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Abstract

Background: Real-time surveillance of emerging infectious diseases necessitates a dynamically evolving, computable case
definition, which frequently incorporates symptom-related criteria. For symptom detection, both population health monitoring
platforms and research initiatives primarily depend on structured data extracted from electronic health records.

Objective: This study sought to validate and test an artificial intelligence (AI)–based natural language processing (NLP) pipeline
for detecting COVID-19 symptoms from physician notes in pediatric patients. We specifically study patients presenting to the
emergency department (ED) who can be sentinel cases in an outbreak.

Methods: Subjects in this retrospective cohort study are patients who are 21 years of age and younger, who presented to a
pediatric ED at a large academic children’s hospital between March 1, 2020, and May 31, 2022. The ED notes for all patients
were processed with an NLP pipeline tuned to detect the mention of 11 COVID-19 symptoms based on Centers for Disease
Control and Prevention (CDC) criteria. For a gold standard, 3 subject matter experts labeled 226 ED notes and had strong agreement
(F1-score=0.986; positive predictive value [PPV]=0.972; and sensitivity=1.0). F1-score, PPV, and sensitivity were used to compare
the performance of both NLP and the International Classification of Diseases, 10th Revision (ICD-10) coding to the gold standard
chart review. As a formative use case, variations in symptom patterns were measured across SARS-CoV-2 variant eras.

Results: There were 85,678 ED encounters during the study period, including 4% (n=3420) with patients with COVID-19. NLP
was more accurate at identifying encounters with patients that had any of the COVID-19 symptoms (F1-score=0.796) than ICD-10
codes (F1-score =0.451). NLP accuracy was higher for positive symptoms (sensitivity=0.930) than ICD-10 (sensitivity=0.300).
However, ICD-10 accuracy was higher for negative symptoms (specificity=0.994) than NLP (specificity=0.917). Congestion or
runny nose showed the highest accuracy difference (NLP: F1-score=0.828 and ICD-10: F1-score=0.042). For encounters with
patients with COVID-19, prevalence estimates of each NLP symptom differed across variant eras. Patients with COVID-19 were
more likely to have each NLP symptom detected than patients without this disease. Effect sizes (odds ratios) varied across
pandemic eras.

Conclusions: This study establishes the value of AI-based NLP as a highly effective tool for real-time COVID-19 symptom
detection in pediatric patients, outperforming traditional ICD-10 methods. It also reveals the evolving nature of symptom prevalence
across different virus variants, underscoring the need for dynamic, technology-driven approaches in infectious disease surveillance.
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Introduction

Real-time emerging infection surveillance requires a case
definition that often involves symptomatology. To detect
symptoms, population health monitoring systems and research
studies tend to largely rely on structured data from electronic
health records, including the International Classification of
Diseases, 10th Revision (ICD-10) codes [1]. However,
symptoms are not diagnoses and, therefore, may not be
consistently coded, leading to incorrect estimates of the
prevalence of COVID-19 symptoms [2]. Natural language
processing (NLP) of unstructured data from electronic health
records has proven useful in recognizing COVID-19 symptoms
and identifying additional signs and symptoms compared to
structured data alone [3,4]. However, surveillance of COVID-19
symptoms is nuanced as symptoms have been shown to differ
by variant eras [5,6] and by age, with pediatric patients generally
experiencing milder symptoms [7]. For example, while loss of
taste or smell was reported with early COVID-19 variants, it
was less commonly reported during the Omicron wave and in
younger patients who more frequently experience fever and
cough [8-11]. Understanding symptom patterns in children
during different COVID-19 variant eras is important. Early in
the pandemic, the availability of molecular testing was extremely
limited. The less severe course of infection and varying
presentations may lead to under testing due to mild symptoms
[12], potentially underestimating pediatric COVID-19 cases.
Additionally, relatively asymptomatic children can still transmit
the virus. Tailoring interventions based on age-specific
manifestations contribute to effective control of virus
transmission within communities.

We sought to validate and test an open-source artificial
intelligence (AI)–based NLP pipeline that includes a large
language model (LLM) to detect COVID-19 symptoms from
physician notes. As a formative use case, we sought to illustrate
how this pipeline could detect COVID-19 symptoms and
differentiate symptom patterns across SARS-CoV-2 variant
eras in pediatric patients. We specifically study patients
presenting to the emergency department (ED) who can be
sentinel cases in an outbreak.

Methods

Study Design and Setting
This was a retrospective cohort study of all patients up to 21
years of age presenting to the ED of a large, free-standing,
university-affiliated, pediatric hospital between March 1, 2020,
and May 31, 2022.

Ethical Considerations
The Boston Children’s Hospital Committee on Clinical
Investigation performed ethical, privacy, and confidentiality
reviews of the study and found it to be exempt from human
subjects oversight. A waiver of consent was obtained to cover
the targeted extraction and secure review of clinical notes by
approved study personnel in protected environments within the
hospital firewall.

Study Variables
The main dependent variables were a set of 11 COVID-19
symptoms based on Centers for Disease Control and Prevention
(CDC) criteria [13]—fever or chills, cough, shortness of breath
or difficulty breathing, fatigue, muscle or body aches, headache,
new loss of taste or smell, sore throat, congestion or runny nose,
nausea or vomiting, and diarrhea. We identified these symptoms
by both NLP and ICD-10 codes. For the formative use case, the
study period was divided into 3 variant eras defined using
Massachusetts COVID-19 data from Covariant [14]. The
pre-Delta era was from March 1, 2020, to June 20, 2021; the
Delta era was from June 21, 2021, to December 19, 2021; and
the Omicron era was from December 20, 2021, onward. A
diagnosis of COVID-19 was defined as a positive SARS-CoV-2
polymerase chain reaction (PCR) test or the presence of ICD-10
code U07.1 for COVID-19 during the same ED encounter in
which symptoms were evaluated.

