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Abstract

Background: Worldwide, cardiovascular diseases are the primary cause of death, with hypertension as a key contributor. In
2019, cardiovascular diseases led to 17.9 million deaths, predicted to reach 23 million by 2030.

Objective: This study presents a new method to predict hypertension using demographic data, using 6 machine learning models
for enhanced reliability and applicability. The goal is to harness artificial intelligence for early and accurate hypertension diagnosis
across diverse populations.

Methods: Data from 2 national cohort studies, National Health Insurance Service-National Sample Cohort (South Korea,
n=244,814), conducted between 2002 and 2013 were used to train and test machine learning models designed to anticipate incident
hypertension within 5 years of a health checkup involving those aged ≥20 years, and Japanese Medical Data Center cohort (Japan,
n=1,296,649) were used for extra validation. An ensemble from 6 diverse machine learning models was used to identify the 5
most salient features contributing to hypertension by presenting a feature importance analysis to confirm the contribution of each
future.

Results: The Adaptive Boosting and logistic regression ensemble showed superior balanced accuracy (0.812, sensitivity 0.806,
specificity 0.818, and area under the receiver operating characteristic curve 0.901). The 5 key hypertension indicators were age,
diastolic blood pressure, BMI, systolic blood pressure, and fasting blood glucose. The Japanese Medical Data Center cohort
dataset (extra validation set) corroborated these findings (balanced accuracy 0.741 and area under the receiver operating
characteristic curve 0.824). The ensemble model was integrated into a public web portal for predicting hypertension onset based
on health checkup data.

Conclusions: Comparative evaluation of our machine learning models against classical statistical models across 2 distinct
studies emphasized the former’s enhanced stability, generalizability, and reproducibility in predicting hypertension onset.
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Introduction

The World Health Organization (WHO) has identified
cardiovascular diseases (CVDs) as the leading cause of mortality
worldwide, with a staggering 17.9 million deaths recorded in
2019 [1]. This number is projected to rise to approximately 23
million by 2030. Of the multitude of CVDs, specific conditions
such as myocardial infarction and ischemic stroke account for
more than 85% of these CVD-related deaths [2]. The US Centers
for Disease Control and Prevention (CDC) have highlighted
that CVDs caused over US $216 billion in overall health care
expenses and resulted in US $147 billion lost due to increased
workplace absenteeism and corresponding productivity in the
United States. As a result, CVDs impose a significant burden
on the nation’s economy [3].

Given the acknowledged biological and economic risks
associated with CVDs, it is widely recognized that hypertension
plays a significant role in these health complications, including
myocardial infarction and stroke [4]. Predicting hypertension
onset is notably challenging due to the disease’s multifactorial
origins, encompassing a wide range of genetic, environmental,
and lifestyle factors. The subtle and often interrelated effects
of these factors contribute to the complexity of early detection.
For example, genetic predispositions may interact with lifestyle
choices such as diet, exercise, and smoking habits, in ways that
are not fully understood [5]. Environmental influences, including
socioeconomic status and access to health care, further
complicate the picture by affecting both the risk of developing
hypertension and the ability to manage risk factors effectively
[5,6]. Additionally, the asymptomatic nature of hypertension
in its early stages means that it often goes unnoticed until more
serious health issues arise, making timely and accurate
prediction all the more difficult [7]. These challenges underscore
the need for sophisticated predictive models that can integrate
and analyze the myriad of contributing factors to identify
individuals at risk of developing hypertension early in its
progression. Considering the severe societal implications of
hypertension across all nations, early diagnosis is crucial to
mitigate its potential hazards. In this study, we propose a novel
approach to predict the onset of hypertension using the
population’s regular health checkup and demographic factors.
In recent years, machine learning models have emerged as
powerful tools across many fields, particularly in medical
applications [8]. Their ability to analyze complex patterns and
make accurate predictions has revolutionized how we approach
health care challenges.

However, ensuring this methodology’s replicability and broad
applicability in real-world settings presents an intricate
challenge. To bolster the reliability of our hypertension
projections, we conducted additional independent validation
using distinct cohorts. This study investigated various machine
learning approaches to strengthen the method’s robustness,

replicability, and real-world practicality. We delved into the
hypertension landscape across Asian populations through
machine learning optics, firmly anchoring our methodology
within the burgeoning realm of artificial intelligence (AI)–driven
disciplines. This research endeavors to amplify our
comprehension of global hypertension trends by channeling
multifaceted machine learning analyses, thereby catalyzing
more timely and precise diagnostic efforts.

