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Abstract

Background: Surgical site infections (SSIs) occur frequently and impact patients and health care systems. Remote surveillance
of surgical wounds is currently limited by the need for manual assessment by clinicians. Machine learning (ML)–based methods
have recently been used to address various aspects of the postoperative wound healing process and may be used to improve the
scalability and cost-effectiveness of remote surgical wound assessment.

Objective: The objective of this review was to provide an overview of the ML methods that have been used to identify surgical
wound infections from images.

Methods: We conducted a scoping review of ML approaches for visual detection of SSIs following the JBI (Joanna Briggs
Institute) methodology. Reports of participants in any postoperative context focusing on identification of surgical wound infections
were included. Studies that did not address SSI identification, surgical wounds, or did not use image or video data were excluded.
We searched MEDLINE, Embase, CINAHL, CENTRAL, Web of Science Core Collection, IEEE Xplore, Compendex, and arXiv
for relevant studies in November 2022. The records retrieved were double screened for eligibility. A data extraction tool was
used to chart the relevant data, which was described narratively and presented using tables. Employment of TRIPOD (Transparent
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) guidelines was evaluated and PROBAST
(Prediction Model Risk of Bias Assessment Tool) was used to assess risk of bias (RoB).

Results: In total, 10 of the 715 unique records screened met the eligibility criteria. In these studies, the clinical contexts and
surgical procedures were diverse. All papers developed diagnostic models, though none performed external validation. Both
traditional ML and deep learning methods were used to identify SSIs from mostly color images, and the volume of images used
ranged from under 50 to thousands. Further, 10 TRIPOD items were reported in at least 4 studies, though 15 items were reported
in fewer than 4 studies. PROBAST assessment led to 9 studies being identified as having an overall high RoB, with 1 study
having overall unclear RoB.

Conclusions: Research on the image-based identification of surgical wound infections using ML remains novel, and there is a
need for standardized reporting. Limitations related to variability in image capture, model building, and data sources should be
addressed in the future.
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J Med Internet Res 2024 | vol. 26 | e52880 | p. 1https://www.jmir.org/2024/1/e52880
(page number not for citation purposes)

Tabja Bortesi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:petchj@hhsc.ca
http://dx.doi.org/10.2196/52880
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

surgical site infection; machine learning; postoperative surveillance; wound imaging; mobile phone

Introduction

Postoperative complications are associated with significant
morbidity and mortality [1,2]. Wound-related issues following
surgery remain common and represent a considerable cost to
patients and health care systems [3,4]. The global incidence of
surgical site infections (SSIs)—which include superficial or
deep infections occurring at the incision site as well as
organ-space infections related to the surgery [5]—has been
estimated to be 11% [6]. Many of these events occur after
hospital discharge, highlighting the need for remote posthospital
discharge monitoring. Early research suggests that remote
postoperative wound follow-up is associated with high patient
satisfaction and reduced costs [7,8].

Artificial intelligence tools have been applied to various aspects
of health care and are contributing to the shift toward precision
medicine [9-11]. Specifically, machine learning (ML) techniques
can leverage health data and develop predictive models to assist
in clinical decision-making [12], and can be used in conjunction
with computer vision. An important medical task is the
classification and detection of various objects, ranging from
skin lesions to cell nuclei [13]. Recently, ML-enabled computer
vision methods have been used to contribute to the automation
of wound segmentation [14,15], evaluation of postoperative
outcomes [16,17], and improvement of wound assessment
practices [18,19], often outperforming existing approaches.

Wound care involves cleaning and dressing, monitoring healing,
addressing possible infection, and other wound type-specific
measures [20]. Current image-based wound management
practices, often involving manual wound photography and
assessment carried out by nurses, are time- and labor-intensive
[21]. In contrast, models of care augmented with ML-enabled
methods can be automated [22,23]. The portability of these
methods might also be employed to conduct such assessments
remotely [24], reducing patient travel burden and improving
access to wound care in rural areas [25,26]. A recent clinical
trial (Post-Discharge After Surgery Virtual Care With Remote
Automated Monitoring-1) found that virtual care with remote
monitoring that included wound evaluation shows promise in
improving outcomes important to patients and to optimal health
system function [27]. These results highlight the utility of digital
approaches to care, which can be integrated with automated ML
systems to increase scalability.