AI/NLP Pipeline Development
A total of 3 reviewers reached a consensus on a symptom
concept dictionary [15] to capture each of the 11 COVID-19
symptoms. They relied on the Unified Medical Language System
[16], which has a nearly comprehensive list of symptom
descriptors [17], including SNOMED (SNOMED International)
coded clinical terms [18], ICD-10 codes for administrative
billing, abbreviations, and common language for patients [19].
The open-source and free Apache cTAKES (Apache Software
Foundation) NLP pipeline was tuned to recognize and extract
coded concepts for positive symptom mentions (based on the
dictionary) from physician notes [20]. Apache cTAKES uses a
NegEx algorithm which can help address negation [20-23]. To
further address negation, we incorporated an LLM, Bidirectional
Encoder Representations from Transformers, that was fine-tuned
for negation classification on clinical text [24,25].

Gold Standard
A total of 2 reviewers established a gold standard by manually
reviewing physician ED notes. After all notes were labeled by
the cTAKES pipeline, a test set of 226 ED notes was loaded
into Label Studio [26], an open-source application for ground
truth labeling. These notes were from patients both with and
without COVID-19 and were selected to ensure that each of the
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11 symptoms was mentioned in at least 30 ED notes. Some
notes mentioned more than 1 symptom. Using an annotation
guide (Multimedia Appendix 1), 2 reviewers, who were masked
from the terms identified by the NLP pipeline for note selection,
each labeled 113 notes for mention of the 11 COVID-19
symptoms. As per the guide, only symptoms relevant to the
present illness were considered positive mentions. Symptoms
were not considered positive mentions if stated as past medical
history, family history, social history, or an indication for a
medication unrelated to the encounter.

Interrater Reliability
The F1-score was used to assess consistency in manual chart
review. The F1-score is the balance of sensitivity and positive
predictive value (PPV) [27]. It was computed by comparing the
annotations of each of the 2 initial reviewers to those of a third
reviewer, who independently labeled a subset (56/226, 25%) of
notes annotated by the other reviewers. The choice of F1-score
as the metric for agreement was informed by the observed high
frequency of true negative annotations when they were assigned
by chance [20,27,28]. Reliability analyses used Python (version
3.10; Python Software Foundation).

AI/NLP and ICD-10 Accuracy
Accuracy measures of the true symptom percentages in the test
set for each symptom included F1-score, PPV, sensitivity, and
specificity [29,30].

Formative Use Case
The impact of pandemic variant era on COVID-19
symptomatology was examined. Descriptive statistics were used
to characterize patients presenting to the ED during each
pandemic era. The percentage of patients in the ED with
symptoms of COVID-19 was assessed in separate analyses for
each symptom using chi-square analyses of 3×2 tables
(pandemic era × symptom presence or absence) with α set at
.05. Post hoc chi-square tests were used to compare each
pandemic era with all others using a Bonferroni adjusted α of
.017. To assess the effect of pandemic era, COVID-19 status,
and the interaction of these variables on whether or not a patient
had each symptom, logistic regression was used in separate
analyses for each symptom. Bonferroni adjusted confidence
limits were used for post hoc analyses. If the interaction term
was not significant, the main effects of COVID-19 and variant
era were reported. Data were analyzed using SAS (version 9.4;
SAS Institute Inc).

Results

Study Population
There were 59,173 unique patients with 85,678 ED encounters
during the study period. For each ED encounter, there was 1
final physician ED note that aggregated all ED physician
documentation. Characteristics of the entire study cohort and
variant-specific cohorts are summarized in Table 1. A patient
could appear in the cohort more than once if they had multiple
ED encounters.

Table 1. Characteristics of patients at emergency department encounters.

Omicron (n=22,261), n (%)Delta (n=24,432), n (%)Pre-Delta (n=38,985), n (%)Total (n=85,678), n (%)Characteristics

Age range (years)

9683 (43.5)11,749 (48.1)15,403 (39.5)36,835 (43.0)<5

12,578 (56.5)12,683 (51.9)23,582 (60.5)48,843 (57.0)≥5

Sex

10,355 (46.5)11,236 (46.0)18,659 (47.9)40,250 (47.0)Female

11,906 (53.5)13,196 (54.0)20,326 (52.1)45,428 (53.0)Male

Race

29 (0.1)54 (0.2)64 (0.2)147 (0.2)American Indian

838 (3.8)949 (3.9)1457 (3.7)3244 (3.8)Asian

3404 (15.3)3943 (16.1)6007 (15.4)13,354 (15.6)African American

29 (0.1)24 (0.1)28 (0.1)81 (0.1)Pacific Islander

8103 (36.4)9093 (37.2)16,990 (43.6)34,186 (39.9)White

9858 (44.2)10,369 (42.4)14,439 (37.0)34,666 (40.4)Not identified

COVID-19 classification method

2066 (9.3)500 (2.0)854 (2.2)3420 (4.0)COVID-19 diagnosis

1355 (6.1)294 (1.2)518 (1.3)2167 (2.5)PCRa positive

2027 (9.1)458 (1.9)820 (2.1)3305 (3.9)ICD-10b code

aPCR: polymerase chain reaction.
bICD-10: International Classification of Diseases, 10th Revision.
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Interrater Reliability
High consistency was demonstrated between reviewer 3, who
labeled a subset of notes, and both reviewers 1 and 2, who each
labeled half of the notes chosen to establish the gold standard.
The F1-scores for the 2 reviewers were 0.988 and 0.984,
respectively. The PPV was 0.976 and 0.968 and sensitivity was
1.0 for both.

AI or NLP ICD-10 Accuracy
As shown in Table 2, the F1-score for NLP was higher and thus
more accurate at identifying encounters in the test set with
patients that had any of the COVID-19 symptoms than ICD-10.
NLP also had higher F1-score for each individual symptom. In
addition, NLP sensitivity of true positive symptoms was higher
than ICD-10. However, NLP accuracy of true negative
symptoms (specificity) was somewhat lower compared to
ICD-10.

Table 2. Accuracy of COVID-19 symptom monitoring using NLPa and ICD-10b in the test set.