Methods

Data Source
We used 2 national, large-scale, and general population–based
cohort studies: the National Health Insurance Service-National
Sample Cohort (NHIS-NSC; N=973,303) and the Japanese
Medical Data Center cohort (JMDC; N=12,143,715). This study
was approved by the institutional review board of National
Health Insurance Service, Kyung Hee University
(KHSIRB-23-085[EA]), and the JMDC (PHP-00002201-04).
The requirement for informed consent was waived as this study
used deidentified administrative data.

NHIS-NSC (Discovery Cohort)
The NHIS-NSC [9], the population-based, nationwide, and
large-scale cohort of South Korea, were from those aged ≥20
years who received general health checkups between January
1, 2002, and December 31, 2013. We used the NHIS-NSC to
train, validate, and test the machine learning model to predict
the presence or absence of hypertension within 5 years of a
regular (yearly) health checkup. Hypertension was defined for
patients who had received diagnoses with I10, I11, I12, I13, or
I15 codes from the ICD-10 (International Classification of
Disease, 10th revision) ≥2 times and were using
antihypertensives [10].

During the data preprocessing phase, we transformed the cohort
into a machine learning dataset by representing each eligible
individual once, with all features recorded from their initial
health check-up. The ground truth was determined by the
occurrence of a hypertension event within the subsequent 5
years. We excluded participants with baseline hypertension or
those lost to follow-up from this study. Individuals who
developed hypertension after 5 years were classified as
nonhypertensive for this study.

In this study, we excluded participant information that fulfilled
one of the following criteria among the 973,303 registered
participants: (1) those who had reported “yes” for hypertension
in the questionnaire; (2) those who had a prior diagnosis of
hypertension with I10, I11, I12, I13, or I15 codes of ICD-10
before the health checkup; (3) those with missing data for
information and questionnaire; (4) those who had died before
the year 2013; and (5) those who have blood pressure over the
criteria of hypertension (systolic blood pressure ≥140 mm Hg
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or the diastolic blood pressure is ≥90 mm Hg). A graphical
representation of the subject exclusion process of the NHIS-NSC

is illustrated in Figure 1 [11].

Figure 1. Study population and data selection process in the NHIS-NSC (Korea) and JMDC (Japan). NHIS-NSC: National Health Insurance
Service-National Sample Cohort; JMDC: Japanese Medical Data Center cohort.

JMDC (Validation Cohort)
The JMDC dataset is the medical examination data from
multiple health insurance associations in Japan since 2005
[12-14]. Given the machine learning model trained from the
NHIS-NSC, we used the JMDC data for extra validation. We
also applied the same exclusion criteria used in the NHIS-NSC
to the JMDC data, resulting in the use of only 1,296,649
participant data of the total 12,143,715 data available. A
graphical representation of the subject exclusion process of the
JMDC dataset is also illustrated in Figure 1.

Study Design
To develop the machine learning model for predicting the
presence or absence of hypertension within 5 years of a regular
(yearly) health checkup, we used the following 18 available
variables as the model’s input: age, sex, region of residence,
household income, systolic blood pressure, diastolic blood
pressure, fasting blood glucose, serum total cholesterol,
hemoglobin, aspartate transaminase (AST), alanine transaminase
(ALT), γ-glutamyl transpeptidase (γ-GTP), BMI, history of
diabetes mellitus, history of stroke (including ischemic stroke,
hemorrhagic stroke, and/or transient ischemic attack), smoking

status, alcohol intake, and physical activity [15]. The variables
used in our machine learning model are summarized in Table
1. More specifically, the region of residence was categorized
into rural and urban. Household income was categorized into
11 scales (0 to 10) based on basic livelihood recipient and decile
(Table S1 in Multimedia Appendix 1); in 10 income deciles,
the 5th decile is the reference median income. Compared to 5th
decile (100%), 1st decile (the lowest income level) has an
income of less than 30%, 2nd decile has an income of less than
50%, 3rd decile has an income of less than 70%, 4th decile has
an income of less than 90%, 6th decile has an income of less
than 130%, 7th decile has an income of less than 150%, 8th
decile has an income of less than 200%, 9th decile has an income
of less than 300%, and 10th decile (the highest income level)
has an income of 300% or more. Basic livelihood recipients are
individuals whose income falls within 1st decile (the lowest
30%) [12]. Smoking status was categorized into never, former,
and current smokers. Alcoholic intakes were categorized into
rare (less than one time per week), 1-2, 3-4, and more than four
times per week [12-14]. Physical activity was categorized into
never, 1-2, 3-4, and 5-6 times per week, and every day. The
statistical characteristics of the variables for the NHIS-NSC and
JMDC are summarized in Tables 1 and 2, respectively.
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Table 1. Baseline characteristics of subjects in the discovery cohort (National Health Insurance Service-National Sample Cohort, N=244,814).

