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Abstract

Background: Since the beginning of the COVID-19 pandemic, >1 million studies have been collected within the COVID-19
Open Research Dataset, a corpus of manuscripts created to accelerate research against the disease. Their related abstracts hold a
wealth of information that remains largely unexplored and difficult to search due to its unstructured nature. Keyword-based search
is the standard approach, which allows users to retrieve the documents of a corpus that contain (all or some of) the words in a
target list. This type of search, however, does not provide visual support to the task and is not suited to expressing complex queries
or compensating for missing specifications.

Objective: This study aims to consider small graphs of concepts and exploit them for expressing graph searches over existing
COVID-19–related literature, leveraging the increasing use of graphs to represent and query scientific knowledge and providing
a user-friendly search and exploration experience.

Methods: We considered the COVID-19 Open Research Dataset corpus and summarized its content by annotating the publications’
abstracts using terms selected from the Unified Medical Language System and the Ontology of Coronavirus Infectious Disease.
Then, we built a co-occurrence network that includes all relevant concepts mentioned in the corpus, establishing connections
when their mutual information is relevant. A sophisticated graph query engine was built to allow the identification of the best
matches of graph queries on the network. It also supports partial matches and suggests potential query completions using shortest
paths.

Results: We built a large co-occurrence network, consisting of 128,249 entities and 47,198,965 relationships; the
GRAPH-SEARCH interface allows users to explore the network by formulating or adapting graph queries; it produces a bibliography
of publications, which are globally ranked; and each publication is further associated with the specific parts of the query that it
explains, thereby allowing the user to understand each aspect of the matching.

Conclusions: Our approach supports the process of query formulation and evidence search upon a large text corpus; it can be
reapplied to any scientific domain where documents corpora and curated ontologies are made available.
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KEYWORDS

big data corpus; clinical research; co-occurrence network; COVID-19 Open Research Dataset; CORD-19; graph search; Named
Entity Recognition; Neo4j; text mining

Introduction

Since the COVID-19 pandemic outbreak in early 2020,
important clinical research efforts have been targeted at

understanding the COVID-19 disease. More than 1 million
studies have been collected within the COVID-19 Open
Research Dataset (CORD-19), a corpus of manuscripts created
to accelerate the research against the disease. Their related
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abstracts hold a wealth of information that remains largely
unexplored and difficult to search due to its unstructured nature.

Searching over the literature is a nontrivial task, as it strongly
relies on the quality of the data corpus, the characteristics of
the search portal, and the language used to express the search.

Keyword-based search is the standard search approach, which
allows users to retrieve the documents of a corpus that contain
some of the words in a specified target list [1,2]. However, this
type of search lacks visual support for the task and is not suitable
for expressing complex research queries or compensating for
missing specifications.

The development of frontend tools and visualizations for
COVID-19 knowledge graphs has been motivated by several
works [3,4]. We then explored the use of small graph-based
queries that can be built visually [5] to empower a literature
exploration tool; the GRAPH-SEARCH system stems from this
motivation, providing both a visual language to express search
queries and a friendly tool to explore relevant publications,
which highlights the relationships between the original graph
queries and an underlying corpus of scientific evidence, in the
spirit of literature-based discovery [6].

To support this idea, the underlying textual corpus must first
be analyzed and enriched; in our approach, the CORD-19 was
expressed in the form of a co-occurrence network. First, we
annotated all the abstracts with terms from the Unified Medical
Language System (UMLS) [7] and the Coronavirus Infectious
Disease Ontology (CIDO) [8]. This step closely aligns with
classical work on ontology-based annotation (refer to Semantic
MEDLINE [9] and our previous study on genomic metadata
annotation [10,11]). Second, we built a comprehensive
co-occurrence network that includes all relevant clinical and
biological concepts mentioned in the corpus, linking them based
on their co-occurrence in given abstracts.

The visual language used to express a query over the network
describes concepts as nodes and their copresence within research
abstracts as undirected edges; some concepts are associated
with medical conditions, whereas others are associated with
treatments or biological entities. We also allow modifiers.
Queries run on the network may correspond to the expressed
graph pattern or to a selected subpart.

The query semantics corresponds to extracting scientific
evidence (ie, publications) from the corpus, in support of the
existence of the relationships linking the expressed concepts;
each search process extracts the references that best explain the
relationships occurring within the query. When a specified path

is not present in the co-occurrence network, alternative scored
and ranked shortest paths connecting the nodes expressed in
the query are proposed to the user (refer to the Methods section).
The search output provides a ranking of references because of
their weight, summing up the support that they provide to several
relationships in the query.

Our GRAPH-SEARCH implementation is supported by a
graphical interface (refer to the Data Availability section) that
allows the user to express the queries and to interpret the results
in terms of concepts explained by each discovered reference,
thus enabling the users to better qualify the query during the
interaction; in addition, users can read the textual abstracts of
the retrieved references. Such interactive exploration of the
search space allows for exploring assumptions and for
progressively adapting them as a result of existing evidence.

The manuscript is organized as follows: we first describe the
CORD-19, the characteristics of the co-occurrence network
representing CORD-19 abstracts, the technological process of
building the network, the graph search operation, and the web
user interface that allows us to express graph queries and explore
the retrieved results. We then present a series of example use
case (UC) queries relevant to COVID-19 research and review
the current state of the art. We then evaluate the benefits of
using our GRAPH-SEARCH as opposed to full-text indexed
databases and keyword search. Finally, we draw our conclusions.

