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Abstract

The number of papers presenting machine learning (ML) models that are being submitted to and published in the Journal of
Medical Internet Research and other JMIR Publications journals has steadily increased. Editors and peer reviewers involved in
the review process for such manuscripts often go through multiple review cycles to enhance the quality and completeness of
reporting. The use of reporting guidelines or checklists can help ensure consistency in the quality of submitted (and published)
scientific manuscripts and, for example, avoid instances of missing information. In this Editorial, the editors of JMIR Publications
journals discuss the general JMIR Publications policy regarding authors’ application of reporting guidelines and specifically
focus on the reporting of ML studies in JMIR Publications journals, using the Consolidated Reporting of Machine Learning
Studies (CREMLS) guidelines, with an example of how authors and other journals could use the CREMLS checklist to ensure
transparency and rigor in reporting.
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Introduction

The number of papers presenting machine learning (ML) models
that are being submitted to and published in the Journal of
Medical Internet Research and other JMIR Publications journals
has steadily increased over time. The cross-journal JMIR
Publications e-collection “Machine Learning” includes nearly
1300 articles as of April 1, 2024 [1], and there are additional
sections in other journals, which collate articles related to the
field (eg, “Machine Learning from Dermatological Images” [2]
in JMIR Dermatology). From 2015 to 2022, the number of
published articles with “artificial intelligence” (AI) or “machine

learning” in the title and abstract in JMIR Publications journals
increased from 22 to 298 (13.5-fold growth), and there are
already 312 articles in 2023 (14-fold growth). For JMIR Medical
Informatics, the number of articles increased from 10 to 160
(16-fold growth) until 2022. This is consistent with the growth
in the research and application of medical AI in general where
a similar PubMed search (with the keyword “medicine”)
revealed a 22-fold growth (from 640 to 14,147 articles) between
2015 and 2022, and there are already 11,272 matching articles
in 2023.

Many papers reporting the use of ML models in medicine have
used a large clinical data set to make diagnostic or prognostic
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predictions [3-6]. However, the use of data from electronic
health records and other resources is often not without pitfalls
as these data are typically collected and optimized for other
purposes (eg, medical billing) [7].

Editors and peer reviewers involved in the review process for
such manuscripts often go through multiple review cycles to
enhance the quality and completeness of reporting [8]. The use
of reporting guidelines or checklists can help ensure consistency
in the quality of submitted (and published) scientific manuscripts
and, for instance, avoid instances of missing information. For
example, in the experiences of the editors-in-chief of JMIR AI,
missing information is especially notable because for
manuscripts reporting on ML models, which are submitted to
JMIR AI, this can delay the overall review interval by adding
more revision cycles.

According to the EQUATOR (Enhancing the Quality and
Transparency of Health Research) network, a reporting guideline
is “a simple, structured tool for health researchers to use while
writing manuscripts. A reporting guideline provides a minimum
list of information needed to ensure a manuscript can be, for
example: understood by a reader, replicated by a researcher,
used by a doctor to make a clinical decision, and included in a
systematic review” [9]. These can be presented in the form of
a checklist, flow diagram, or structured text.

In this Editorial, we discuss the general JMIR Publications
policy regarding authors’ application of reporting guidelines.
We then focus specifically on the reporting of ML studies in
JMIR Publications journals.

JMIR Publications Policy on the Use of
Reporting Guidelines

Accumulating evidence suggests that when authors apply
reporting guidelines and reporting checklists in health research,
they can be beneficial for authors, readers, and the discipline
overall by enabling the replication or reproduction of studies.
Recent evidence suggests that asking reviewers to use reporting
checklists, instead of authors, offers no added benefits regarding
reporting quality [10]. However, Botos [11] reported a positive
association between reviewer ratings of adherence to reporting
guidelines and favorable editorial decisions, while Stevanovic
et al [12] reported a significant positive correlation between
adherence to reporting guidelines and citations and between
adherence to reporting guidelines and publication in
higher-impact-factor journals.