ValuesVariables

Sex, n (%)

117,642 (48.05)Male

127,172 (51.95)Female

47.03 (13.29)Age (years), mean (SD)

Region of residence, n (%)

111,640 (45.6)Urban

133,174 (54.4)Rural

Household income, n (%)

437 (0.18)Basic livelihood recipient

Income deciles (excluded basic livelihood recipients)

18,783 (7.67)D1 (the lowest income level; ≤30th percentile)

19,399 (7.92)D2 (31st-50th percentile)

22,165 (9.05)D3 (51st-70th percentile)

24,498 (10.01)D4 (71st-90th percentile)

25,043 (10.23)D5 (91st-100th percentile)

26,137 (10.68)D6 (101st-130th percentile)

26,195 (10.7)D7 (131st-150th percentile)

26,562 (10.85)D8 (151st-200th percentile)

28,469 (11.63)D9 (201st-300th percentile)

27,126 (11.08)D10 (high income level, >300th percentile)

111.6 (9.42)Systolic blood pressure (mm Hg), mean (SD)

68.69 (6.1)Diastolic blood pressure (mm Hg), mean (SD)

92 (23.48)Fasting blood glucose (mg/dL), mean (SD)

187.91 (35.84)Serum total cholesterol (mg/dL), mean (SD)

13.78 (1.58)Hemoglobin (g/dL), mean (SD)

23.82 (15.12)Aspartate transaminase (U/L), mean (SD)

22.9 (21.32)Alanine transaminase (U/L), mean (SD)

28.81 (37.6)γ-glutamyl transpeptidase (U/L), mean (SD)

22.8 (3)BMI (kg/m2), mean (SD)

4596 (1.88)History of diabetes mellitus, n (%)

376 (0.15)History of stroke, n (%)

Smoking status, n (%)

176,333 (72.03)Nonsmoker

9148 (3.74)Ex-smoker

59,333 (24.24)Current smoker

Alcohol intake per week, n (%)

182,101 (74.38)Rarely

45,374 (18.53)1-2

12,337 (5.04)3-4

5002 (2.04)≥5

Physical activity per week, n (%)

141,847 (57.94)Never
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ValuesVariables

63,046 (25.75)1-2

23,426 (9.57)3-4

5828 (2.38)5-6

10,667 (4.36)Every day

Table 2. Baseline characteristics of subjects in the validation cohort (Japanese Medical Data Center cohort; N=1,296,649).

ValuesVariables

Sex, n (%)

754,055 (58.15)Male

542,594 (41.85)Female

42.51 (10.24)Age (years), mean (SD)

111.65 (10.43)Systolic blood pressure (mm Hg), mean (SD)

67.88 (7.55)Diastolic blood pressure (mm Hg), mean (SD)

91.45 (14.31)Fasting blood glucose (mg/dL), mean (SD)

200.05 (35.25)Serum total cholesterol (mg/dL), mean (SD)

14.19 (1.56)Hemoglobin (g/dL), mean (SD)

20.84 (8.89)Aspartate transaminase (U/L), mean (SD)

21.02 (15.86)Alanine transaminase (U/L), mean (SD)

30.63 (33.48)γ-glutamyl transpeptidase (U/L), mean (SD)

22.12 (3.22)BMI (kg/m2), mean (SD)

14,345 (1.11)History of diabetes mellitus, n (%)

3616 (0.28)History of stroke, n (%)

Smoking, n (%)

978,245 (75.44)No

318,404 (24.56)Yes

Alcohol intake per week, n (%)

669,090 (51.6)Rarely

403,527 (31.12)Sometimes

224,052 (17.28)Every day

Physical activity, n (%)

1,082,572 (83.49)No

214,077 (16.51)Yes

Proposed Machine Learning Models
In this study, we split the NHIS-NSC dataset (n=244,814) into
train (n=195,851) and internal test (n=48,963) data with a ratio
of 8:2 in a stratified fashion. The internal test set was used only
for an independent test of our developed AI model and not for
training or internal validation. The JMDC (n=1,296,649) was
used as the external validation dataset in this study.

The data distribution was severely imbalanced: the ratio of
hypertension and nonhypertension group was 1:15.32. To
minimize the bias toward the majority group (nonhypertension)
of the prediction model, we up-sampled the hypertension data
using a synthetic minority oversampling technique during the

model update [16]. In addition, in the preprocessing stage, we
performed standard scaler normalization for all features: we
calculated the mean and SD of each feature from the training
dataset and then normalized all feature values from both the test
dataset and external validation datasets to have a mean of 0 and
a SD of 1.