Methods

The CORD-19 Corpus
CORD-19 [12] is a corpus of academic publications about
COVID-19 and related coronavirus research; it was released
and maintained by the Allen Institute for AI in collaboration
with The White House Office of Science and Technology Policy
and other partners. Published articles and preprints were
collected from several archives, including PubMed,
PubMedCentral, bioRxiv, and arXiv; since its release, it has
served as the basis of many COVID-19 text mining and
discovery systems [12]. The final release of June 2, 2022,
indexes >1 million publications. As summarized in Figure 1,
approximately 79% of the documents in CORD-19 have an
abstract. Out of them, around 41% have a full-text JSON file
available, while <11% of available full-text publications have
no abstract in the metadata table. Thus, we decided to focus on
data set records with an abstract. The file containing the
metadata of publications in the data set is a comma-separated
table (CORD-19 metadata.csv) including the following:
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Figure 1. Euler-Venn diagram of the overlap of publications with abstract and publications with full-text JSON from PDF or from PubMedCentral
(PMC) in the COVID-19 Open Research Dataset (CORD-19).

• A unique identifier cord_uid for a cluster of different
records of the same publication—upon it, we performed
deduplication and subsequent reconciliation of the other
metadata of the cluster into a single record.

• Title of the publication—we detected the language and
filtered out those not in English.

• Abstract of the publication—only records with an actual
abstract were retained.

• Publish_time—the distribution of publication times, shown
in Figure 2, shows that COVID-19 publications increased
in the first half of 2020. Spikes at the beginning of each
year correspond to publications whose publish time is
incomplete (ie, only the year field was filled). Publications
before 2020 that are concerned with Middle East

Respiratory Syndrome, Severe Acute Respiratory
Syndrome, and the coronavirus were removed.

• Journal’s abbreviated name—fuzzy matching of the
abbreviated names was performed with a list of full names
obtained from Scopus [13].

• Authors and DOI of the publication
• Number of citations received (ie, through numCitedBy),

obtained by SemanticScholar application programming
interfaces (APIs) [14]

Records from CORD-19 are already harmonized (refer to the
study by Wang et al [12]), resulting in distinct cord_uid keys.
However, several records of the same publication are included,
with different metadata. We deduplicated them and retained
just 1 record (the one published in a peer-reviewed journal, if
available, else the richest one in metadata).

Figure 2. Line plot showing the 10-base logarithm of the number of publications (y-axis) per publish time and date (x-axis).
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Co-Occurrence Network
The co-occurrence network was built to support graph search;
it consists of entities and relationships mined from the title and
abstract fields of the metadata table. For building it, we
considered 2 sources: UMLS and CIDO. UMLS [7] is a generic
source that includes many vocabularies and covers the entire
spectrum of medicine; CIDO [8] is a community-driven
open-source biomedical ontology in the area of COVID-19.

While CIDO has a simple concept structure, UMLS concepts
have a taxonomy that includes macrocategories at a coarse level;
each macrocategory is further characterized by a type. Currently,
we consider the following UMLS macrocategories:
ACTIVITIES_AND_BEHAVIORS, ANATOMY,
CHEMICALS_AND_DRUGS, CONCEPTS_AND_IDEAS,
D E V I C E S ,  D I S O R D E R S ,  E N T I T Y,
G E N E S _ A N D _ M O L E C O L A R _ S E Q U E N C E S ,
GEOGRAPHIC_AREAS, LIVING_BEINGS, OBJECTS,
OCCUPATIONS, ORGANIZATIONS, PHENOMENA,
PHYSIOLOGY, and PROCEDURES.

As attributes, entities of the co-occurrence network include the
name, an Umls_id when the entity is extracted from UMLS,
and the frequency associated with the entity (ie, the number of
documents in CORD-19 capturing that concept). Relationships
in the co-occurrence network express the co-occurrence of 2

entities in ≥1 documents of CORD-19. Each relationship has
the following attributes: a name (ie, built as concatenation in
alphabetic order of the names of the entities that co-occur); a
frequency (ie, the number of abstracts that mention such
co-occurring entities); and several statistical indicators of the
relationship’s strength within the corpus, such as the pointwise
mutual information value (comparing the relative frequency of
2 concepts occurring together in the text to the probability of
either concept occurring independently [15]), the normalized
pointwise mutual information (NPMI) value (normalized by
the Shannon self-information, ranging from −1 to 1 [16]), and
the Cramer V value (measuring the statistical significance of
the co-occurrence between 2 entities [17]).

Figure 3 illustrates the process of ontology creation at a
conceptual level. The process applies to textual abstracts (refer
to Figure 3 where we consider an excerpt of the textual abstract
of the study by Logette et al [18]) and consists of an entity
recognition task aiming to extract the known ontological terms
(ie, either from UMLS or from CIDO), followed by an entity
linking task; eventually, we produce a co-occurrence network,
whose entities are extracted terms and whose relationships
connect entities that co-occur, weighted by the strength of the
co-occurrence. Next, we detail the data extraction and
transformation process.

Figure 3. Rationale of co-occurrence network construction. Ontological terms are recognized in textual abstracts using entity recognition; then, this
process is reiterated with approximately 660,000 publications’ abstracts. Terms are connected to each other using entity linking; each relationship
between entities is associated with several properties representing the co-occurrence weight, using different statistical methods. The generated connected
co-occurrence network has approximately 128,000 concepts and approximately 47 million relationships. ACE2: angiotensin-converting enzyme 2;
CIDO: Coronavirus Infectious Disease Ontology; NPMI: normalized pointwise mutual information; UMLS: Unified Medical Language System.

Data Provisioning and Co-Occurrence Network
Construction

Overview
The data provision workflow is represented in Figure 4 [18]; it
follows the extract-load-transform paradigm. Data were
extracted from CORD-19 and loaded into the data storage
system. The pipeline produces 3 data objects: the co-occurrence

network; the metadata table; and the inverted index, that is, a
simple postings list whose keys are the relationships of the
co-occurrence network and whose elements are links to the
relevant publications where such relationships co-occur. Other
data tables contain intermediate results of the extraction and
curation of the entities, that is, the nodes of the co-occurrence
network and the computation of the co-occurrence measures
used for the relationships. For storing data tables, we selected
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the MariaDB relational engine [19]; for storing the
co-occurrence network, we selected the Neo4j graph data engine

[20].