The research landscape of ML-based methods for wound
surveillance is evolving rapidly. Several reviews have addressed
the use of ML for various aspects of wound care from different
perspectives. One scoping review focused on mapping the use
cases for ML in the management of various types of chronic
wounds (eg, visual assessment and predicting evolution) [28].
Another review addressed image-based chronic wound
assessment from a technical standpoint, characterizing existing
rule-based and ML methods for wound feature extraction and
classification, as well as systems for wound imaging [29].
However, chronic and acute wounds differ in terms of the

clinical signs associated with infection as those in chronic wound
infections are often less discernible [30], and there is a need to
establish the state of the science with respect to how ML-based
tools are being used for postoperative wounds. One systematic
review specifically characterized the effectiveness of ML
algorithms that use textual or structured data for the detection
and prediction of SSIs [31], though a survey of image-based
methods has not been undertaken. Likewise, other systematic
reviews have found that reporting in ML-based prediction model
studies is generally poor and that most are at high risk of bias
(RoB) [32,33]. Considering these results, assessments of RoB
and the employment of reporting guidelines—which have not
been included in previous reviews of image-based ML for
wound care—can further provide insights into the current state
of research in this field.

The scope and purpose of this review was to provide an in-depth
overview of ML approaches that use visual data for the
identification of SSIs. Specifically, this review describes the
nature of the methods used in this context, the ways in which
they have been validated, the extent to which the reporting of
these studies follows guideline recommendations, and their
RoB.

Methods

Review Methodology
This scoping review was conducted in accordance with the
appropriate JBI (Joanna Briggs Institute) methodology [34].
The PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
checklist was used to guide the writing of this review [35]. We
opted for a scoping review approach as we sought to analyze
the methods employed in conducting research in this field, an
indication for scoping reviews [36], rather than synthesize model
performance.

Search Strategy and Study Selection
Following our protocol [37], participants of any age (or other
demographic variable) who underwent any type of surgery were
considered. The main concept being addressed is the use of
ML-based computer vision in the image-based identification of
surgical wound infections. Only wounds that were directly the
product of surgery were included. Other types of wounds, such
as pressure ulcers, were excluded. We included studies that
described detection of infection of such wounds (as defined by
study authors). Studies solely focusing on tasks other than
identification (eg, segmentation) and using sources other than
images or videos for prediction were not considered. Studies
conducted in any postoperative context, including postdischarge
settings, were included.

Studies that developed or validated one or more prediction
models were included in this review, including those that
gathered data from experimental, quasi-experimental, and
observational studies (eg, randomized controlled trials, and
prospective and retrospective studies). Only primary sources
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were considered. Select grey literature sources, such as
conference proceedings and preprints, were also considered.
Animal studies were excluded.

An initial limited search of MEDLINE (Ovid) and CINAHL
(EBSCO) was undertaken to identify relevant papers. Text
words used in the titles and abstracts of retrieved records, as
well as index terms used to describe them, were used to develop
the full search strategy (Multimedia Appendix 1), which was
adapted for each database. The databases we searched were
MEDLINE (Ovid), CENTRAL (Ovid), Embase (Ovid),
CINAHL (EBSCO), Web of Science Core Collection, IEEE
Xplore, and Compendex. We also searched arXiv for relevant
preprints. All databases were searched from inception to
November 24, 2022. Reference lists of all included records were
likewise searched for other records. Only English-language
records were considered.

After the search was completed, duplicate citations were
removed and all identified citations were uploaded into Rayyan
[38] for title and abstract and full-text screening by 2
independent reviewers. An abstract screening tool was used to
aid in the screening process (Multimedia Appendix 2). The texts
of potentially relevant records were retrieved in full and assessed
in the same manner. Disagreements were resolved through
discussion or by consultation with an additional reviewer.