To predict hypertension occurrence within 5 years based on
regular health check-ups, we applied 6 machine learning models
from 18 features: Extreme Gradient Boosting, random forest,
gradient boosting machine (GBM), Light GBM, Adaptive
Boosting (AdaBoost), and logistic regression (LR) [17,18].
Subsequently, we chose the best 3 among the 6 models and
applied an ensemble approach by considering all possible
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combinations [19]. Performance evaluations were based on
5-fold cross-validation using the train data following metrics:
sensitivity, specificity, accuracy, balanced accuracy, and area
under the receiver operating characteristics (AUROC) [17,18].
To compare the predictive performance of the models, we
performed a Cochrane Q test on the model performance [20,21].
Due to the significant data imbalance, we used balanced
accuracy as the primary model evaluation metric. Moreover,
we also estimated additional metrics to comprehensively
evaluate the performance of each model: precision, F1-score,
and area under the precision-recall curve. To address the issue
of inappropriate precision and F1-score under the severe data
imbalance, we measured weighted average precision and
weighted average F1-score, accounting for the differences in
class sizes. Finally, we presented its feature importance analysis,
listing features in the order they contributed to hypertension
prediction within 5 years of regular health checkups.

We implemented the models using Python (version 3.9.16;
Python Software Foundation) with TensorFlow (version 2.9.1;
Google LLC), Keras (version 2.9.0; Google LLC), NumPy
(version 1.21.5; NumFOCUS, Inc), Pandas (version 1.4.4;
NumFOCUS, Inc), Matplotlib (version 3.5.2; NumFOCUS,
Inc), and Scikit-learn (version 1.0.2; NumFOCUS, Inc) [18,22].
All statistical analysis was performed using SAS (version 9.4,
SAS Institute Inc) [22].

Feature Importance
To analyze the effect of each feature on predicting hypertension
occurrence, we performed the feature importance analysis to
confirm the contribution of each feature. For tree-based models,
the mean decrease in impurity (MDI), which is also known as
Gini importance, is used to assess feature importance [23,24].
The following equation represents MDI [24]:

where T is the total number of trees in the base estimator, is the
set of all nodes in tree t, is the feature used for splitting the node
m, is the decrease in impurity at node m, is the Gini impurity,
is the number of samples at node m, and is an indicator function
that is 1 if feature j is used for splitting at node m and 0
otherwise. Notation of l and r indicates left child node and right
child node each. Those equations calculate feature importance
by summing up the impurity reductions caused by each feature
across all trees in the model. A higher MDI indicates greater
feature importance. For LR, we used the regression coefficient
to calculate feature importance. The following equation indicates
the LR model [25]:

where d is the number of features. The regression coefficient
describes the average change in the dependent variable for each
1-unit change in the independent variable for continuous
independent variables or the expected difference versus a
reference category for categorical independent variables. Further,
for ensembled models, we calculated feature importance by
averaging the standardized feature importance from each model
used for the ensemble.

Risk Factors
We further investigated the association between the occurrence
of hypertension and independent variables using univariate and
multivariate LR analyses in the discovery and validation cohorts
[26,27]. Predictor variables included categorical variables (sex,
region of residence, history of diseases, smoking status, alcohol
intake, and physical activity) and continuous variables
transformed into categorical form (age, household income, BMI,
blood pressure, fasting blood glucose, serum total cholesterol,
hemoglobin, ALT, AST, and γ-GTP). Univariable and
multivariable LR analyses were conducted for each variable to
estimate the odds ratio and 95% CI for the occurrence of
hypertension. All statistical analyses were conducted using SAS
(version 9.4, SAS Institute) [28].

Ethical Considerations
The claims-based cohort data in South Korea and Japan were
anonymous, and this study’s protocol was approved by the
Institutional Review Board of National Health Insurance
Service, Kyung Hee University (KHSIRB-23-085(EA)), and
the JMDC (PHP-00002201-04).

Results

K-Fold Cross-Validation
For the 6 machine learning models, we found the following
optimized hyper-parameters using grid search with 5-fold
cross-validation: For Extreme Gradient Boosting, we used
booster type of gradient boosted tree, column subsample by tree
0.1, learning rate 0.2, maximum depth of 3, and number of
estimators 100. For random forest, we used maximum depth of
3, maximum features of 3, minimum samples per leaf 3,
minimum samples per split 3, number of estimators 50, and
balanced class weight. For Light GBM, we used boosting
parameter of gradient-based 1-sided sampling, objective function
of binary classification objective, evaluation metrics of log loss
function for binary classification, learning rate 0.002, number
of estimators 70, and number of leaves 30. For GBM, we used
learning rate 0.008, maximum depth of 2, minimum samples
per leaf 3, minimum samples per split 3, and number of
estimators 100. For AdaBoost, we used algorithm of stagewise
additive modeling using a multiclass exponential loss function,
real variant; number of tree estimators with 500; and learning
rate with 0.02. For LR, the solver of the library for large linear
classification; the penalty norm was with L2, inverse of
regularization strength 0.1, and the maximum number of
iterations was with 100. For ensemble models, we used the same
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hyperparameters as those used in the individual machine
learning models. Additionally, no weights were applied when
combining the models in the ensemble. After finding the optimal
hyperparameters, we checked the performance of each model
and ensemble model. To improve performance, we tuned the
models to use optimal thresholds through AUROC [20,29]. The
optimized threshold values for some models are as follows: 0.48
for AdaBoost, 0.46 for GBM and AdaBoost, 0.46 for LR and
GBM, and 0.46 for the GBM, AdaBoost, and LR. Table 3
summarizes the 5-fold cross-validation accuracy comparison
of each model and ensemble machine learning models using
sensitivity, specificity, accuracy, balanced accuracy, and