Figure 4. Workflow diagram of the GRAPH-SEARCH data provision pipeline. Tasks are performed sequentially; each task uses data objects and
produces data objects, starting from the raw COVID-19 Open Research Dataset (CORD-19) metadata.csv file present in CORD-19, which is translated
into metadata.csv once cleaned. The final outcome of the pipeline is a Neo4j database containing the network.

Data Loading
Three tasks apply to raw CORD-19 data and produce a metadata
table. Metadata were obtained by using the “GET metadata”
from the S3 bucket of Allen Institute of AI; then, we performed
a “Wrangling and cleaning” step and the “Augment and load”
step on the cleaned metadata table with information from the
external APIs.

Entities Mining and Linking
The “Mine entities and link” task takes as input the curated and
augmented metadata table and produces the raw_entity table.
With a single pass over the title and abstract, we performed
typical information retrieval steps such as lexical analysis,
removal of stopwords, stemming, and lemmatization. Then, we
performed named entity recognition (NER), consisting of the
identification and extraction of entities from unstructured text
and linking to UMLS and CIDO; specifically, we used the
en_core_sci_lg model of the scispaCy Python package. The
selected model is particularly suited for processing
English-based scientific literature, providing an approximately
785,000 word vocabulary with 600k word vectors, with a
declared F1-score for mentions of 68.67 (refer to the study by
Nuemann et al [21] for details on the achieved performances).
Entities are linked to UMLS and CIDO by associating each
concept with the UMLS identifier (with its related type and
macroclass) and the CIDO identifier (if available).

Entity Curation
The “Entity curation” task aggregates the occurrences in the
raw_entity table and outputs the entity_materialized table,
collecting all the entities to be used as nodes of the
co-occurrence network. In this pass, we excluded the
occurrences of the entities that score a low similarity with
UMLS or CIDO concepts; we used a normalized string similarity
measure based on the Levenshtein distance and a threshold
value of 0.7. We also included within entities some utility terms
that indicate level modifiers (eg, “high” and “increased”) or

causative connectors (ie, “induces”). Eventually, we added the
entity type and macrocategory using their names in UMLS.

Link Mining
The “Link mining and inverted index creation” task uses the
raw_entity table and the entity_materialized table to generate
the bigram table (ie, information on the links of the
co-occurrence network) and the bigram_publications table that
we use as an inverted index in the information retrieval process.

A co-occurrence is a relationship between 2 concepts, and it
exists when those 2 concepts occur in the same document. Each
relationship is named using the convention “X.name—Y.name,”
where X and Y are the 2 concepts expressed as nodes, which it
connects, and X.name precedes Y.name alphabetically.

We designed a greedy algorithm—optimized for big data
contexts—to extract the relationships in a single pass over the
publications. This algorithm requires 2 read-only lookup tables,
built before the execution: publication_entities (ie, for each
publication a list of mentioned entities) and entity_publications
(ie, for each entity, a list of mentioning publications). The

complexity of the algorithm is o(N2), where N is the number of
entities in the entity_materialized list; in practice, the number
of required comparisons is low, as the number of entities in
each publication is much lower than the total number of entities
selected in the “Entity Curation” step.

Graph Consolidation
The “Graph consolidation” task selects data from the
entity_materialized and bigram tables and migrates them to the
Neo4j instance to create the co-occurrence network.

The nodes are curated in the previous “Entity Curation” step.
The relationships of co-occurrence are chosen at this stage,
based on their NPMI, which is the point estimate of the Mutual
Information, normalized by the Shannon self-information (taking
a value between −1 and +1); this compares the probability that
the 2 entities occur together. We exclude the relationships with
NPMI≤0, as a nonpositive NPMI indicates that the relationship
is not significant.
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The resulting co-occurrence network has 128,249 entities and
47,198,965 relationships, extracted from 662,105 initial
publications. Using the Neo4j Graph Data Science library [22],
we verified that the graph is a unique connected component;
such a condition is essential to ensure that every possible
formulated graph query can be matched on the co-occurrence
network.

Graph Query Search
A graph query Q is a connected graph formed by nodes and
undirected relationships, where nodes are the set of entities
appearing in Q and rels(Q) is a set of arbitrary relationships
connecting some pairs of entities in Q. A subgraph Q' is simply
a connected subset of the nodes and relationships of Q. The
search strategy is composed of 2 steps: matching of graph query
against the co-occurrence network and extracting the relevant
publications.

Graph query matching is the operation of comparing the graph
query Q with the co-occurrence network N created along the
procedure described in the Data Provisioning and
Co-Occurrence Network Construction section. By construction,
each entity in Q is contained in N, whereas relationships in
rels(Q), arbitrarily created in Q, may not be present in N. Both
Q and N are connected graphs with undirected relationships;
then, matching Q within N can be seen as an instance of inexact
graph matching [23].

Figure 5 guides the intuition of the matching operation. A graph
query A-B (in blue) is searched over a co-occurrence network
(in white). No direct relationship exists between A and B on
the network. However, several alternative finite paths exist (ie,
A-X-B, A-Y-Z-B, or A-V-Y-Z-B). Among these, A-X-B is
found to be the “shortest path” between A and B, as its length
or distance (in green) equals 1.

Figure 5. Graph query matching operation.

All entities in Q are matched in N; then, for each relationship r
in rels(Q), connecting nodes α and β, we retrieve the “shortest
paths” within N that connect α and β, that is, a chain of
relationships r1', r2', ..., rn', where r' is in rels(N), r1' starts from
node α, and rn' ends in node β.