Assessment of the Employment of Reporting Guidelines
and RoB
A data extraction tool (Multimedia Appendix 3)—that had been
piloted with 20% (2/10) of the included reports by 2 independent
reviewers—was used to abstract the relevant data. After piloting
the tool, a single reviewer extracted data from the remaining
sources with validation by an additional reviewer. The data were
summarized using tables and presented narratively.

We determined the extent to which the included reports
employed TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis)
guidelines using the TRIPOD adherence assessment form [39],
and used the PROBAST (Prediction Model Risk of Bias
Assessment Tool) to conduct critical appraisal [40]. Further, 2
reviewers assessed both employment of reporting guidelines
and RoB for 20% (2/10) of the included reports; the remaining
assessments were carried out by 1 reviewer (with an additional
reviewer available for validation). In studies that developed
multiple models, we only evaluated reporting and RoB for those
that were image-based. To facilitate comparison between the
reporting level of TRIPOD items, we chose arbitrary thresholds
to denote high (≥70%), moderate (40%-69%), and low
(1%-39%) adherence.

The TRIPOD adherence form and PROBAST were modified
as needed for the purposes of this review. As has been noted in
other reviews [33,41-43], it is difficult to assess RoB in the
predictors of deep learning (DL) models that use images for
prediction, as the image features are automatically selected by
the algorithm. Still, we deemed image capture considerations
important (eg, whether images were systematically captured)
and altered the relevant TRIPOD and PROBAST items
accordingly. The full list of modifications can be found in
Multimedia Appendix 4.

Results

Study Inclusion
The search retrieved 796 records, or 699 records after duplicates
were removed (Figure 1). We excluded 684 records during
initial screening and full-text screened 15 reports. We identified
10 reports that met the eligibility criteria. The reference lists of
these reports had an additional 16 potentially relevant records,
though none met the eligibility criteria.
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Figure 1. PRISMA flow diagram showing study selection process. ML: machine learning; PRISMA: Preferred Reporting Items for Systematic Reviews
and Meta-Analyses; SSI: surgical site infection.

Review Findings
The included studies took place in a variety of settings, across
a wide range of cohort sizes (Table 1). Important study

characteristics were sometimes unclear or not reported. The full
data extraction sheet can be found in Multimedia Appendix 5.
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Table 1. Study characteristics.

EventsCohortSettingPurposeAuthor

In total, 30 participants
with infected wounds

In total, 530 participantsWomen who underwent C-section at
a particular hospital in Kigali, Rwan-
da, between September 2019 and
February 2020 prospectively enrolled
on postoperative day 1

To develop a model for predict-

ing SSIa in C-section wounds
from thermal images taken with
smartphones

Fletcher et al [44]

In total, 62 participants
with infected wounds

In total, 572 participants
(out of 729) that returned
for follow-up

Women aged >18 years who under-
went C-section at a particular hospital
in Kigali, Rwanda, between March
and October 2017 enrolled prior to
discharge

To develop a model for predict-
ing SSI in C-section wounds
from color images taken with
mobile devices

Fletcher et al [45]

In total, 136 images of in-
fected wounds

In total, 480 wound im-
ages from 100 patients

Prospectively collected wound
database of patients who had under-
gone laparotomy, minimal invasive
surgery, or hernia repair at an Asian
academic center

To develop an automatic moni-
toring tool for surgical wounds
based on smartphone images

Wu et al [46]

In total, 62 participants
with infected wounds

In total, 572 participants
(out of 729) that returned
for follow-up; images
available for 568 patients

Women aged 18+ years who under-
went C-section at a particular hospital
in Kigali, Rwanda, between March
and October 2017 enrolled prior to
discharge

To develop models for predict-
ing SSI in C-section wounds
from questionnaire and image
data

Fletcher et al [47]