SpecificitySensitivityPPVdF1-scorecSymptom

ICD-10, nNLP, nICD-10, nNLP, nICD-10, nNLP, nICD-10, nNLP, n

0.9940.9170.3000.9300.9060.6960.4510.796Any COVID-19 symptom

1.0000.9380.0210.8721.0000.7880.0420.828Congestion or runny nose

0.9940.9420.3771.0000.9520.8410.5410.914Cough

0.9800.8840.3600.8800.6920.4890.4740.629Diarrhea

0.9900.9480.0310.9060.3330.7440.0570.817Fatigue

0.9930.8440.5450.9870.9770.7680.7000.864Fever or chills

1.0000.9140.3950.8421.0000.6670.5660.744Headache

1.0000.9480.0911.0001.0000.5000.1670.667Loss of taste or smell

1.0000.9370.1181.0001.0000.5670.2110.723Muscle or body aches

0.9820.8660.3830.9500.8850.7220.5350.820Nausea or vomiting

0.9950.9120.2580.8060.8890.5950.4000.685Shortness of breath or difficulty breath-
ing

0.9950.9350.1200.9600.7500.6490.2070.774Sore throat

aNLP: natural language processing.
bICD-10: International Classification of Diseases, 10th Revision.
cF1-score: accuracy measure balancing PPV and sensitivity.
dPPV: positive predictive value.

The 2 most prevalent symptoms, cough and fever, had sensitivity
scores for NLP that were among the highest of the symptoms,
and much higher than those for ICD-10 codes. The greatest
discrepancy between NLP and ICD-10 F1-scores was for
congestion or runny nose. The smallest difference was for
diarrhea.

Formative Use Case

Prevalence of Symptoms Over Time
The percentage of ED encounters with patients with COVID-19
who had symptoms was estimated using the NLP pipeline and
ICD-10 codes. As shown in Figure 1, during each month of the

study, the percentage of encounters with no symptoms detected
was much lower using NLP compared to ICD-10. Using NLP,
the range was from 0% to 19% of encounters (mean 6%, SD
4%), while with ICD-10, the range was 22% to 52% (mean
38%, SD 7%).

The percentage of encounters with patients with COVID-19
who presented with each symptom by month was higher using
NLP than ICD-10 (Multimedia Appendix 2). The 2 most
common symptoms, cough and fever, are shown in Figures 2
and 3. On average, cough was identified during 52% (SD 13%)
of the encounters each month using NLP, but only 15% (SD
5%) using ICD-10. On average, fever characterized 70% (SD
11%) of encounters using NLP, but 41% (SD 9%) using ICD-10.
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Figure 1. The percentage of encounters with patients with COVID-19 presenting to the emergency department each month with no symptoms detected,
as measured using NLP and ICD-10. ICD-10: International Classification of Diseases, 10th Revision; NLP: natural language processing.

Figure 2. The percentage of encounters with patients with COVID-19 presenting to the emergency department each month with cough, as measured
using NLP and ICD-10. ICD-10: International Classification of Diseases, 10th Revision; NLP: natural language processing.
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Figure 3. The percentage of encounters with patients with COVID-19 presenting to the emergency department each month with fever, as measured
using NLP and ICD-10. ICD-10: International Classification of Diseases, 10th Revision; NLP: natural language processing.

Using ICD-10, there were many months where individual
symptoms were not detected. Of the 27 study months, loss of
taste or smell was not detected using ICD-10 during 24 months,
nor were muscle or body aches during 13 months. A total of 3
more symptoms had at least 3 consecutive months where each
was not detected using ICD-10. These were congestion or runny
nose (9 total months, not all consecutive), sore throat (8 months),
and fatigue (7 months). Sporadic months without detection using
ICD-10 were observed for headache (5 months), diarrhea (2
months), cough (1 month), and nausea or vomiting (1 month).
Using NLP, sporadic months without detection were observed
for just 2 symptoms, loss of taste or smell (6 months) and sore
throat (2 months).

Prevalence of Symptoms Across Variant Eras
The prevalence estimates of symptoms across variant eras for
encounters with patients with COVID-19 differed for each

symptom identified by NLP, except for nausea or vomiting and
sore throat (Table 3). Post hoc analyses revealed several patterns.
New loss of taste or smell was the only symptom that varied
across all 3 eras. It was most common in the pre-Delta era,
followed by the Delta era, and then the Omicron era. Congestion
or runny nose, cough, and fever or chills were more common
during the Delta and Omicron era than during the pre-Delta era,
but the Delta era did not differ from the Omicron era. Muscle
or body aches were more common during the pre-Delta era than
both the Delta and Omicron eras, but the Delta era did not differ
from the Omicron era. Diarrhea, fatigue, headache, and shortness
of breath were more common during the pre-Delta era than the
Omicron era but were not different than the Delta era, and the
Delta era did not differ from the Omicron era. Nausea or
vomiting and sore throat did not differ by variant era. The
chi-square results are in Multimedia Appendix 3.
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Table 3. Prevalence estimates of symptoms using natural language processing by variant era for emergency department encounters with patients with
COVID-19.

P valueOmicron era (n=2066), n (%)Delta era (n=500), n (%)Pre-Delta era (n=854), n (%)Symptom

.001742 (35.9)b186 (37.2)b250 (29.3)aCongestion or runny nose

<.0011223 (59.2)b309 (61.8)b402 (47.1)aCough

<.001317 (15.4)b92 (18.4)a,b188 (22.0)aDiarrhea

.004228 (11.0)b72 (14.4)a,b129 (15.1)aFatigue

<.0011525 (73.8)b376 (75.2)b561 (65.7)aFever or chills

<.001301 (14.6)b92 (18.4)a,b185 (21.7)aHeadache

<.001164 (7.9)b39 (7.8)b110 (12.9)aMuscle or body aches

.95709 (34.3)170 (34.0)297 (34.8)Nausea or vomiting

<.0019 (0.4)c9 (1.8)b57 (6.7)aNew loss of taste or smell

<.001311 (15.1)b84 (16.8)a,b182 (21.3)aShortness of breath or difficulty breathing

.63319 (15.4)83 (16.6)125 (14.6)Sore throat

a,b,cVariant eras with the same superscript across a row did not differ in post hoc analyses.