Shortest paths are computed using the All Pairs Shortest Path
function allShortestPaths available in Cypher, Neo4j v4.4 [20].
Candidate shortest paths are ranked by the average of the NPMI
property associated with each relationship along the path; we
retain the top 10 paths in the ranking.

We refer to the set of candidate shortest paths as expansion; the
selection of exactly 1 preferred path among the candidates of
the expansion is performed interactively by the user of the search
system, as it is strictly domain or context specific.

Relevant publications extraction corresponds to the retrieval of
the publications that mention concepts of the matched graph,
using the inverted index. We access the inverted index by
relationship name, using either r when it appears in the
relationships rels(N) of the co-occurrence network or all the
relationships r1', r2', ..., rn' appearing in the specified path(r).
The score of a publication P relative to a query Q (ie, the number
of explained relationships) is computed as follows:

The addends of the external summation represent a score
assigned to each relationship r in Q. Each addend captures how
well P represents r; it is equal to 1 if P directly mentions the
relationship of Q (eg, when path(r)=r', with length 1) or if P
mentions all the relationships of path(r). Otherwise, it equals a
fraction of 1, counting the number of relationships r1', r2', …,
rn' of path(r) mentioned in P, divided by the length of path(r).

Extracted publications are ordered by their score; they are further
described by other properties, such as the sum of the NPMI of
all the mentioned relationships and the date of publication.

Running Example
Consider Figure 6 as an example of the four steps performed
during the search:

1. Create graph query (Figure 6A): Nodes are chosen among
the concepts existing in the co-occurrence network; node
names can be found through a dedicated browser working
either by autocompletion of user-typed content (ie, matching
terminologies concepts) or by selection of category and
type and the contained concepts; search on multiple
terminologies at the same time is allowed. For each concept,
we provide a description and ID from the original source.
Relationships can be drawn between any pair of nodes.

2. Find paths (Figure 6B): For each pair of entities connected
by a relationship in the graph query, the Neo4j graph is
queried to find the shortest paths (at most 10) with top
average NPMI scores.

3. Select paths (Figure 6C): The user selects the most relevant
path for each original relationship that has been expanded.
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4. Retrieve publications and return ranking to the user (Figure
6D): The system collects the names of all the relationships
from the expanded graph query (computed in step B and
selected in step C) and exploits them to retrieve the posting
lists of publications (from the inverted index). It computes
the relationships explained by each publication. Then, it

ranks the publications by (1) the number of explained
relationships of the original graph query (refer to equation
1), (2) the sum of NPMI scores of the relationships, and (3)
the publication date. Finally, it shows the complete list with
the publications’ metadata.

Figure 6. (A) Example of a graph query with 6 concepts and 5 relationships. (B) Match of graph query on the co-occurrence network, with the search
of shortest paths (in the dashed spaces called expansions). Considering the relationship between SARS-CoV-2 and angiotensin-converting enzyme 2,
its expansion includes 3 paths of length 3, each characterized by 2 intermediate nodes. Light green paths have the highest average normalized pointwise
mutual information (NPMI) of each expansion. (C) Regardless of the suggested paths with the highest average NPMI, users can select any path (dark
green). (D) A list of publications, ranked by their score, is extracted; the score is computed using equation 1 and considers all the relationships in the
selected paths that are mentioned in the publication. ACE2: angiotensin-converting enzyme 2; AngII: angiotensin II.

In Figure 6D, we observe that 5 expansions are produced: the
first publication scores 1 in 4 expansions and 1/2 in the
expansion at the top-right end of the graph query. Indeed,
publication 1 only includes the relationship (AngII)-(1,0), which
is half of the selected shortest path that connects (AngII) and
(Vascular Permeability).

The second publication scores 0 in 1 expansion, as there is no
path between (AngII) and (Vascular Permeability); 1 in 3
expansions; and 2/3 in the expansion at the left end of the graph
query; the relationship (SARS-CoV-2)-(1,0) is not mentioned.

Ethical Considerations
Ethics approval was not applicable for this study.

Results

Web Interface
With GRAPH-SEARCH, the researcher can express a query in
the form of a graph query on a web interface and retrieve a list
of CORD-19 publications that best correspond to the query.
During the search process, each link in the original graph query
is expanded and matched with the co-occurrence network. When
a relationship in the query is not available in the co-occurrence
network, an expansion may suggest that several sets of concepts
can explain a relationship in the original graph query; therefore,
10 ranked paths are proposed to the user, who may express a
preference according to their interest. After selecting 1 path for

each expanded relationship, GRAPH-SEARCH provides a list
of publications ranked by the number of explained relationships
of the original graph query.

The GRAPH-SEARCH application service exposes a web user
interface to query the co-occurrence network and exploit the
graph-driven search methodology described in the Graph Query
Search section; it contains a backend (ie, web server that exposes
a Representational State Transfer Application Programming
Interface for high-level retrieval operations) and a frontend (ie,
visual interface that exploits the Representational State Transfer
Application Programming Interfaces to use the backend).

The web interface has been designed and implemented following
the major steps of the algorithm described in the Running
Example subsection above. The user experience has been
modeled as a multipage application; for each step of the retrieval
strategy, different API services and a different page were
implemented.

The frontend is built with the Vue.js framework and the D3.js
library for graph illustrations; instead, the backend is written in
Python and includes two components:

1. Swagger_server, which implements the web service logic,
interfaces, and the models necessary to handle the
persistence and asynchronicity behaviors of a multiuser
system. We used the connexion framework, a flask-based
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web framework, and SQLAlchemy as the database
abstraction layer.

2. Core, which implements the retrieval strategy and provides
high-level programming interfaces for it. This package has
been designed as an independent library that can be
embedded in other applications, as it has been done with
the backend service. Its implementation relies on several
Python libraries, such as Neo4j, networkx, and
SQLAlchemy.