In training set, 27 infection
images; total number un-
clear

In total, 293 wound im-
ages

Images of chest, abdomen, back,
hand, and podiatry wounds collected
from the Department of Surgery and
Department of Internal Medicine of
National Taiwan University Hospital

To develop an automatic
wound interpretation app for
automated wound monitoring

Hsu et al [48]

In total, 212 images of
mild infection and 37 im-
ages of severe infection

In total, 745 images from
61 patients, though only
732 are labeled

Images of LVAD driveline exit sites
obtained from Schüchtermann-
Schiller’sche Kliniken and Hannover
Medical School

To explore MLb approaches for

remote LVADc patient monitor-
ing using images

Lüneburg et al [49]

In total, 355 images of in-
fection

In total, 1335 imagesImages collected primarily from pa-
tients and surgeons at the Palo Alto
Veterans Affairs Hospital and the
Washington University Medical
Center

To develop a model that can
identify the onset of wound ail-
ments from smartphone images

Shenoy et al [50]

In total, 30 images of infec-
tion

In total, 42 imagesImages collected from the Department
of Surgery of National Taiwan Univer-
sity Hospital

To develop a model for recog-
nizing SSI

Hsu et al [51]

UnclearTotal unclear; 6 images
for testing

Not reportedTo develop a system for auto-
matic wound detection and
subsequent infection detection

Zeng et al [52]

In total, 155 images of in-
fection

In total, 3400 imagesImages collected from New York
University Wound Database

To develop an integrated sys-
tem for automatic wound seg-
mentation and analysis of
wound conditions from wound
images

Wang et al [53]

aSSI: surgical site infection.
bML: machine learning.
cLVAD: left ventricular assist device.

The earliest included paper was published in 2015 [53], 6 papers
were published between 2017 and 2019 [47-52], and 3 papers
were published between 2020 and November 2022 [44-46].

The objective of the included studies was generally to develop
models for identifying surgical wound infection from images.
In some cases, the purpose was broader; 2 studies sought to
identify the presence of various wound attributes (eg,
granulation) [46,50] and 4 studies developed models for

automatic wound segmentation [48,49,51,53]. Other objectives
included healing progress prediction [53], surface area
estimation [53], and wound detection [52].

Patients, Procedures, and Image Capture
The types of patients and surgical procedures studied varied. In
total, 3 papers focused on C-section patients in rural Rwanda
[44,45,47], while another study examined patients implanted
with a left ventricular assist device in Germany [49]. Further,

J Med Internet Res 2024 | vol. 26 | e52880 | p. 5https://www.jmir.org/2024/1/e52880
(page number not for citation purposes)

Tabja Bortesi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


2 studies conducted in Asia described the surgical procedures
more broadly; for instance, 1 paper included patients that had
undergone laparotomy, minimal invasive surgery, or hernia
repair [46], while another included surgical wounds of the chest,
abdomen, back, hands, and feet [48]. In 4 papers, this
information was not specified [50-53].

The context of image capture likewise varied (Table 2). Most
studies simply stated that images were obtained from one or
more sites or data sets [48-51,53], without further details on
how the images were selected; though 1 study additionally
indicated that the data were “prospectively collected” [46] and
the studies conducted in Rwanda described their cohorts in the
greatest detail [44,45,47].

Table 2. Study data collection and MLa methodology.

Performance metric for
best-performing model

Modeling meth-
ods

Outcome determinationImaging modalityTime of image captureAuthor

Median AUCc: 0.90CNNbPhysical examination
performed by general
practitioner

Thermal images taken by com-
munity health workers with a
thermal camera module connect-
ed to smartphone that produces
a JPG thermal image and a
separate 2D temperature array

Approximately 10 days
after surgery

Fletcher et al
[44]

Median AUC: 0.655CNNPhysical examination
performed by general
practitioner

Color images taken by commu-
nity health workers with An-
droid tablets

Approximately 10 days
after surgery

Fletcher et al
[45]