AUROC as evaluation metrics. Among the single models, GBM,
LR, and AdaBoost demonstrated the best prediction performance
per balanced accuracy and AUROC. To further improve the
classification performance, we explored an ensemble approach
using the top-3 single models: GBM, LR, and AdaBoost. The
results show that the combination of LR and AdaBoost provides
the highest performance with a sensitivity of 80.62%, specificity
of 81.79%, balanced accuracy of 81.2%, and AUROC of 0.9012.
In addition, we also summarize 3 additional metrics suitable
for imbalanced data in Table S2 in Multimedia Appendix 1:
weighted average precision, weighted average F1-score, and
area under the precision-recall curve.

Table 3. Comparison of the prediction performances of the prediction models on the training dataset in the discovery cohorta.

P valuescAUROCb, mean
(SD)

Balanced accuracy,
mean (SD)

Accuracy, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Model

<.0010.9136 (0.0035)0.8114 (0.0023)0.7764 (0.0044)0.7725 (0.0048)0.8503 (0.0074)AdaBoostd

<.0010.8819 (0.0046)0.8042 (0.0041)0.8072 (0.0012)0.8076 (0.0015)0.8009 (0.0090)LRe

<.0010.8866 (0.0052)0.7904 (0.006)0.943 (0.0029)0.9599 (0.0029)0.6208 (0.011)XGBoostf

<.0010.8875 (0.0056)0.7985 (0.0052)0.8577 (0.009)0.8642 (0.0098)0.7328 (0.012)Random forest

<.0010.8743 (0.0058)0.7972 (0.0038)0.7681 (0.0032)0.7649 (0.0033)0.8295 (0.0052)Light GBMg

<.0010.8942 (0.0051)0.8023 (0.0046)0.8176 (0.0029)0.8194 (0.0027)0.7853 (0.0065)GBM

<.0010.9063 (0.0044)0.81 (0.0035)0.8016 (0.0061)0.8006 (0.0065)0.8194 (0.0063)GBM and AdaBoost

<.0010.9009 (0.0048)0.8078 (0.0041)0.7949 (0.0012)0.7934 (0.0012)0.8221 (0.0081)LR and GBM

<.0010.9065 (0.0047)0.8084 (0.0034)0.7824 (0.0011)0.7795 (0.0014)0.8373 (0.0076)GBM, AdaBoost, and LR

Reference0.9012 (0.0046) h0.8120 (0.0030) h0.8173 (0.0012) h0.8179 (0.0015) h0.8062 (0.0072)hAdaBoost and LR

aAll outcomes are averaged over 5-fold cross-validation.
bAUROC: area under receiver operating characteristic.
cTo compare the predictive performance of the models, we performed a Cochrane Q test on the model performance.
dAdaBoost: Adaptive Boosting.
eLR: logistic regression.
fXGBoost: Extreme Gradient Boosting.
gGBM: gradient boosting machine.
hIndicates machine learning model with best performance of prediction.

Feature Importance Analysis
The ranked normalized feature importance is from the ensemble
model combining AdaBoost and LR. According to the results,
age had the highest importance value among the features,
followed by diastolic blood pressure, BMI, systolic blood
pressure, and fasting blood glucose. Feature importances are as
follows: age, 1.00; diastolic blood pressure, 0.93; BMI, 0.75;
systolic blood pressure, 0.58; fasting blood glucose, 0.35;
γ-GTP, 0.24; serum total cholesterol, 0.18; ALT, 0.10; AST,
0.097; history of diabetes mellitus, 0.087; household income,
0.77; hemoglobin, 0.025; sex, 0.021; history of stroke, 0.014;
physical activity, 0.010; alcohol intake per week, 0.0077; region
of residence, 0.0065; and smoking, 0.0055.