Symptoms by COVID-19 Status and Variant Era
The interaction of COVID-19 status and variant era on the
presence of each symptom is shown in Table 4. However,
because the interaction was not significant for 2 symptoms,
fever and chills, and sore throat, the main effects for COVID-19
status are shown for both (P<.001). The odds ratios (ORs)
indicate that patients with COVID-19 were more likely to have
each of these 2 symptoms than patients without this disease.
These symptoms were also more likely to occur during the Delta
and Omicron era than during the pre-Delta era. For the
remaining symptoms, the interaction term was significant and
the ORs in each variant era are shown in the table. The ORs

comparing patients with COVID-19 to those without the disease
differed among the variant eras. Several patterns were observed.
Patients with COVID-19 were more likely to exhibit each of
the symptoms of congestion or runny nose, cough, fatigue,
headache, muscle or body aches, new loss of taste or smell, or
shortness of breath or difficulty breathing. However, effect sizes
(ORs) differed among pandemic eras. For diarrhea, this
symptom was more likely for patients with COVID-19 in the
pre-Delta and Delta eras, but not during the Omicron era. And
nausea was more likely only in the pre-Delta era. Significant
ORs ranged in size from 1.3 to 26.7 (mean 4.6, SD 5.3). The
logistic regression results are in Multimedia Appendix 4.
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Table 4. Effect of COVID-19 status and variant era on the presence of each symptom detected using natural language processing.

InteractioncP valuedOdds ratioa (95% CLb)Symptom and pandemic variant era

<.001Congestion or runny nose

3.62 (3.11-4.21)Pre-Delta

2.27 (1.89-2.72)Delta

2.46 (2.23-2.71)Omicron

<.001Cough

4.84 (4.22-5.55)Pre-Delta

3.64 (3.03-4.37)Delta

3.54 (3.23-3.88)Omicron

<.001Diarrhea

2.23 (1.89-2.63)Pre-Delta

1.42 (1.13-1.79)Delta

1.05 (0.92-1.19)Omicron

.01Fatigue

3.22 (2.65-3.90)Pre-Delta

3.42 (2.64-4.42)Delta

2.36 (2.03-2.75)Omicron

.664.82 (4.46-5.21)Fever or chills

<.001Headache

2.33 (1.98-2.76)Pre-Delta

2.09 (1.66-2.63)Delta

1.52 (1.33-1.73)Omicron

.006Muscle or body aches

5.96 (4.83-7.36)Pre-Delta

4.75 (3.38-6.67)Delta

3.78 (3.14-4.55)Omicron

.006Nausea or vomiting

1.30 (1.13-1.50)Pre-Delta

1.03 (0.86-1.25)Delta

0.98 (0.89-1.08)Omicron

.049New loss of taste or smell

26.66 (19.13-37.14)Pre-Delta

11.83 (5.68-24.65)Delta

11.04 (4.25-28.64)Omicron

<.001Shortness of breath or difficulty breathing

2.62 (2.22-3.10)Pre-Delta

1.70 (1.34-2.16)Delta

1.57 (1.38-1.79)Omicron

.272.45 (2.22-2.70)Sore throat

aOdds ratios compare patients with COVID-19 at an ED encounter to patients without the disease.
bCL: Bonferroni adjusted confidence limits in post hoc analyses.
cIf the interaction term was significant, the effect of COVID-19 during each variant era is shown. Otherwise, the effect for COVID-19 is shown.
dType 3 test of the interaction term (variant era × COVID-19) in a logistic regression analysis.
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Discussion

Principal Findings
We find evidence that AI-based NLP of physician notes is a
superior method for capturing patient symptoms for real-time
biosurveillance than reliance on traditional approaches using
ICD-10. NLP was more sensitive than ICD-10 codes in
identifying symptoms and some symptoms could only be
detected using NLP. As a form of internal validation, the
symptoms identified by the CDC as associated with COVID-19
were more common in patients with than without this disease.

Comparison With Prior Work
The study was also able to capture a nuanced picture of symptom
prevalence and odds across different SARS-CoV-2 variant eras.
Consistent with previous literature, symptom patterns changed
over time as new variants emerged. Variants may present with
differences in symptomatology as a result of a number of factors
including differences in mutations in spike proteins, receptor
binding, and ability to escape host antibodies [31]. As has been
previously reported [11,32-35], we found that fever or chills
were the most common COVID-19 symptom across the variants.
In our cohort, shortness of breath was less common during the
Omicron era than during the pre-Delta era. The Omicron variant
has less of an ability to replicate in the lungs compared to the
bronchi, which may explain why this symptom became less
common [36]. Studies have reported sore throat as a common
symptom in the Omicron era, but we did not observe a
significant difference across eras [8,9]. It is possible that we did
not see a higher percentage of sore throats in the Omicron era
because it may be more challenging for pediatric patients to
describe this symptom. One study found that sore throat was
observed more often in those of 5-20 years of age compared to
those of 0-4 years of age [8]. Similarly, a study reported that
sore throat was more common in those greater than or equal to
13 years of age in the Omicron era compared to the Delta era
[37]. In our study cohort, approximately half of the patients
were younger than 5 years of age. As children this age may not
be able to describe their symptoms well, symptoms that are also
signs, such as fever or cough, might be more commonly
documented in physician notes than symptoms such as sore
throat. New loss of taste or smell was most common in the
pre-Delta era, followed by the Delta era and then the Omicron
era in this study. This symptom has been reported less
commonly in the Omicron era [8,9]. Studies have postulated
that patients with the Omicron variant are less likely to present
with loss of taste or smell as this variant has less penetration of
the mucus layer and therefore, may be less likely to infect the
olfactory epithelium [38].

Limitations
There were important limitations in our use of NLP. The NLP
pipeline was tested with a set of notes where some symptoms
were more frequent in the test set (eg, loss of taste or smell)
than in the formative use case. This was done to have sufficient
data to evaluate the symptom pipeline. The NLP pipeline does

not account for vital signs and so fever may not have been
detected with the pipeline if it was documented in a patient’s
vital signs rather than the clinical text. The cTAKES tool in the
pipeline lacks the temporal context to ascertain if the mention
of a symptom in a note is a new symptom or a prior symptom.
We modified our technique because of this but nevertheless
may have overestimated the prevalence of symptoms in our
study. Future work will involve filtering by note section so that
certain components of a note like past medical history are not
included. We used 2 techniques to recognize negation, but some
negated symptoms (eg, “patient had no cough”) were still
captured as positive symptom mentions leading to a possible
overestimation of symptom prevalence. Finally, this NLP
pipeline did involve substantial preprocessing. We plan to
evaluate the implementation of Generative Pre-trained
Transformer (GPT) for this task. GPT-4 was able to extract
COVID-19 symptoms in a recent study [39] and it may limit
the need for preprocessing.