Median AUC: 0.833CNN, SVMd,

RFe, GBf

Annotation of abnormal
wound features on im-
ages performed by sur-
geons

Color images taken by surgeons
with smartphones

Just after surgery, during
hospitalization, and in
outpatient clinic follow-
up

Wu et al [46]

Median AUC: 1.0Unclear; potential-
ly both SVM and
logistic regres-
sion

Physical examination
performed by general
practitioner

Color images taken by commu-
nity health workers with An-
droid tablets

Approximately 10 days
after surgery

Fletcher et al
[47]

Overall accuracy: 0.8358SVMUnclear, but likely anno-
tation of images by 3
physicians

Color images taken with
smartphones

Not reportedHsu et al [48]

Overall accuracy: 0.670CNNUnclear, but likely
based on physical exam-
ination performed by
physicians

Color images; device not report-
ed

Not reportedLüneburg et al
[49]

AUC: 0.82CNNNot reportedColor images taken by patients
and surgeons with smartphones

Not reportedShenoy et al
[50]

Overall accuracy: 0.9523SVMNot reportedColor images; device not report-
ed

Not reportedHsu et al [51]

AUCs varied depending
on the infection-related
wound attribute, but
ranged from 0.7682 to
0.9145.

SVMNot reportedColor images; device not report-
ed

Not reportedZeng et al [52]

AUC: 0.847SVM using CNN
features

Not reportedColor images; device not report-
ed

Not reportedWang et al [53]

aML: machine learning.
bCNN: convolutional neural network.
cAUC: area under curve.
dSVM: support vector machine.
eRF: random forest.
fGB: gradient boosting.

In the studies conducted with C-section patients, the wounds
were photographed approximately 10 days after surgery, with
infection assessment taking place on the same day [44,45,47].
Another study collected images at multiple time points:
immediately after surgery, during hospitalization, and at a later

follow-up, though the number of days post surgery was not
indicated [46]. However, the time at which the images were
taken relative to surgery and the time at which infection was
assessed relative to image capture were not reported in 6 records
[48-53].
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In terms of the images themselves, 9 studies used color images
[45-53], and 1 used thermal images [44]. Further, 6 studies used
a mobile device (either smartphone or tablet) to capture the
image [44-48,50], while others did not report the device used
[49,51-53]. Across studies that reported the persons responsible
for capturing the images, community health workers were
typically responsible [44,45,47]; 1 study used images taken by
surgeons [46]; and another used images collected by both
patients and surgeons [50].

Assessment of surgical wound infection establishes the model
ground truth and occurred mainly through face-to-face physical
examination [44,45,47,49], through manual annotation of the
wound images [46,48,51], or was not reported [50,52,53].

ML Approaches
All the included records were model development studies (ie,
no external validation). In total, 4 papers used convolutional
neural networks (CNNs) [44,45,49,50], 3 used support vector
machines (SVMs) developed using handcrafted features
[48,51,52], 1 trained an SVM classifier using CNN-derived
features [53], 1 used a CNN, an SVM, a random forest model,
and a gradient boosting classifier [46], and 1 paper’s methods
were not entirely clear but may have involved both logistic
regression and SVMs [47]. Additional technical details are
available in Multimedia Appendix 6.

The number of images used for developing an infection detection
model ranged from just 42 [51] to 3400 [53]. Likewise, the
proportion of images of infected wounds ranged from 4.6%
(155/3400) [53] to 71.4% (30/42) [51]. In some cases, there was
1 image per patient [44,45,47], while in others, there were
multiple per patient [46,49] or the number of patients was not
reported [48,50-53].

In 5 papers, the classification task was binary [44-47,53], while
in most others, the task was multiclass. In 1 paper, multiclass
classification entailed distinguishing between mild, severe, and
no infection [49], while in 3 others, the model differentiated
between various infection-related wound attributes, such as
granulation and swelling [48,51,52]. In contrast, 1 paper
addressed a multilabel task in which the model identified the
presence of a wound, infection, granulation, and drainage per
image [50].

