle data

[39,44,53]3 (10)Microscopy images

[40,59,68]3 (10)Genetic data

[41,47,52]3 (10)Lifestyle data

[51]1 (3)Others

Number of features

[39-50,52-68]979.6 (5207.2)Mean (SD)

[39-50,52-68]2-28054Range

aN/A: not applicable.
bIVF: in vitro fertilization.

Of the studies reviewed, 97% (n=29) of the studies specified
the number of features used in both model development and
validation. The number of features across these studies ranged
from 2 to 28,054, with an average of 979.6 (SD 5207.2).

The data used as the underlying input for these algorithms were
diverse. We categorized these data into 10 distinct
types—patient demographics, laboratory data, radiology data,
medical history, anthropometry data, medications, current IVF
cycle data, microscopy images, genetic data, and lifestyle data.
In the studies reviewed, patient demographics were the most
used data type, reported in 73% (n=22) of the studies.
Laboratory data, including baseline and dynamic hormonal
levels such as follicle stimulating hormone, luteinizing hormone,
estradiol, progesterone, and anti-Mullerian hormone were used
in 60% (n=18) of the studies. Radiology data sources, such as
pelvic ultrasonographies, transvaginal ultrasonographies, and
magnetic resonance imaging (MRI) were observed in 50%
(n=15) of the studies. Medical history, encompassing surgical
history, reproductive history, and chronic conditions was used
in 47% (n=14) of the studies. Anthropometry data were used
in 43% (n=13). Current patient medications were considered in
20% (n=6), as was the current IVF cycle data, including details
of stimulation protocols and oocytes. Microscopy images,
including those of oocytes, embryos, and blastocysts, were used

in 10% (n=3) of the studies. Multimedia Appendix 7 [39-68]
provides insights into the features of data used in AI algorithm
development across each study.

Discussion

Principal Findings
In the development of AI-driven predictive models, forecasting
the outcome plays a pivotal role. This scoping review explores
the features of AI models that use ovarian stimulation phase
characteristics to predict outcomes in IVF cycles. The literature
examined primarily featured models that incorporated patient
demographic information, notably women’s age at the time of
treatment, in 73% of the studies. Additionally, laboratory data
such as basal and dynamic hormonal levels (follicle stimulating
hormone [FSH], antral follicle count [AFC], progesterone, and
anti-Mullerian hormone [AMH]) were commonly included in
60% of the studies.

Both patient age and hormonal tracking are crucial inputs during
controlled ovarian stimulation, impacting dose and protocol
selection, as well as the clinical outcomes of IVF cycles [69-72].
The reviewed studies indicate that the GnRH antagonist protocol
is frequently used as a stimulation protocol. Although the
optimal protocol should be customized to accommodate each
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patient’s distinct requirements and characteristics, this trend
reflects an increasing preference for the GnRH antagonist in
recent times [73]. Its widespread adoption in many clinics is
attributed to the shorter treatment duration, diminished side
effects, reduced overall treatment burden, and outcomes that
are on par with other protocols [74-76].

A noticeable trend in the reviewed studies was the diversity of
AI algorithms used across studies. The SVM stood out, being
used in 30% (n=9) of the studies, as indicated in Table 3. The
preference for SVM likely stems from its capability to handle
high-dimensional IVF data, its robustness against overfitting
ensuring effective generalization to new data points, and its
ability to navigate nonlinear relationships [77]. Ovarian
stimulation prediction models, which involve parameters such
as hormonal levels, age, genetic markers, and past medical
history, can benefit from SVM’s comprehensive
high-dimensional data analysis. Furthermore, as IVF data sets
may not always be comprehensive, the risk of overfitting, where
the model becomes overly tailored to the training data and
performs poorly on new data, increases. Therefore, SVM, with
its inherent regularization properties, offers robustness against
overfitting, making it a reliable choice for such data sets.

When assessing prediction models, various evaluation metrics
come into consideration, with AUC being the most frequently
used. The advantage of AUC lies in its consistency; while
metrics such as sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) can vary based on
different cutoff values, AUC remains unaffected by such
variations.

We also observed that hold-out cross-validation was the most
frequently used validation method. This observation can be
attributed to 2 factors. First, the hold-out method is favored for
its simplicity and efficiency, as it is computationally less
demanding than alternatives such as k-fold cross-validation.
Given the potential complexity of some AI models and the
extensive training durations they may require, the hold-out
approach can accelerate the evaluation process. Second, when
predicting ovarian stimulation outcomes, data might exhibit
inherent variability due to individual patient differences. In such
cases, the hold-out method offers a stable and consistent
validation method, reducing the variability that might arise from
recurrent data partitioning and testing.