Our formative study had some limitations. First, we examined
COVID-19 symptoms in patients presenting to a single urban
pediatric ED. Patients presenting to outpatient settings, who
likely had milder symptoms, were not included and our results
may reflect patients with more severe symptoms. And because
the setting was a single site, results may not generalize to other
EDs. Second, we defined COVID-19 status as positive if a
patient had a PCR positive test for COVID-19 or an appropriate
ICD-10 code at the ED encounter. Patients who were COVID-19
positive on a test at home or at an outside center may not have
been captured by this definition even if they presented to the
ED with COVID-19 [40]. Additionally, symptoms may have
differed across variant eras as a result of COVID-19 vaccinations
or previous infections rather than variant differences. Literature
in adults shows that vaccination is associated with a decrease
in systemic symptoms [41]. The United States Food and Drug
Administration authorized the use of the COVID-19 vaccine in
October 2021, during the Delta era and prior to the Omicron
era, for children 5-11 years of age [42]. Vaccination rates for
pediatric patients vary by age group in Massachusetts, as of
April 3, 2023, of those 0-19 years of age, 3% to 57% have
received a primary series but have not been boosted, and 3% to
18% have been boosted since September 1, 2022 [43]. As such,
some patients in the Delta and Omicron eras may have been
vaccinated or had previous COVID-19 infections [44].

Conclusions
In an era where rapid and accurate infectious disease
surveillance is crucial, this study underscores the transformative
potential of AI-based NLP for real-time symptom detection,
significantly outperforming traditional methods such as ICD-10
coding. The dynamic adaptability of NLP technology allows
for the nuanced capture of evolving symptomatology across
different virus variants, offering a more responsive and precise
tool kit for biosurveillance efforts. Its integration into existing
health care infrastructure could be a game changer, elevating
our capabilities to monitor, understand, and ultimately control
the spread of emerging infectious diseases.

J Med Internet Res 2024 | vol. 26 | e53367 | p. 9https://www.jmir.org/2024/1/e53367
(page number not for citation purposes)

McMurry et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
This study was supported by the Centers for Disease Control and Prevention (CDC) of the US Department of Health and Human
Services (HHS) as part of a financial assistance award. The contents are those of the authors and do not necessarily represent the
official views of, nor an endorsement by CDC, HHS, or the US Government. Support was also obtained from the National Center
for Advancing Translational Sciences, National Institutes of Health Cooperative Agreement (U01TR002623). ARZ was supported
by a training grant from the National Institute of Child Health and Human Development (T32HD040128). Generative artificial
intelligence (AI) was not used to design or conduct this study.

Data Availability
All data analyzed during this study for the formative use case are in Multimedia Appendix 5 of this published article.

Authors' Contributions
KDM, AJM, and TAM contributed to the conceptualization. KDM contributed to the funding. AJM, ARZ, AG, and KLO performed
the formal analysis. AJM, JRJ, and VI contributed to the software. AJM, ARZ, and KDM contributed to writing original drafts.
KLO and AG contributed to writing review and edits.

Conflicts of Interest
TAM is a member of the advisory council for Lavita AI. Others declare no conflicts of interest.

Multimedia Appendix 1
COVID-19 symptoms annotation guide.
[PDF File (Adobe PDF File), 225 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Detection of COVID-19 symptoms using NLP and ICD-10 by month for emergency department encounters with patients with
COVID-19. ICD-10: International Classification of Diseases, 10th Revision; NLP: natural language processing.
[PDF File (Adobe PDF File), 2060 KB-Multimedia Appendix 2]

Multimedia Appendix 3
The chi-square analysis of COVID-19 symptom prevalence by pandemic variant era for emergency department encounters with
patients with COVID-19, symptoms were detected using NLP. NLP: natural language processing.
[XLSX File (Microsoft Excel File), 17 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Logistic regression analysis of the effect of COVID-19 status, pandemic variant era, and their interaction on symptom status for
ED encounters, symptoms were detected using NLP. ED: emergency department; NLP: natural language processing.
[XLSX File (Microsoft Excel File), 23 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Data files for the time series figures, the chi-square analysis of symptom prevalence, and the logistic regression analysis of the
effects of COVID-19 status and pandemic variant era on symptom status.
[XLSX File (Microsoft Excel File), 40 KB-Multimedia Appendix 5]

References

1. Subramanian A, Nirantharakumar K, Hughes S, Myles P, Williams T, Gokhale KM, et al. Symptoms and risk factors for
long COVID in non-hospitalized adults. Nat Med. 2022;28(8):1706-1714. [FREE Full text] [doi:
10.1038/s41591-022-01909-w] [Medline: 35879616]

2. Crabb BT, Lyons A, Bale M, Martin V, Berger B, Mann S, et al. Comparison of International Classification of Diseases
and Related Health Problems, Tenth Revision codes with electronic medical records among patients with symptoms of
coronavirus disease 2019. JAMA Netw Open. 2020;3(8):e2017703. [FREE Full text] [doi:
10.1001/jamanetworkopen.2020.17703] [Medline: 32797176]

3. Wang J, Abu-El-Rub N, Gray J, Pham HA, Zhou Y, Manion FJ, et al. COVID-19 SignSym: a fast adaptation of a general
clinical NLP tool to identify and normalize COVID-19 signs and symptoms to OMOP common data model. J Am Med
Inform Assoc. 2021;28(6):1275-1283. [FREE Full text] [doi: 10.1093/jamia/ocab015] [Medline: 33674830]

J Med Internet Res 2024 | vol. 26 | e53367 | p. 10https://www.jmir.org/2024/1/e53367
(page number not for citation purposes)