Ablation Study
Table S3 in Multimedia Appendix 1 summarizes the ablation
study results when one or some top 5-contribution features were

excluded: age, diastolic blood pressure, BMI, systolic blood
pressure, and fasting blood glucose. Without age, the model
provides poor prediction performance: balanced accuracy
dropped from 0.812 to 0.782, and AUROC dropped from 0.901
to 0.864. Without diastolic blood pressure, balanced accuracy
dropped to 0.784, and AUROC dropped to 0.871. Without BMI,
balanced accuracy dropped to 0.811, and AUROC dropped to
0.898. Without systolic blood pressure, balanced accuracy
dropped to 0.801, and AUROC dropped to 0.890. Without
fasting blood glucose, balanced accuracy dropped to 0.8118,
and AUROC dropped to 0.9010. Additionally, we analyzed the
model performance when the 2 blood pressure features (systolic
and diastolic) were excluded. The results show that the
performance significantly degraded across all accuracy metrics:
balanced accuracy from 0.812 to 0.725 and AUROC from 0.901
to 0.797.
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Test Data Results and External Validation Results
Table 4 summarizes the test data results from the test dataset
from the NHIS-NSC and the external validation data results
from the JMDC. The test data results also showed that the
ensemble model combining AdaBoost and LR provides the
highest value of balanced accuracy (0.8147). The similarity
between the cross-validation and test data results denotes

minimal overfitting or underfitting. The external validation data
results also showed the ensemble model combining AdaBoost
and LR provided the highest value of balanced accuracy
(0.7406). The results confirmed that our ensemble model
combining AdaBoost and LR could provide an accurate
prediction of hypertension within 5 years based on the regular
health checkup data.

Table 4. Comparison of the prediction performances of the prediction models on the test dataset (discovery cohort) and the external validation dataset
(validation cohort).

AUROCaBalanced accuracyAccuracySpecificitySensitivityModel

Test dataset (discovery cohort)

0.91230.81250.77220.76770.8573AdaBoostb

0.88320.80780.80660.80640.8093LRc

0.88860.79430.94610.96290.6257XGBoostd

0.85980.76650.65420.64170.8913Random forest

0.87140.79680.77330.77070.8230Light GBMe

0.89660.81090.83520.83790.7839GBM

0.90800.81430.79100.78840.8403GBM and AdaBoost

0.90390.81430.80040.79880.8297LR and GBM

0.90870.81420.78710.78410.8443GBM, AdaBoost, and LR

0.9022f0.8147f0.8163f0.8165f0.8129fAdaBoost and LR

External validation dataset (validation cohort)

0.81480.73150.78400.79060.6724AdaBoost

0.81340.73650.82420.83520.6378LR

0.79060.69890.85300.87240.5253XGBoost

0.73240.69120.67370.67150.7109Random forest

0.74020.68430.80840.82410.5446Light GBM

0.78750.69320.86520.88690.4995GBM

0.80520.71270.82120.83490.5906GBM and AdaBoost

0.82410.74040.82700.83790.6428LR and GBM

0.82710.73930.84170.85460.6240GBM, AdaBoost, and LR

0.8242f0.7406f0.8341f0.8458f0.6354fAdaBoost and LR

aAUROC: area under receiver operating characteristic.
bAdaBoost: Adaptive Boosting.
cLR: logistic regression.
dXGBoost: Extreme Gradient Boosting.
eGBM: gradient boosting machine.
fIndicates machine learning model with best performance of prediction.

Association Between Risk Factors and Occurrence of
Hypertension
The association between the occurrence of hypertension and
potential risk factors is presented in Tables S4 and S5 in
Multimedia Appendix 1. In both the discovery and validation
cohorts, consistently, the multivariable model revealed that
older age, female sex, urban residence, high income, high blood

pressure, high serum total cholesterol, high hemoglobin, high
AST, high γ-GTP, high BMI, history of diabetes mellitus, history
of stroke, frequent alcohol intake, and insufficient physical
activity were significantly associated with an increased risk of
hypertension.

AI-Driven Web Application
Our proposed ensemble model was deployed on our own public
website [30] so that hypertension onset within 5 years can be
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predicted based on regular health checkup data. The deployed
web application, which provides results for prediction of
hypertension onset, is shown in Figure S1 in Multimedia
Appendix 2. The web interface for entering information on 18
features from regular health checkup data is shown in Figure
S1(a) in Multimedia Appendix 2. After entering the information
in the web application, a user can immediately obtain the results
for prediction of hypertension onset with its probability, as
shown in Figure S1(b) in Multimedia Appendix 2. In the web
application, the features input by a user are encoded to the
website server, and immediately deleted upon generation of the
prediction result, so that there is no risk of exposing information.
In addition, there is no need to enter any information that would
be regarded as private. Furthermore, we have open-sourced the
Python code for the proposed ensemble model as publicly
available in a GitHub repository [31].