All studies reported model performance. In total, 7 studies
reported area under the receiver operating characteristic curve
values, which ranged from 0.655 [45] to 1.0 [47] for the
best-performing models. The remaining studies reported overall
accuracies, ranging from 0.670 [49] to 0.952 [51] for the
best-performing models, as well as other performance metrics
(eg, F1-scores).

Employment of Reporting Guidelines
There were a few TRIPOD items that were highly employed
(ie, employed by at least 7 out of the 10 included studies). For
instance, all papers reported their objectives, and most reported
background information, overall interpretations of study results,

and descriptions of whether actions were taken to standardize
image capture or otherwise systematically identify wounds from
the images. In addition, 6 TRIPOD items had moderate
employment (employed by between 4 and 6 studies); namely,
the reporting of data sources and study setting, descriptions of
model-building procedures, the number of participants or images
(and the number showing infection), study limitations, as well
as the potential clinical use of the models and future research
directions.

Employment of 8 TRIPOD items was low (employed by
between 1 and 3 studies), including items related to the reporting
of participant selection methods, descriptions of how and when
images were taken, rationales for sample sizes, the flow of
participants within the paper, explanations of how to use the
models, and funding details. Most studies did not completely
use these guidelines in terms of outcome assessment, as there
was often no indication of the criteria used to diagnose surgical
wound infection or the time interval between surgery and
assessment was unclear.

An additional 7 TRIPOD items were not reported in any of the
included studies. Titles and abstracts did not employ reporting
guidelines, and participant demographics were not reported.
Similarly, model calibration was not discussed, and in studies
that did not exclusively use DL methods for infection detection
[46-48,51-53], reporting of feature modeling details did not
meet TRIPOD guidelines.

About RoB
The RoB assessment led to 9 studies being identified as having
an overall high RoB, while the remaining study was determined
to have overall unclear RoB (Table 3). The participants domain
was determined to be unclear in terms of RoB because little
information about the source of data and recruitment methods
was reported [46,48-53]. The 3 papers on C-section patients in
Rwanda were at low RoB for this domain, as the nature of these
works was cross-sectional and the cohorts were well defined
[44,45,47]. In terms of predictors, we identified 5 papers as
being at high RoB since there was variability in image capture
conditions without later accounting for this variability
[45-47,50,53]. In contrast, other papers were judged to be at
low RoB for this domain because they segmented the wound
prior to infection detection [48,49,51] or placed a frame around
the wound prior to image capture [44], improving the uniformity
of images processed for model training. Likewise, most studies
were rated as having unclear RoB in the outcome domain,
largely because the specific criteria used to gauge the presence
of surgical wound infection were not reported. In other cases,
the outcome domain was determined to be at high RoB because
the presence of infection was determined solely from images,
as opposed to by face-to-face review. In 8 studies, the analysis
domain was assessed as being at high RoB for many reasons
[45,47-53], including omission of participants in model
development, an absence of both discrimination and calibration
measures, and failure to appropriately account for overfitting.
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Table 3. PROBASTa RoBb assessment of the 10 included reports.

RoBStudy

OverallAnalysisOutcomePredictorsParticipants

???d++cFletcher et al [44]

−−?−e+Fletcher et al [45]

−?−−?Wu et al [46]

−−?−+Fletcher et al [47]

−−−+?Hsu et al [48]

−−?+?Lüneburg et al [49]

−−?−?Shenoy et al [50]

−−−+?Hsu et al [51]

−−???Zeng et al [52]

−−?−?Wang et al [53]

aPROBAST: Prediction Model Risk of Bias Assessment Tool.
bRoB: risk of bias.
c+ indicates low RoB.
d? indicates unclear RoB.
e− indicates high RoB.