McMurry et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app1.pdf&filename=51e68d9181686520037e33942a910177.pdf
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app1.pdf&filename=51e68d9181686520037e33942a910177.pdf
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app2.pdf&filename=117996210f0f6317cd40cc01abb97d6e.pdf
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app2.pdf&filename=117996210f0f6317cd40cc01abb97d6e.pdf
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app3.xlsx&filename=b08a4f3592c65bdf6911d591a89befa3.xlsx
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app3.xlsx&filename=b08a4f3592c65bdf6911d591a89befa3.xlsx
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app4.xlsx&filename=41a3d8f3f28ada338b0dabc31869909c.xlsx
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app4.xlsx&filename=41a3d8f3f28ada338b0dabc31869909c.xlsx
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app5.xlsx&filename=28f22db33b739ad83bdf87536663084e.xlsx
https://jmir.org/api/download?alt_name=jmir_v26i1e53367_app5.xlsx&filename=28f22db33b739ad83bdf87536663084e.xlsx
https://europepmc.org/abstract/MED/35879616
http://dx.doi.org/10.1038/s41591-022-01909-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35879616&dopt=Abstract
https://europepmc.org/abstract/MED/32797176
http://dx.doi.org/10.1001/jamanetworkopen.2020.17703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32797176&dopt=Abstract
https://europepmc.org/abstract/MED/33674830
http://dx.doi.org/10.1093/jamia/ocab015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33674830&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


4. Malden DE, Tartof SY, Ackerson BK, Hong V, Skarbinski J, Yau V, et al. Natural language processing for improved
characterization of COVID-19 symptoms: observational study of 350,000 patients in a large integrated health care system.
JMIR Public Health Surveill. 2022;8(12):e41529. [FREE Full text] [doi: 10.2196/41529] [Medline: 36446133]

5. Di Chiara C, Boracchini R, Sturniolo G, Barbieri A, Costenaro P, Cozzani S, et al. Clinical features of COVID-19 in Italian
outpatient children and adolescents during parental, Delta, and Omicron waves: a prospective, observational, cohort study.
Front Pediatr. 2023;11:1193857. [FREE Full text] [doi: 10.3389/fped.2023.1193857] [Medline: 37635788]

6. Sumner MW, Xie J, Zemek R, Winston K, Freire G, Burstein B, et al. Comparison of symptoms associated with SARS-CoV-2
variants among children in Canada. JAMA Netw Open. 2023;6(3):e232328. [FREE Full text] [doi:
10.1001/jamanetworkopen.2023.2328] [Medline: 36892839]

7. Liguoro I, Pilotto C, Bonanni M, Ferrari ME, Pusiol A, Nocerino A, et al. SARS-COV-2 infection in children and newborns:
a systematic review. Eur J Pediatr. 2020;179(7):1029-1046. [FREE Full text] [doi: 10.1007/s00431-020-03684-7] [Medline:
32424745]

8. Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, et al. Symptom prevalence, duration, and risk of
hospital admission in individuals infected with SARS-CoV-2 during periods of Omicron and Delta variant dominance: a
prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-1624. [FREE Full text] [doi:
10.1016/S0140-6736(22)00327-0] [Medline: 35397851]

9. Akaishi T, Kushimoto S, Katori Y, Sugawara N, Egusa H, Igarashi K, et al. COVID-19-related symptoms during the
SARS-CoV-2 Omicron (B.1.1.529) variant surge in Japan. Tohoku J Exp Med. 2022;258(2):103-110. [FREE Full text]
[doi: 10.1620/tjem.2022.J067] [Medline: 36002251]

10. García-Vera C, Castejón-Ramírez S, Miranda EL, Abadía RH, Ventura MG, Navarro EB, et al. COVID-19 in children:
clinical and epidemiological spectrum in the community. Eur J Pediatr. 2022;181(3):1235-1242. [FREE Full text] [doi:
10.1007/s00431-021-04235-4] [Medline: 34406504]

11. Viner RM, Ward JL, Hudson LD, Ashe M, Patel SV, Hargreaves D, et al. Systematic review of reviews of symptoms and
signs of COVID-19 in children and adolescents. Arch Dis Child. 2021;106:802-807. [FREE Full text] [doi:
10.1136/archdischild-2020-320972] [Medline: 33334728]

12. COVID-19 disease in children and adolescents: scientific brief, 29 September 2021. World Health Organization. 2021.
URL: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Children_and_adolescents-2021.
1?ssp=1&setlang=en&cc=US [accessed 2024-02-28]

13. Symptoms of COVID-19. Centers for Disease Control and Prevention. 2022. URL: https://www.cdc.gov/coronavirus/
2019-ncov/symptoms-testing/symptoms.html [accessed 2024-02-28]

14. Hodcroft E. CoVariants. CoVariants. 2021. URL: https://covariants.org/ [accessed 2024-02-28]
15. Machine-learning-for-medical-language / ctakes-client-py. Github. URL: https://github.com/

Machine-Learning-for-Medical-Language/ctakes-client-py/blob/main/ctakesclient/resources/covid_symptoms.bsv [accessed
2024-02-28]

16. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res.
2004;32(Database issue):D267-D270. [FREE Full text] [doi: 10.1093/nar/gkh061] [Medline: 14681409]

17. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology
in 2021. Nucleic Acids Res. 2021;49(D1):D1207-D1217. [FREE Full text] [doi: 10.1093/nar/gkaa1043] [Medline: 33264411]

18. SNOMEDCT_US (SNOMED CT, US edition)—synopsis, UMLS vocabularies. Unified Medical Language System (UMLS).
URL: https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/SNOMEDCT_US/index.html [accessed 2024-02-28]

19. CHV (Consumer Health Vocabulary)—synopsis, UMLS vocabularies. Unified Medical Language System (UMLS). URL:
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html [accessed 2024-02-28]

20. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text Analysis and Knowledge
Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc.
2010;17(5):507-513. [FREE Full text] [doi: 10.1136/jamia.2009.001560] [Medline: 20819853]

21. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings
and diseases in discharge summaries. J Biomed Inform. 2001;34(5):301-310. [FREE Full text] [doi: 10.1006/jbin.2001.1029]
[Medline: 12123149]