Regarding the aim of the AI algorithms, predicting ovarian
response was the primary objective in almost half (47%) of the
studies. This included the prediction of the number of oocytes
and metaphase II oocytes retrieved, the number of pronuclear
stage (2PNs), and categorizing ovarian response (from
hyporesponders to hyperresponders). These parameters are
pivotal as they directly influence the success rate of the IVF
cycle [69,72,78]. The second prevalent outcome was IVF
treatment management and optimization, accounting for nearly
a third (27%) of the studies. This encompassed predicting oocyte
maturation trigger timing, determining the optimal retrieval day,
strategizing follow-up options (adjusting, personalizing, and
reducing in-person visits), and optimizing the starting dose of
gonadotropins. The current emphasis on managing IVF
treatment highlights the importance of precision and

personalization in optimizing both procedural outcomes and
the patient experience throughout the fertility treatment [79-81].

As mentioned earlier, the primary objective of AI algorithms
in the included studies was to predict ovarian response, which
was quantified by the number and quality of oocytes. Hence,
microscopy images naturally emerged as the principal ground
truth reference, used in two-thirds of these studies to establish
labels for training and validate the AI models. Microscopy
images are valuable due to their high-resolution techniques,
which provide detailed visualization, enabling accurate oocyte
counting after preparation and staining. In addition to oocyte
quantification, microscopy can critically assess oocyte quality
by examining features such as the thickness of the zona
pellucida, the size of the perivitelline space, the clarity of the
ooplasm, and the alignment of polar bodies [82,83]. These
detailed morphological insights underscore the value of
microscopy images as an essential reference for training AI
models to predict ovarian responses.

Based on the findings of our study, the GnRH antagonist
protocol is frequently used as a stimulation protocol. Although
the optimal protocol should be customized to accommodate
each patient’s distinct requirements and traits, this trend reflects
an increasing preference for the GnRH antagonist in recent
times [73]. Its widespread adoption in many clinics is attributed
to the shorter treatment duration, diminished side effects,
reduced overall treatment burden, and outcomes that are on par
with other protocols [74-76].

Notably, 80% of the studies included in the analysis were limited
to a single fertility clinic, prompting concerns about their
generalizability to a broader context. Such models might
overlook diverse patient demographics and protocols across
clinics. To ensure the broader applicability of AI models in
predicting ovarian stimulation outcomes, multicentric studies
encompassing diverse clinical settings are essential.

More so, all the included studies relied on closed data sets that
are not publicly available, with none using public data sets. This
reflects the limited availability of comprehensive public IVF
data sets, with only a few examples of public data sets such as
the Human Fertilisation and Embryology Authority (HFEA)
research data [84]. While closed data sets are valuable, they
come with inherent limitations, often capturing only specific
patient demographics or treatment methods. Thus, AI models
developed exclusively on these data sets might introduce bias,
potentially limiting their generalizability across diverse
populations and treatments.

Research and Practical Implications
The performance of AI models in predicting ovarian stimulation
outcomes was not assessed in this review. Systematic reviews
and meta-analyses are required to evaluate their efficacy.
Moreover, future studies should compare the performance of
various AI models based on different data types (eg,
ultrasonography data versus hormonal level data) and
stimulation protocols. Conducting systematic reviews of these
studies will assist clinicians, data scientists, and researchers in
identifying the most significant features and accurate AI
algorithms in predicting ovarian stimulation outcomes.
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While the majority of the studies in this review are retrospective
(77%), it is crucial to consider the implications this design might
have on the applicability of AI models in predicting ovarian
stimulation outcomes. Retrospective studies rely on previously
recorded data, which can sometimes be incomplete, inaccurate,
or biased. Consequently, such studies often encounter challenges
in establishing causality and may be influenced by issues related
to data integrity or selection bias. These limitations can, in turn,
impact the accuracy and reliability of AI models trained on such
data. On the other hand, prospective studies, which actively
monitor outcomes against predictions, offer direct insights into
AI model performance in real-world scenarios. They ensure
better control over variables and reduce potential biases. A
balanced approach that incorporates both retrospective and
prospective designs is essential to fully harness the potential of
AI in predicting and monitoring IVF outcomes.

Another important aspect to consider in AI models is bias in
data selection and reporting. This bias can occur when training
data are limited to IVF cycles with outcomes that exclude cycles
of no response or cycles in which no embryos or eggs were
collected. This type of bias can skew the model’s understanding
of real-world scenarios and potentially lead to inaccurate
predictions or recommendations. Therefore, it is crucial to
ensure that training data are representative of the full spectrum
of IVF outcomes to mitigate this bias and enhance the model’s
reliability.