Discussion

Principal Findings
This scoping review aimed to characterize the available research
on ML approaches for the image-based identification of surgical
wound infections. Such research is important as it can be
integrated with remote patient monitoring, which enables
improved health care decision-making and management, with
additional benefits such as reduced travel burden. Initial work
has suggested that remote image-based monitoring of wounds
is feasible and associated with higher patient satisfaction
[54-56], and is at least comparable to routine in-person care in
terms of time to infection diagnosis [57]. Other aspects of wound
assessment targeted by image-based remote patient monitoring
include identification of dehiscence and surface area and
temperature measurements [58,59], though much has not been
automated or ML-based.

Despite the extensive body of ML-based work using medical
images in other specialties [60,61], there is scarce ML research
on the identification of surgical wound infections from digital
images. We identified only 10 such papers, 7 of which were
conference papers, which limits the space for reporting and
likely contributed to the low reporting of TRIPOD items. In
contrast, a recent review of ML for SSI detection identified 32
papers that used structured electronic health record, free-text,
or administrative data for prediction [31], suggesting that
ML-based SSI detection research has mostly used these more
readily available data sources. While models based on such
in-hospital data perform well in the context of inpatient SSI
detection, they may be limited in their practical application
during clinical care, as visual inspection is the essential mode
by which infection is identified. In terms of incorporating
innovative imaging techniques, thermal imaging has recently

emerged as a potentially valuable tool in the management of
surgical wounds [62-64]. Thermal imaging can be used with
mobile devices [44,65], which facilitates its application for
postdischarge monitoring, and may better generalize to different
skin colors. On the other hand, the utility of electronic health
record– or text-based models for postdischarge surveillance is
perhaps less clear. Current postdischarge surgical wound
surveillance largely depends on evaluation at follow-up visits,
which may be infrequent and not timely [66], or on patient
self-assessment, which is not reliable [67,68]. ML for the
image-based identification of surgical wound infections presents
the opportunity to automate this practice.

Reporting Data Collection Details
ML hinges on effective data collection, which can be
challenging in outpatient or remote monitoring settings; hence,
this type of research is still in early development. Although
virtual care as a model of health care is relatively new, progress
has been made in terms of data collection technology [64,69],
similar telemedicine research without ML [70-72], and
monitoring of other wound types [73,74]. As almost
three-fourths of individuals worldwide own a mobile phone
[75], leveraging this technology for remote monitoring holds
potential. Still, it is worth noting that mobile phone ownership
and mobile network coverage is lower in certain geographical
areas and in low-income groups. In these contexts, alternative
approaches, such as in-hospital follow-up with pictures taken
by a community health worker [44], may be more appropriate.
In terms of the data used in the included studies, it has mainly
been collected in non-Western settings, and there are no publicly
available data sets of surgical wound infection images, which
presents a challenge to reproducibility and further development
in the field. Likewise, the lack of reporting on image metadata
(eg, gender and age distributions, procedures received, and
occurrence of surgical complications) and eligibility criteria
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limits the understanding of the populations that this research
can be generalized to and contributes to RoB in terms of
participant selection. Reporting of such details needs
improvement for the progression of different prototypes for
different subpopulations in this domain.

Transparency and Standardization in Model
Development
The nature of the models developed in the included studies was
diagnostic rather than prognostic. Similarly, none of the included
papers performed out-of-sample external validation, highlighting
the newness of this field of work and opportunity for further
maturity. Interestingly, 4 papers published between 2017 and
2019 did not use DL methods, perhaps because the expertise
required for development of such models was not yet widely
available. Model performance is likewise not well-standardized
in its reporting, as no papers reported on calibration and some
did not include discrimination measures, which gives rise to
RoB in analysis methods. Many papers did not report on
measures to address overfitting, which calls the developed
models’ generalizability into question. Despite the partial
reporting, the performance of the models in the included papers
suggest that image-based ML for identification of surgical
wound infection holds promise. In order to better understand
their generalizability and reliability, future studies should
externally validate and calibrate the developed models and report
areas under the curve (as opposed to solely reporting other
measures such as accuracy), and provide transparent
documentation (eg, open-source code) to promote reproducibility
and collaboration. Considering that interpretability and
explainability support clinician trust [76], researchers may
likewise wish to explore these concepts in future work.