UC Queries
UC1 emphasizes the strength of exploratory search over graphs
by supporting users in selecting graph portions, considering
eventually accepting proposed expansions, and browsing results
in terms of NPMI and explained relationships. UCs of increasing
complexity are provided next, offering examples of searches
upon graph queries with different shapes: UC2 and UC3
introduce very simple linear graph queries (ie, 1 chain of nodes),
UC4 shows the use of a Y-shaped graph query, and UC5 and
UC6 represent more complex shapes with nodes forming
triangles.

UC1: Genetic Mechanisms of Critical Illness in
COVID-19
Pairo-Castineira et al [23] revealed previously undescribed
molecular mechanisms of critical illness in patients with

COVID-19 with genome-wide studies. The results of such
studies may provide therapeutic targets to modulate the host
immune response to promote survival. Inspired by this
publication, we create a graph query including relevant human
genes that are related to higher or lower severity of COVID-19
(eg, IFNAR2, CCR2, and TYK2 genes), and we link them to the
change in the severity of the disease (Figure 7A). Since the
research idea is broad, we start the exploratory process focusing
on a subgraph of the graph query (refer to the nodes in red
selected in Figure 7A). Here, we only consider the effect of the
increase of expression in the CCR2 gene. Figure 7B shows how
GRAPH-SEARCH expands the path between the concepts
“High” and “Gene Expression” (not otherwise connected in the
co-occurrence network). According to NPMI values, the most
relevant concept connecting them is “Up-Regulation
(Physiology).” Figure 7C shows that the path going through
this concept has been selected by the user among the other
proposed. The Results page (Figure 7D) shows a publication
(Teixeira et al [24]) that covers 4 (80%) out of 5 explained
relationships of the original graph query. This means that out
of the 5 original relationships of the selected portion of the graph
query, only 4 (80%) are explained by the publication (all except
for the one between “Gene Expression” and “High”). At this
point, the user can consider other portions of the graph query
or the entire query.

Figure 7. GRAPH-SEARCH screens dedicated to use case 1 (UC1): (A) graph query, (B) find paths, (C) select paths, and (D) first publication on the
results page.

UC2: COVID-19 and Cystic Fibrosis
Cystic fibrosis is a disorder that affects mostly the lungs, the
digestive system, and other organs in the body. It is widely
known that COVID-19 also affects the respiratory system. How
has their connection been investigated in CORD-19? The
simplest possible graph query in GRAPH-SEARCH holds 2
nodes (ie, cystic fibrosis and COVID-19) connected by 1
relationship of co-occurrence. “Cystic fibrosis” is represented

by UMLS concept ID C0010674, and “COVID-19” is
represented by the UMLS concept ID C5203670. The 2 concepts
are not directly connected within the network; among the
proposed paths in the expansion, we choose the one through
the concept “Respiratory secretion viscosity alteration” (UMLS
ID 3537094). Only 1 publication in CORD-19 explains this
path, covering it completely, with an NPMI sum of 0.5668.
Kratochvil et al [25] characterized the composition of respiratory
secretions of intubated patients with COVID-19 infection,
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finding that they closely resemble those of cystic fibrosis, a
minor observation unrelated to clinical severity. In general, the
lack of relevant clinical references confirmed our expectation
that cystic fibrosis did not impact COVID-19 severity.

UC3. COVID-19 and Nonsteroidal Anti-Inflammatory
Drugs
During the second year of the pandemic, interest arose in the
possibility of intervening at the onset of mild to moderate
COVID-19 symptoms in outpatients (instead of hospitalized
patients); it was suggested that this could prevent the progression
to a more severe illness and long-term complications. More
specifically, Perico et al [26] investigated the use of
anti-inflammatory drugs, especially nonsteroidal
anti-inflammatory drugs (NSAIDs) as a therapeutic strategy. In
our graph query, we include the following as main concepts:
“COVID-19” (C5203670), “Outpatients” (C0029921),
“Anti-Inflammatory Agents, Non Steroidal” (C0003211), and
“Cyclooxygenase 2 Inhibitors” (C1257954), with the last being
a specific class of NSAIDs. In this case, no expansion of the
original graph query is performed, as all the relationships are

present in the co-occurrence network. The Results page contains
a list of 440 publications, whose abstracts discuss the concepts
in the graph query from different perspectives and approaches.
The top 3 results include work from Consolaro et al [27], a
home-treatment algorithm based on anti-inflammatory drugs;
Popovych et al [28], discussing the therapeutic efficacy of the
BNO 1030 extract, which is a phytotherapeutic
anti-inflammatory agent; and Sava et al [29], exposing the
results of a 90-day treatment of patients with severe COVID-19
with a specific NSAID drug, tocilizumab.

UC4: Elevated Blood Glucose Levels and COVID-19
Severity
Elevated blood glucose levels are considered a risk factor for
the severity of the disease. With GRAPH-SEARCH, we
compose a Y-shaped graph query (Figure 8), expressing that
high levels of blood glucose or increasing blood glucose can
induce a severe illness. This example makes sophisticated use
of utility terms; these are provided in a specific list of the
concepts’ browser of GRAPH-SEARCH.

Figure 8. Graph query of use case 4 (UC4), with Unified Medical Language System concepts IDs in red.

Consequently, we obtain a list of 395 results, where the
top-ranked publication explains 5 out of 5 relationships. Logette
et al [18] reported on the relationship between blood glucose
levels and the severity of COVID-19. All following publications,
ranked in descending order by the number of explained
relationships of the original graph query, explain at most 3 out
of 5 relations.