Discussion

Main Findings
Given the significant health and economic consequences of
CVDs, particularly myocardial infarction and stroke, it is
essential to examine hypertension, a principal contributing factor
to these conditions. This study uses data from 244,814 South
Korean participants, obtained from the NHIS-NSC over a
12-year study period, and data from 1,296,649 Japanese
participants, collected by the JMDC from various health
insurance associations in Japan since 2005.

Our findings indicated that an ensemble of AdaBoost and LR
models provided superior performance, achieving a sensitivity
of 80.62%, specificity of 81.79%, balanced accuracy of 81.2%,
and AUROC of 90.12%, suggesting that quantifying the
occurrence of hypertension using feature importance analysis
with ensemble machine learning (AdaBoost and LR) can
enhance generalizability and reproducibility.

Using our knowledge of the machine learning model, our study
has analyzed the occurrences of hypertension. Using feature
importance analysis, our study has indicated the top
5-contribution features of hypertension, which were age,
diastolic blood pressure, BMI, systolic blood pressure, and
fasting blood glucose. Following the feature importance analysis,
to measure the impact of such contributing features of
hypertension, through an ablation study, we have excluded some
contribution features among the top 5 contributing features of
hypertension.

From our further investigation into the association between
hypertension and independent variables, we analyzed various
risk factors. Our analysis revealed that older age, female sex,
urban residence, high income, elevated blood pressure, high
serum total cholesterol, elevated hemoglobin, high AST, high
γ-GTP, high BMI, history of diabetes mellitus, history of stroke,
frequent alcohol intake, and insufficient physical activity were
significantly associated with an increased risk of hypertension.

After obtaining test data results, through extra validation using
the JMDC dataset, we have validated that our ensemble model
combining AdaBoost and LR could provide an accurate
prediction of hypertension within 5 years based on the regular

health checkup data (balanced accuracy 0.741 and AUROC
0.824). Using such analysis of both the NHIS-NSC and JMDC
as original and extra validation, our study has established a web
application allowing diagnosis of hypertension [32-34].

Comparison With Previous Studies
Similar to our study, past research efforts have worked on
developing hypertension risk prediction models using variables
akin to our study, including age, sex, BMI, blood pressure
metrics, parental hypertension history, smoking habits, and in
certain cases, additional markers such as C-reactive protein,
apolipoprotein A, and uric acid [35] (United States, n=1717
[36], n=1130 [37], n=15,732 [38], n=876 [39], and n=23,095
[40]; United Kingdom, n=10,308 [41]; and Iran, n=380 [42]).

Although there were several prior studies to find the occurrence
of hypertension and establish web applications, many of these
studies presented limitations, presenting problems such as
producing low levels of reliability and yielding conflicting
results. These constraints can be attributed to smaller sample
sizes, short follow-up durations, and inadequate study designs
such as nonrepresentative or nonrandom selection of populations
[37,40,42]. Additionally, most of the studies have not held web
application-fortifying processes, such as extra validation studies.

Our research stands apart in this context. We used a longitudinal
approach using extensive datasets from both South Korean and
Japanese health insurance databases, encompassing a
comprehensive range of hypertension-related data spanning
over 10 years. By leveraging datasets from 244,814 individuals
in South Korea and 1,296,649 in Japan, we implemented a 5-fold
cross-validation for optimizing an ensemble machine learning
model. This was followed by a feature importance analysis to
identify the top 5 determinants of hypertension, an ablation
study to gauge the significance of each contributing factor, and
an additional validation procedure. As a result, our work
culminated in the development of a robust machine
learning-powered web application, a milestone that many
preceding studies fell short of achieving.

Possible Explanations for Our Results
This study harnesses real-world data where conventional
statistical methods often struggle to guarantee generalizability
and reproducibility in real-life situations. However, such
challenges can be surmounted with AI-powered machine
learning techniques such as variable pruning and group
optimization.

By integrating machine learning methodologies, specifically
AdaBoost and LR, our research can perpetually evaluate
potential features linked to hypertension onset. This translates
to a resilient system adept at observing the correlation between
standardized traits and hypertension episodes, which include
age, diastolic blood pressure, BMI, systolic blood pressure, and
fasting blood glucose concentrations. Notably, this strategy
offers considerable benefits, ensuring dependable data on
hypertension prevalence across a wide demographic, even if
the analysis encompasses merely a fraction of the overall
populace. Additionally, our pioneering methodology offers a
distinct advantage by ensuring accessibility even for individuals
who may be illiterate or disinclined to participate in
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hypertension-specific screenings. This capacity for rapid
diagnostic evaluation equips health care professionals with the
tools to offer more targeted and accurate services to patients
facing hypertension risks.