Another consideration that demands careful vigilance is the
potential for AI-related failures that could pose safety concerns
for both clinicians and patients. These errors may be linked to
noise and artifacts in the input data, data shifts occurring after
AI training, and unexpected variations in real-world scenarios.
Further research is necessary to address these challenges. In
some AI applications, it may be necessary to design fail-safe
systems that can safeguard against potentially harmful
recommendations in clinical practice. These systems could
include mechanisms for continuous learning from new scenarios
and errors as they are detected in practice [85].

Based on our observations in the reviewed studies, there was a
prevalent use of closed, nonpublic data sets. This finding
strongly emphasizes the imperative need to foster the
development and use of accessible public data sets in the realm
of IVF research. Such data sets, even when anonymized, present
a more comprehensive and diverse data pool, encompassing a
wide spectrum of patient profiles, stimulation protocols, and
IVF outcomes from different regions and populations [86].
Thus, prioritizing initiatives that promote the establishment of
public IVF data sets is essential in driving forward more reliable,
accurate, and robust AI-powered prediction models in the field
of IVF. In parallel, to ensure both appropriate transparency and
intellectual property protection, it is essential to effectively
address challenges posed by data confidentiality, along with
the competition between clinics [87].

Another key consideration is the heterogeneity of data sources
generated by different types of equipment and decentralized
data collection systems. Given that each fertility clinic operates
with distinct workflows and procedures, these differences must
be accounted for during data analysis and modeling. Embracing

standardization in data generation processes is a crucial endeavor
that all involved organizations should prioritize. Establishing
and implementing consistent quality standards would streamline
data modeling from diverse sources and reduce data variability
[88]. This consistency is not only important for comprehensive
algorithm validation but also vital before advancing to potential
production and commercialization.

Leveraging accurate and efficient AI models for predicting
ovarian stimulation outcomes in IVF clinical practice offers
transformative advantages. First, these AI models can accurately
analyze complex patterns within large data sets, capturing
significant predictors of ovarian response that might be
overlooked by conventional approaches. This allows for tailored
ovarian stimulation strategies, potentially optimizing follicular
response and, subsequently enhancing the likelihood of
successful IVF outcomes. Second, accurate predictions also
mitigate risks associated with over- or understimulation, thus
enhancing patient safety. Furthermore, with precise predictions,
future research, particularly a systematic review and
meta-analysis focusing on the performance of AI models for
the prediction of ovarian stimulation outcomes, could offer more
definitive insights into their efficacy and potential to enhance
clinical practice. Such studies are essential not only for
evaluating the effectiveness of AI tools but also for assessing
their safety, cost-effectiveness, and overall contribution to
improving patient care.

Limitations
In this review, we excluded studies that incorporated additional
parameters from stages following oocyte retrieval in IVF (eg,
oocyte fertilization, embryo culture, embryo grading,
cryopreservation, and luteal phase support) along with ovarian
stimulation parameters into their prediction models. While our
primary objective was to identify characteristics of AI models
specific to ovarian stimulation, which pertains solely to
stimulation parameters, our findings may not be generalizable
to contexts where parameters from the omitted stages are
relevant to the research question. We included only studies
published in the English language. Consequently, we may have
overlooked relevant studies published in other languages. A
notable limitation of this review is our inability to comment on
the performance of AI models in predicting ovarian stimulation
outcomes. This particular aspect is beyond the scope of this
review and a comprehensive assessment would require
systematic reviews that thoroughly examine the quality of
evidence and potential biases. Another potential limitation of
this study is that due to the rapidly evolving nature of the AI
field, it is possible that new records in both academic and gray
literature may have been published after our search concluded
and before our publication.

Conclusions
In this scoping review, we explored the landscape of AI models
applied to predict ovarian stimulation outcomes in IVF cycles.
Notable findings from the literature include the frequent use of
patient demographic information, especially age and hormonal
levels for predictions, with SVM emerging as the preferred
algorithm. A recurring theme was the reliance on single-center
studies and closed data sets, spotlighting the immediate need
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for more expansive, public data sets and multicentric
collaborations to enhance generalizability and robustness. To
further refine AI’s impact on IVF care, emphasis should be on
comprehensive data collection, enhanced transparency, and

standardized methodologies. Implementing these approaches
has the potential to facilitate the development of AI-driven
predictions that are more precise and applicable, ultimately
leading to improved patient care and higher IVF success rates.
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