UC5: COVID-19, Angiotensin-Converting Enzyme 2,
and Cardiovascular Diseases
Patel et al [30] hypothesized that the infection caused by
SARS-CoV-2 could be associated with the shedding of
angiotensin-converting enzyme 2 (ACE2). In their study, it is
suggested that in patients with cardiovascular diseases, there is
increased shedding of ACE2; consequently, higher levels of

ACE2 in blood circulation are associated with the
downregulation of membrane-bound ACE2. The graph query
in Figure 9A expresses this query by connecting patients with
COVID-19 infection with cardiovascular diseases; as they have
more circulating ACE2, there is a downregulation of
membrane-bound ACE2. When running this query, 2
relationships are not found in the co-occurrence network; the
first paths suggested by the system as possible explanations are
not meaningful with regard to the context; thus, we select
alternative concepts, that is, “Subacute Endocarditis” and
“Intensive Care Unit” (Figure 9B). Results can be ranked by
the number of citations; we found the studies by Yamaguchi et
al [31] and Gupta et al [32] particularly interesting, as they
propose solutions for the prevention and treatment of the side
effects of COVID-19 for patients with cardiovascular diseases.
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Figure 9. (A) Graph query of use case 5 (UC5) and (B) found paths.

UC6: COVID-19 Vaccines and Myocarditis
The side effects of vaccines are a topic of relevance. Here, we
investigate the connection between events of heart inflammation
(eg, myocarditis) among adolescents and the COVID-19
Moderna vaccine. We compose a graph query in
GRAPH-SEARCH with 4 nodes (Figure 10A); a triangle is
formed by “Adolescent (age group)” (C0205653), “Myocarditis”
(C0027059), and the “Moderna COVID-19 Vaccine” (CIDO
ID obo.VO 0005157); the vaccine entity is connected to the
“COVID-19” (C5203670) node. COVID-19 and Moderna
COVID-19 vaccine are not directly connected; among the
possible paths suggested by GRAPH-SEARCH, the 2 scoring
the highest sum of mutual information are through
“Vaccination” and “Myopericarditis.” The latter refers to both

myocarditis and pericarditis (ie, the inflammation of the
pericardium, which is the sac that surrounds the heart). The
latter concept allows us to expand the initial query to complete
the match with the co-occurrence network (Figure 10B). On the
Results page, 190 bibliographic resources are provided. The
top-ranked one, which explains all 4 relationships of the graph
query, is a report by Gargano et al [33] that highlights the
implications of the use of messenger RNA vaccines with a
higher risk for myocarditis in male individuals aged 12 to 29
years. The following results do not explain the relationship
between the COVID-19 Moderna vaccine and COVID-19
through myopericarditis, as they explain only 3 relations. These
results, for instance, report adverse events of myocarditis after
vaccination in the United States [34] and Korea [35].

Figure 10. (A) Graph query of use case 6 (UC6) and (B) found paths.

Query Performances
GRAPH-SEARCH queries are composed of two
computationally intensive steps: (1) the graph query matching
over the co-occurrence network and (2) the retrieval and ranking
of publications related to the query. For each such step, we run
a performance analysis.

Specifically, we simulated random queries with 2, 4, 6, 8, or 10
nodes from the existing co-occurrence network; we assume that
these are the typical UC scenarios, as queries represent small
queries of researchers created through the graphical interface.

We separately measure computation times of the first and second
steps (shown in Figures 11A and 11B, respectively); each
experiment has been repeated on 10 queries, generated randomly
using the “Random walk with restarts sampling” method of
Neo4j. We observe that the computational times for graph
matching in all cases is <2.2 seconds, and its growth is
less-than-linear with the number of the nodes, whereas the
retrieval operation typically takes up to 3 seconds, with a small
number of outliers due to cache misses; the resulting user delay
in these scenarios seems quite acceptable.
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Figure 11. Box plots measuring the time for (A) the graph matching operation and (B) the publication retrieval operation performed using complete
graph queries of 2, 4, 6, 8, and 10 nodes (each repeated 10 times).

We also created random graph queries by removing increasing
percentages of their relationships to simulate the difference
between exact and inexact graph search (thereby triggering the
search for alternative shortest paths); computational times (not
shown for brevity) are not significantly affected.

Related Work
In this section, we review classic approaches to search over
co-occurrence networks. Then, we focus on the specific use of
bio-ontologies in information extraction systems, and finally,
we propose a close comparison with COVID-19–specific search
systems.

Semantic-Network Search
The task of searching and extracting literature documents over
co-occurrence networks with graph-based queries can be
considered through the subproblems that compose it. To query
a co-occurrence network with a graph-like query, a similarity
measure between graphs must be defined. Existing methods in
the context of graph databases include definitions of graph edit
distances and maximum common subgraphs [36], but a later
approach introduced a similarity measure based on a graph
kernel between pairs of documents, which exploits the shortest
paths between nodes as units to compare graphs [37].
Considering the construction of the co-occurrence networks
from data sets of literature documents, different approaches are
available to extract concepts to represent nodes in the network
and connections between them. The survey by Han et al [38]
and the study by Shi et al [39] present all the main
methodologies and text mining pipeline architectures, which
are applied in this study to engineering and design (ie, subsets
of scientific literature). G-Bean [40] is also a relevant related
work, that is, a graph-based tool that exploits ontologies for
graph-based query expansion to support the user search intention
discovery.

Literature Annotation and Bio-Ontologies
The incorporation of bio-ontologies in information extraction
and information retrieval has demonstrated its efficacy through
diverse applications, such as patent information retrieval [41]
and identification of concept domains [42]. Bio-ontologies are
also applied in natural language processing tasks, such as NER
[43]. Moreover, Wang et al [44] illustrated the application of
bio-ontologies in retrieving biomedical data sets, while Maraver
et al [45] emphasized their role in literature search facilitation
and metadata organization. The potential for refining search
queries through ontology-guided expansion is also a recurring
theme in the biomedical literature for information retrieval.
Diaz-Galiano et al [46] and Dong et al [47] show query
expansion methodologies using different medical vocabularies.