22. Harkema H, Dowling JN, Thornblade T, Chapman WW. ConText: an algorithm for determining negation, experiencer,
and temporal status from clinical reports. J Biomed Inform. 2009;42(5):839-851. [FREE Full text] [doi:
10.1016/j.jbi.2009.05.002] [Medline: 19435614]

23. Chapman WW, Hillert D, Velupillai S, Kvist M, Skeppstedt M, Chapman BE, et al. Extending the NegEx lexicon for
multiple languages. Stud Health Technol Inform. 2013;192:677-681. [FREE Full text] [Medline: 23920642]

24. Machine-learning-for-medical-language. GitHub. URL: https://github.com/Machine-Learning-for-Medical-Language
[accessed 2024-02-28]

25. Miller T, Bethard S, Amiri H, Savova G. Unsupervised domain adaptation for clinical negation detection. 2017. Presented
at: BioNLP; August 4, 2017;165-170; Vancouver, Canada. URL: https://aclanthology.org/W17-2320/ [doi:
10.18653/v1/w17-2320]

J Med Internet Res 2024 | vol. 26 | e53367 | p. 11https://www.jmir.org/2024/1/e53367
(page number not for citation purposes)

McMurry et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://publichealth.jmir.org/2022/12/e41529/
http://dx.doi.org/10.2196/41529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36446133&dopt=Abstract
https://europepmc.org/abstract/MED/37635788
http://dx.doi.org/10.3389/fped.2023.1193857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37635788&dopt=Abstract
https://europepmc.org/abstract/MED/36892839
http://dx.doi.org/10.1001/jamanetworkopen.2023.2328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36892839&dopt=Abstract
https://europepmc.org/abstract/MED/32424745
http://dx.doi.org/10.1007/s00431-020-03684-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32424745&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(22)00327-0
http://dx.doi.org/10.1016/S0140-6736(22)00327-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35397851&dopt=Abstract
https://doi.org/10.1620/tjem.2022.J067
http://dx.doi.org/10.1620/tjem.2022.J067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36002251&dopt=Abstract
https://europepmc.org/abstract/MED/34406504
http://dx.doi.org/10.1007/s00431-021-04235-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34406504&dopt=Abstract
https://adc.bmj.com/content/106/8/802.citation-tools
http://dx.doi.org/10.1136/archdischild-2020-320972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33334728&dopt=Abstract
https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Children_and_adolescents-2021.1?ssp=1&setlang=en&cc=US
https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Children_and_adolescents-2021.1?ssp=1&setlang=en&cc=US
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://covariants.org/
https://github.com/Machine-Learning-for-Medical-Language/ctakes-client-py/blob/main/ctakesclient/resources/covid_symptoms.bsv
https://github.com/Machine-Learning-for-Medical-Language/ctakes-client-py/blob/main/ctakesclient/resources/covid_symptoms.bsv
https://europepmc.org/abstract/MED/14681409
http://dx.doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681409&dopt=Abstract
https://europepmc.org/abstract/MED/33264411
http://dx.doi.org/10.1093/nar/gkaa1043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33264411&dopt=Abstract
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/SNOMEDCT_US/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://europepmc.org/abstract/MED/20819853
http://dx.doi.org/10.1136/jamia.2009.001560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819853&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(01)91029-9
http://dx.doi.org/10.1006/jbin.2001.1029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12123149&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(09)00074-4
http://dx.doi.org/10.1016/j.jbi.2009.05.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19435614&dopt=Abstract
https://europepmc.org/abstract/MED/23920642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23920642&dopt=Abstract
https://github.com/Machine-Learning-for-Medical-Language
https://aclanthology.org/W17-2320/
http://dx.doi.org/10.18653/v1/w17-2320
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Tkachenko M, Malyuk M, Holmanyuk A, Liubimov N. Label studio: data labeling software. GitHub. 2020. URL: https:/
/github.com/heartexlabs/label-studio [accessed 2024-02-28]

27. Hripcsak G, Rothschild AS. Agreement, the f-measure, and reliability in information retrieval. J Am Med Inform Assoc.
2005;12(3):296-298. [FREE Full text] [doi: 10.1197/jamia.M1733] [Medline: 15684123]

28. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-282. [FREE Full text]
[Medline: 23092060]

29. Habibzadeh F, Habibzadeh P, Yadollahie M. The apparent prevalence, the true prevalence. Biochem Med (Zagreb).
2022;32(2):020101. [FREE Full text] [doi: 10.11613/BM.2022.020101] [Medline: 35799992]

30. Monaghan TF, Rahman SN, Agudelo CW, Wein AJ, Lazar JM, Everaert K, et al. Foundational statistical principles in
medical research: sensitivity, specificity, positive predictive value, and negative predictive value. Medicina (Kaunas).
2021;57(5):503. [FREE Full text] [doi: 10.3390/medicina57050503] [Medline: 34065637]

31. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2-what do they mean? JAMA. 2021;325(6):529-531. [FREE
Full text] [doi: 10.1001/jama.2020.27124] [Medline: 33404586]

32. Götzinger F, Santiago-García B, Noguera-Julián A, Lanaspa M, Lancella L, Carducci FIC, et al. COVID-19 in children
and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020;4(9):653-661.
[FREE Full text] [doi: 10.1016/S2352-4642(20)30177-2] [Medline: 32593339]

33. King JA, Whitten TA, Bakal JA, McAlister FA. Symptoms associated with a positive result for a swab for SARS-CoV-2
infection among children in Alberta. CMAJ. 2021;193(1):E1-E9. [FREE Full text] [doi: 10.1503/cmaj.202065] [Medline:
33234533]

34. Takács AT, Bukva M, Gavallér G, Kapus K, Rózsa M, Bán-Gagyi B, et al. Epidemiology and clinical features of SARS-CoV-2
infection in hospitalized children across four waves in Hungary: a retrospective, comparative study from march 2020 to
december 2021. Health Sci Rep. 2022;5(6):e937. [FREE Full text] [doi: 10.1002/hsr2.937] [Medline: 36425898]