Policy Implication
Our diagnostic method’s validation, achieved via an ensemble
machine learning strategy integrating AdaBoost and LR,
consistently upholds accuracy in hypertension identification,
even among newly discerned populations potentially susceptible
to hypertension. This tool not only paves the way for preemptive
hypertension identification but also extends its reach to
individuals distant from conventional health care infrastructure,
such as hospitals and regional health centers. Our study is keen
on transitioning our web-based platform to a mobile app [18],
addressing and eliminating any accessibility barriers. Such an
evolution positions our tool as a universally accessible resource,
irrespective of an individual’s socioeconomic status, domicile,
or the developmental index of their nation. Worldwide, national
administrations can advocate for our tool, empowering citizens
to independently gauge their hypertension risk and pursue timely
medical interventions. The distinct advantage of our platform
is its avoidance of potential diplomatic sensitivities, given its
nonreliance on any personal or confidential data.

Strengths and Limitations
An astute examination of this study’s findings calls for
recognizing inherent limitations. To elaborate, even though our
research draws on data from 2 distinct cohorts—the NHIS-NSC
(n=244,814) for training or testing and the JMDC (n=1,296,649)
for extra-validation—these datasets encompass but a marginal
segment of the overarching Asian demographic, and an even
lesser representation of the worldwide populace. This fact
accentuates the imperative for our conclusions to be subjected
to broader international validation studies and exhaustive
longitudinal investigations. Furthermore, although the sample
size of the JMDC is larger, its somewhat limited set of variables
led us to develop a model using the comprehensive set of
variables available in the NHIS-NSC [43]. Despite the smaller
size of the NHIS-NSC, our proposed ensemble model showed
stable and consistent performance when validated with the
JMDC. Moreover, it is crucial to acknowledge that our study
tested a limited array of model types, excluding machine
learning models such as k-nearest neighbors and support vector
machines. Including these models would have provided a
comprehensive comparison and potentially strengthened our
findings. Additionally, our analysis did not include certain
hypertension-related features, such as family history, dietary
habits, and salt consumption. As it is well known that these
factors play a significant role in the development and
progression of hypertension, their absence may have influenced
the predictive power of the models and the holistic
understanding of hypertension risk factors. Lastly, segmenting
related variables such as systolic and diastolic pressure, ALT,

and AST can capture diverse aspects and reduce data loss, but
it may dilute significance due to their correlation [44].

While the primary aim of our study has been to identify
predictors for the onset of hypertension, we acknowledge that
predicting the magnitude of blood pressure increases offers an
invaluable perspective on the complex interplay between initial
blood pressure levels and their changes over time. This area,
although not explored within the current scope of our research,
holds significant potential for advancing our understanding of
hypertension. Future investigations that include baseline blood
pressure measurements could yield profound insights into the
risk factors and dynamics of blood pressure changes. Such
research would enrich our predictive models and refine
management strategies for hypertension, marking a crucial step
forward in the field.

Yet, amid these confines, one must not undermine this study’s
significance. Our endeavor capitalizes on data meticulously
gathered for over a decade from South Korea and Japan. In a
methodical exercise of comparing a spectrum of 6 machine
learning models and subsequently analyzing ensemble
variations, we astutely pinpointed the critical determinants
closely aligned with hypertension onset, ensuring commendable
reproducibility and applicability. Furthermore, the genesis of a
user-responsive web tool, facilitating individuals to input
personal health metrics, epitomizes our groundbreaking stride
toward expeditious, precision-driven, and worldwide accessible
diagnostic avenues for hypertension.

Conclusions
In a pioneering endeavor, this research uniquely integrates both
machine learning and conventional statistical frameworks to
prognosticate the emergence of hypertension. A notable outcome
of this exploration is the institution of a digital platform adept
at forecasting a 5-year onset of hypertension, using data sourced
from the NHIS-NSC and JMDC. Our empirical outcomes,
extrapolated from 2 autonomous studies, substantiate that
machine learning paradigms—particularly an amalgamation of
AdaBoost and LR—eclipsed the traditional statistical
methodologies in preempting hypertension onset. A meticulous
inquiry was undertaken to ascertain the hierarchical significance
of determinants linked with hypertension. The investigation
earmarked age as the paramount factor, trailed by diastolic blood
pressure, BMI, systolic blood pressure, and fasting blood glucose
concentrations. This sequence, pivotal in curating the most
efficacious machine learning model and subsequent hypertension
emergence, was further corroborated via supplementary
validation harnessing the JMDC datasets. Emerging from these
discernments is an AI-infused digital interface, proficient in
envisioning a quintennial likelihood of hypertension based on
routine health assessment metrics. Such an innovation positions
itself as an instrumental diagnostic conduit for individuals
predisposed to hypertension.
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