A fundamental aspect of research in this domain pertains to the
availability and use of suitable corpora and data sets; previous
studies [48,49] have provided foundational annotated and
curated resources that underpin the experimental frameworks
addressing these tasks. Lately, the integration of bio-ontologies
with language models has also gained traction within the context
of bioinformation extraction [50,51].

COVID-19–Specific Literature Discovery
With the outbreak of the COVID-19 pandemic, several
open-access data sets have been collected, including the National
Institute of Health’s COVID-19 [52], the Human Coronaviruses
Data Initiative [53], and COVIDScholar [54].

The CORD-19 data set received the widest attention. Several
knowledge graphs that exploit this data set were proposed at
the beginning of the pandemic for representing biomedical
entities (eg, CORD-NER [55] and COVID-19 KG [56]) or
publications metadata (eg, COVID-19-Literature [57]). More
recently, CovidPubGraph [58] has provided a comprehensive
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and updated knowledge graph, which integrates information
from multiple sources, making results available through a
SPARQL end point. Finally, CovidGraph [59] exposed a
knowledge graph in the Neo4j browser; several external
ontologies are used to tag entities. The focus of these resources
is more on organization and semantic enrichment than on
exploration.

The goal of the TREC-COVID initiative [60] was to establish
targeted retrieval tasks in response to the pandemic, to be shared
and collectively addressed by the community. Instead,
GRAPH-SEARCH aims to make the literature about COVID-19
searchable and explorable. This objective is common to other
2 systems, LitCovid and Outbreak.info; these support enhanced
keyword-based search, but they do not offer any graph-based
search support.

LitCovid [1] was developed within the US National Institutes
of Health as a comprehensive resource of literature on
COVID-19 (372,221 publications at the time of writing),
updated regularly starting from PubMed. Publications are
manually screened to assess their relevance to COVID-19. They
are then categorized (eg, overview, disease mechanism,
transmission dynamics, treatment, case report, and epidemic
forecasting); assigned geographical locations; and annotated
with any drug or chemical-related information found in their
title and abstract, if applicable. The updated version [61]
introduced the long-covid category, added annotations on
variants and vaccines, and supported with machine learning
algorithms the topic categorization (with a more updated model)
and entity recognition (with NER). The interface allows us to
apply filters on country, journal, drug, variant, and vaccine and
compose search strings combining AND, OR, and NOT
operators (ie, not documented); results are ranked by relevance,
based on the widely used BM25 ranking function of Lucene.
LitCovid positively compares its performances to the classical
keyword search of PubMed (where annotations or tags are not
used).

Outbreak.info Research Library [2] is a project of the Hughes,
Su, Wu, and Andersen laboratories at Scripps Research. It offers
a searchable interface of COVID-19 publications
(complementing the content of LitCovid integrating preprint
servers), together with clinical trials, data sets, protocols, and
other resources. The data structure upon which the search is
performed is supported by a schema; entities are connected by
links with various semantics. The visual interface allows the
use of some filters and keyword search; results are ranked by

relevance based on the Lucene Practical Scoring Function on
Elasticsearch (prioritizing the query normalization factor,
coordination factor, term frequency, and inverse document
frequency).

Discussion

In this section, we discuss how the proposed graph query search
could be compared to other information extraction setups. For
this purpose, we focus on 2 UC queries, that is, the linear query
presented in UC3 (4 nodes in a linear pattern) and the red
subgraph shown in UC1 (a nonlinear 6 nodes query, expanded
with an additional node in GRAPH-SEARCH).

Comparison With COVID-19 Literature Search
Systems
First, we considered running the UCs on the COVID-19
literature–dedicated search systems LitCovid and Outbreak.info.
Both systems were queried using concept names corresponding
to UMLS terms in the nodes; unfortunately, they both suffer
from the limitations of Boolean search. Specifically, if we search
with conjunctive clauses and exact search (eg, using
“Outpatients” AND “Anti-Inflammatory Agents, Non Steroidal”
AND “Cyclooxygenase 2 Inhibitors” AND “COVID-19” for
UC3), no system returns any result. Dealing with exact search
is hard. For instance, with LitCovid, the query “Cyclooxygenase
Inhibitors” produces 3 results, whereas the query
“Cyclooxygenase 2 Inhibitors” produces 5 results, although
apparently more restrictive; instead, the query Cyclooxygenase
Inhibitors (no quotes), without exact search, produces 12,287
results (including all references referring to generic inhibitors).
Table 1 reports the results of LitCovid with conjunctive queries
but no exact matching, while a similar search is not supported
by Outbreak.info. In comparison, GRAPH-SEARCH reports
327 results for UC1 and 440 results for UC3. These outputs are
hardly comparable, mainly because with LitCovid it is not
possible to build a unique graph-shaped query; therefore, results
of single conjunctive queries need to be evaluated one after the
other, whereas GRAPH-SEARCH aggregates together the results
of several conjunctive chains; it also expands given concepts
with their acronyms (eg, “anti-inflammatory agents, non
steroidal” is also searched as “NSAIDs”). In addition,
GRAPH-SEARCH allows for the expansion of specific links
by adding new concepts (eg, “Up-Regulation [Physiology]” in
UC1). No domain-specific system for COVID-19 supports
graph-based search, allowing a more insightful comparison.
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Table 1. Results of the evaluation of use case (UC) 1 (Figure 7) and UC3 queries when performed on the LitCovid search interface, on the full-text
indexed MariaDB database, and on GRAPH-SEARCH.