35. Kenney PO, Chang AJ, Krabill L, Hicar MD. Decreased clinical severity of pediatric acute COVID-19 and MIS-C and
increase of incidental cases during the Omicron wave in comparison to the Delta wave. Viruses. 2023;15(1):180. [FREE
Full text] [doi: 10.3390/v15010180] [Medline: 36680220]

36. Hui KPY, Ho JCW, Cheung MC, Ng KC, Ching RHH, Lai KL, et al. SARS-CoV-2 Omicron variant replication in human
bronchus and lung ex vivo. Nature. 2022;603(7902):715-720. [FREE Full text] [doi: 10.1038/s41586-022-04479-6] [Medline:
35104836]

37. Shoji K, Akiyama T, Tsuzuki S, Matsunaga N, Asai Y, Suzuki S, et al. Clinical characteristics of COVID-19 in hospitalized
children during the Omicron variant predominant period. J Infect Chemother. 2022;28(11):1531-1535. [FREE Full text]
[doi: 10.1016/j.jiac.2022.08.004] [Medline: 35963599]

38. Butowt R, Bilińska K, von Bartheld C. Why does the Omicron variant largely spare olfactory function? implications for
the pathogenesis of anosmia in coronavirus disease 2019. J Infect Dis. 2022;226(8):1304-1308. [FREE Full text] [doi:
10.1093/infdis/jiac113] [Medline: 35467743]

39. Wei WI, Leung CLK, Tang A, McNeil EB, Wong SYS, Kwok KO. Extracting symptoms from free-text responses using
ChatGPT among COVID-19 cases in Hong Kong. Clin Microbiol Infect. 2024;30(1):142.e1-142.e3. [FREE Full text] [doi:
10.1016/j.cmi.2023.11.002] [Medline: 37949111]

40. Wang L, Zipursky AR, Geva A, McMurry AJ, Mandl KD, Miller TA. A computable case definition for patients with
SARS-CoV2 testing that occurred outside the hospital. JAMIA Open. 2023;6(3):ooad047. [FREE Full text] [doi:
10.1093/jamiaopen/ooad047] [Medline: 37425487]

41. Bramante CT, Proper JL, Boulware DR, Karger AB, Murray T, Rao V, et al. Vaccination against SARS-CoV-2 is associated
with a lower viral load and likelihood of systemic symptoms. Open Forum Infect Dis. 2022;9(5):ofac066. [FREE Full text]
[doi: 10.1093/ofid/ofac066] [Medline: 35392460]

42. FDA authorizes Pfizer-BioNTech COVID-19 vaccine for emergency use in children 5 through 11 years of age. U.S. Food
and Drug Administration. 2021. URL: https://www.fda.gov/news-events/press-announcements/
fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age [accessed 2024-02-28]

43. Weekly COVID-19 vaccination report (as of April 3, 2023). Massachusetts Department of Public Health. URL: https:/
/www.mass.gov/doc/weekly-covid-19-vaccination-report-april-5-2023/download [accessed 2024-02-28]

44. Bhattacharyya RP, Hanage WP. Challenges in inferring intrinsic severity of the SARS-CoV-2 Omicron variant. N Engl J
Med. 2022;386(7):e14. [FREE Full text] [doi: 10.1056/NEJMp2119682] [Medline: 35108465]

Abbreviations
AI: artificial intelligence
CDC: Centers for Disease Control and Prevention
ED: emergency department
GPT: Generative Pre-trained Transformer
ICD-10: International Classification of Diseases, 10th Revision
LLM: large language model

J Med Internet Res 2024 | vol. 26 | e53367 | p. 12https://www.jmir.org/2024/1/e53367
(page number not for citation purposes)

McMurry et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://europepmc.org/abstract/MED/15684123
http://dx.doi.org/10.1197/jamia.M1733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15684123&dopt=Abstract
https://europepmc.org/abstract/MED/23092060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23092060&dopt=Abstract
https://europepmc.org/abstract/MED/35799992
http://dx.doi.org/10.11613/BM.2022.020101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35799992&dopt=Abstract
https://www.mdpi.com/resolver?pii=medicina57050503
http://dx.doi.org/10.3390/medicina57050503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34065637&dopt=Abstract
https://jamanetwork.com/journals/jama/fullarticle/2775006
https://jamanetwork.com/journals/jama/fullarticle/2775006
http://dx.doi.org/10.1001/jama.2020.27124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33404586&dopt=Abstract
https://europepmc.org/abstract/MED/32593339
http://dx.doi.org/10.1016/S2352-4642(20)30177-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32593339&dopt=Abstract
https://europepmc.org/article/MED/33234533
http://dx.doi.org/10.1503/cmaj.202065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33234533&dopt=Abstract
https://europepmc.org/abstract/MED/36425898
http://dx.doi.org/10.1002/hsr2.937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36425898&dopt=Abstract
https://europepmc.org/article/MED/36680220
https://europepmc.org/article/MED/36680220
http://dx.doi.org/10.3390/v15010180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36680220&dopt=Abstract
https://europepmc.org/article/MED/35104836
http://dx.doi.org/10.1038/s41586-022-04479-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35104836&dopt=Abstract
https://europepmc.org/abstract/MED/35963599
http://dx.doi.org/10.1016/j.jiac.2022.08.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35963599&dopt=Abstract
https://europepmc.org/abstract/MED/35467743
http://dx.doi.org/10.1093/infdis/jiac113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35467743&dopt=Abstract
https://europepmc.org/article/MED/37949111
http://dx.doi.org/10.1016/j.cmi.2023.11.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37949111&dopt=Abstract
https://europepmc.org/abstract/MED/37425487
http://dx.doi.org/10.1093/jamiaopen/ooad047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37425487&dopt=Abstract
https://europepmc.org/abstract/MED/35392460
http://dx.doi.org/10.1093/ofid/ofac066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35392460&dopt=Abstract
https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age
https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age
https://www.mass.gov/doc/weekly-covid-19-vaccination-report-april-5-2023/download
https://www.mass.gov/doc/weekly-covid-19-vaccination-report-april-5-2023/download
https://europepmc.org/article/MED/35108465
http://dx.doi.org/10.1056/NEJMp2119682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35108465&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


NLP: natural language processing
OR: odds ratio
PCR: polymerase chain reaction
PPV: positive predictive value
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