Employment of Reporting Guidelines and RoB

Standardization of Image Capture
Use of TRIPOD guidelines was mostly low and RoB was
generally unclear or high. This was in part due to participant-
and analysis-related considerations discussed above; however,
there were also concerns with the images themselves. In most
studies, the way in which the images were taken, environmental
conditions, the persons responsible for taking them, and the
time of image capture relative to surgery, were not reported in
detail. Still, there was often variability in the conditions of image
capture, which might be attributed to unique challenges
associated with collection and standardization in this particular
modality. As opposed to other modalities, surgical wound
infection images are largely taken by hand, without explicit
training or guidance, which makes for considerable differences
among images and introduces RoB in terms of model predictors.
Efforts to standardize image capture help reduce RoB by
minimizing systematic differences between images of infected
versus noninfected wounds. Recent approaches such as
instructions for patient-generated surgical wound images [77]
or automated color calibration, scaling, and rotation correction
[78] suggest that these considerations are receiving attention.
Some studies created segmentation algorithms to capture the
wound more reliably from the nonuniform images, which may
have hindered the development of infection detection models.
Segmentation and classification represent distinct areas of

research, though many studies developed their own segmentation
models rather than using or building on existing segmentation
algorithms. In future work, specific directions detailing the time
(relative to surgery), method, and conditions of image capture
should be provided in order to reduce unwanted variability, and
image processing steps can be undertaken for further
standardization.

Transparency in Outcome Assessment
Outcome assessment was also not well reported in most papers.
While there is no universally accepted and objective gold
standard for SSI detection [79], clinical examination (involving
direct observation of the wound) is frequently used as a
reference standard [68,70,72,80,81]. Although some studies did
perform in-person clinical examination, none reported the
specific criteria used to gauge the presence of infection.
Considering that there are differences in the rates of reported
SSIs depending on the criteria used [82], specifying these criteria
is important to more accurately assess the RoB arising from
outcome assessment. It is worth noting, however, that there are
challenges associated with in-person postoperative wound
assessment. Surgical wound infections progress variably, with
some only apparent after the 30-day postoperative surveillance
benchmark [83,84]. However, extended in-person follow-up
timeframes may require additional administrative resources. In
practice, the criteria employed for SSI assessment typically
consider both feasibility and validity [79]. This may necessitate
striking a balance between resources, time constraints, and
quality of assessment, which can pose challenges to the
comprehensive evaluation of surgical wound infections. On a
smaller scale, interrater reliability of in-person SSI assessment
using established criteria can be modest [85,86], and in rural
areas, there may be limited access to high-quality in-person
wound care. Where feasible, determination of ground truth
should use established criteria for infection and employ multiple
independent assessors to minimize RoB.

Limitations
There are some limitations to this review. For instance,
additional searching (eg, forward citation searching) may have
led to more relevant reports being identified, as may have
searching grey literature sources, which would reduce selection
bias. We may have missed other relevant non–English-language
papers, potentially excluding valuable studies. The included
studies are from diverse locations (eg, Rwanda, Germany, and
Taiwan), though this does not fully compensate for the potential
language bias. Similarly, data extraction and the TRIPOD and
PROBAST assessments were mainly completed by 1 reviewer,
which introduces a potential source of bias in our findings. The
modifications made to the TRIPOD and PROBAST tools may
limit the ability to compare the results of our assessments to
those of other reviews. Artificial intelligence–oriented
extensions of both tools are in development [87] and will
facilitate their use in appraising ML-based studies.

Conclusions
The use of ML for the image-based identification of surgical
wound infections remains in the early stages, with only 10
studies available and a need for reporting standardization. Future
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development and validation of such models should carefully
consider image variability, overfitting concerns, and criteria for
determination of infection. These considerations are important

to advance the state of image-based ML for wound management,
which has the potential to automate traditionally labor-intensive
practices.
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