Retrieved pubs MariaDB, nRetrieved pubs LitCovid, nQuery

UC1: GRAPH-SEARCH retrieves 327 publications overall

11316(Severe (severity modifier)) AND (Disease) AND (Associated With) AND (Gene
Expression) AND (High) AND (CCR2 gene)

1252(Severe (severity modifier)) AND (Disease) AND (Associated With) AND (Gene
Expression) AND (High) AND (CCR2 gene)

AND Up-Regulation (Physiology)

4972(Outpatients) AND (Anti-Inflammatory Agents, Non Steroidal) AND (Cyclooxyge-
nase 2 Inhibitors)

UC 3: GRAPH-SEARCH retrieves 440 publications overall

31714(Outpatients) AND (Anti-Inflammatory Agents, Non Steroidal) AND (COVID-19)

13018(Outpatients) AND (Cyclooxygenase 2 Inhibitors) AND (COVID-19)

537322(Anti-Inflammatory Agents, Non Steroidal) AND (Cyclooxygenase 2 Inhibitors)
AND (COVID-19)

5902(Outpatients) AND (Anti-Inflammatory Agents, Non Steroidal) AND (Cyclooxyge-
nase 2 Inhibitors) AND (COVID-19)

50“Outpatients” AND “Anti-Inflammatory Agents, Non Steroidal” AND “Cyclooxy-
genase 2 Inhibitors” AND “COVID-19”

Comparison With the Search on Full-Text Indexed
Corpora
We also attempted a comparison with search operations
performed on a baseline created by full-text indexing the
CORD-19 titles and abstracts. Specifically, we used the full-text
indexing option of MariaDB, an open-source fork of MySQL
[19]. Typically, full-text indexes work well for regular text;
they build an index over specific words rather than the whole
text, and consequently, they show good performances for
searches of specific words. The same queries used on LitCovid
and Outbreak.info were used on this setup: on MariaDB, we
used the “Natural language mode” documented on MariaDB
[62] and, thus, we removed the “AND” Boolean operators and
parentheses. To be part of the index, words must appear in <50%
of the documents to be considered potentially relevant and to
be used in searches (consequently, “COVID-19” and
“SARS-CoV-2” are not considered relevant). Results are
returned in descending order of relevance; limitations include
the exclusion of partial (or very short or long) words.

Notwithstanding our attempts, we note that the comparison of
the GRAPH-SEARCH approach with the full-text indexing
setup is very difficult for many reasons:

1. The databases upon which search is performed are built on
different assumptions (eg, to be part of the index, words
must appear in <50% of the documents; the co-occurrence
network only includes entities that score high similarity
with ontology concepts and exclude relationships with a
negative NPMI).

2. In 1 case, we perform separate keyword search sessions
with separate results (with associated precision and recall
measures); in the other case, we retrieve aggregated results
(with summarized measures).

3. On one side, the ranking produced is only on single query
result sets; on the other side, it is a global ranking.

The results are reported in Table 1; they must be read
considering all these aspects. Note that results achieved with
keyword search are restricted to manipulating Boolean
expressions, adding, keywords and dropping keywords. On the
contrary, the results on GRAPH-SEARCH (327 and 440,
respectively for UC1 and UC3) are inspectable, with ranking,
ordering, filtering, and visualization options dedicated to the
explained chains of entities; using our search paradigm, users
can compose graph queries; more complex topologies also allow
a stronger explainability of results.

Conclusions
GRAPH-SEARCH is the first search engine to propose the
exploration of COVID-19 scientific literature using visual graph
queries. GRAPH-SEARCH provides several unique features
such as the possibility to describe concepts using well-known
ontologies, to establish co-occurrence relationships between
any 2 concepts of choice, to support search queries with concepts
proposed and ranked by the system, and to browse resulting
publications exploiting several visual and analytic measures.

The completeness and accuracy of the information captured in
the co-occurrence network strictly depend on the advances of
the NER methods used during the steps of entity mining and
linking. Other systems have used expert curation (eg, LitCovid)
or community-driven curation (eg, Outbreak.info). Although
expert curation can improve the search experience, it does not
properly scale; we opted for the exploitation of well-known
biomedical ontologies such as UMLS and CIDO and
state-of-the-art natural language processing models used for
Entity Recognition in our data provision pipeline.

The ability of our system to extract results was evaluated,
attempting a comparison with existing published systems (eg,
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LitCovid and Outbreak.info) and with full-text indexing search.
We recognize that comparisons between the results retrieved
from these systems are not ideal, as it is very critical to compare
single search runs with a system where the result is built
progressively on the graph—considering a set of aspects
altogether (ie, how the network was built and pruned, shortest
path computation, completion with additional nodes, and global
ranking of results).

Co-occurrence networks are conventionally used for analyzing
extensive text and big data. Common applications have involved
sentiment analysis [63] and detection of prevailing topics [64].
Here, each node is a word occurring in a set of user-generated
social media posts. Moreover, word-co-occurrence networks
are present in clinical applications, for example, Millington and
Luz [65] proposed to encode recordings of speech data used for
recognizing patients with Alzheimer and controls. In all such
cases, GRAPH-SEARCH may be used to find specific subgraphs
and propose completions of missing links.

In this study, we have demonstrated the capability of
domain-specific (even inexact) graph query matching when
semantics is considered only for nodes; we are aware of the
limitations of this approach, which, at this stage, is considered
a modeling choice. In future work, we plan to extend our search
system to semantically rich knowledge graphs with both entities
and relationships, thereby enriching the expressivity of graph
queries (also including the possibility to capture the semantics
of relationships, with state-of-the-art methods [66] or as we
already experimented in a previous study [67]). Then, we aim
to formalize the use of graph queries in the context of graph
databases by studying the complexity of graph search and
connecting it to classical theories of subgraph matching, shortest
path search, and conjunctive query processing.

We also aim to conduct extensive empirical studies to measure
user satisfaction with systems such as GRAPH-SEARCH
analyzed along the 3 dimensions of usability, usefulness in
deepening their knowledge of certain connected topics, and
support of user’s intentions in knowledge exploration.
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