JMIR Publications’ editorial policy recommends that authors
adhere to applicable study design and reporting guidelines when

preparing manuscripts for submission [13]. Authors should note
that most reporting guidelines are strongly recommended,
particularly because they can improve the quality, completeness,
and organization of the presented work. At this time, JMIR
Publications requires reporting checklists to be completed and
supplied as multimedia appendices for randomized controlled
trials without [14-16] or those with eHealth or mobile health
components [17], systematic and scoping literature reviews
across the portfolio, and Implementation Reports in JMIR
Medical Informatics [18]. Although some medical journals have
mandated the use of certain reporting guidelines and checklists,
JMIR Publications recognizes that authors may have concerns
about the additional burden that the formalized use of checklists
may bring to the submission process. As such, JMIR
Publications has chosen to begin recommending the use of ML
reporting guidelines and will evaluate their benefits and gather
feedback on implementation costs before considering more
stringent requirements.

Reporting on ML Models

Regarding the reporting of prognostic and diagnostic ML
studies, multiple directly relevant checklists have been
developed. Klement and El Emam [19] have consolidated these
guidelines and checklists into a single set that we refer to as the
Consolidated Reporting of Machine Learning Studies
(CREMLS) checklist. CREMLS serves as a reporting checklist
for journals publishing research describing the development,
evaluation, and application of ML models, including all JMIR
Publications journals, which have officially adopted these
guidelines. CREMLS was developed by identifying existing
relevant reporting guidelines and checklists. The initial item
list was identified through a structured literature review and
expert curation, and then the quality of the methods used for
their development was assessed to narrow them down to a
high-quality subset. This high-quality item subset was further
filtered to reveal those that meet specific inclusion and exclusion
criteria. The resultant items were converted to guidelines and
a checklist that was reviewed by the editorial board of JMIR
AI, followed by a preliminary application to assess articles
published in JMIR AI. The final checklist offers present-day
best practices for high-quality reporting of studies using ML
models.

Examples of the application of the CREMLS checklist are
presented in Table 1. In doing so, we identified 7 articles
published in JMIR Publications journals, which exemplify each
checklist item. Note that not all of the items are relevant to each
article, and some articles are particularly good examples of how
to operationalize a checklist item.
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Table 1. Illustration of how various articles published in JMIR Publications journals implement each of the CREMLS (Consolidated Reporting of
Machine Learning Studies) checklist items.

Example illustrating the itemItemItem number

Study details

Examines chronic disease management—a clinical problem with 4

example solutions using MLa models [20]

The medical or clinical task of interest1.1

Proposes a framework to transfer old knowledge to a new environment
to manage drifts [21]

The research question1.2

Provides a review of current practice and issues associated with
chronic disease management [20]

Current medical or clinical practice1.3

Describes variables defined as part of a well-established health test
available to the public [20]

The known predictors and confounders of what is being
predicted or diagnosed

1.4

Presents experimental design with data flow and data partitions used
at various steps of the experiment (Figure 1 [22])

The overall study design1.5

Describes the institution as an academic (teaching) community hospital
where the data were collected [23]

The medical institutional settings1.6

Clear partitioning of target patient populations and the comparator
group [20]

The target patient population1.7

Describes how the prediction model fits in the clinical practice of
scheduling operating theater procedures [5]

The intended use of the ML model1.8

Reviews existing research and presents achieved performance (eg,

AUCb) [20]

Existing model performance benchmarks for this task1.9

Ethics approvals [5]Ethical and other regulatory approvals obtained1.10

The data

Defined in Figure 1 in the paper by Kendale et al [5]Inclusion or exclusion criteria for the patient cohort2.1

Describes sources and methods of data collection, what type of data
were used, and potential implied bias in interpretation [23]

Methods of data collection2.2

Discusses potential bias in data collection and outcome definition
[23]

Bias introduced due to the method of data collection used2.3

Uses descriptive statistics to show data characteristics for different
types of data (demographics and clinical measurements) [23]

Data characteristics2.4

Imputation is discussed [5]Methods of data transformation and preprocessing applied2.5

Missingness and outlier detection were discussed [5]Known quality issues with the data2.6

Brief section dedicated to power analysis [5]Sample size calculation2.7

Explains how to obtain a copy of the data [24]Data availability2.8

Methodology

Describes how missing values were replaced [20]Strategies for handling missing data3.1

Describes the approach of using SMOTEc to adjust class ratios to
address imbalance [23]

Strategies for addressing class imbalance3.2

Describes the vectorization of a dimension of 100 into a 2D space
using an established algorithm [22]

Strategies for reducing dimensionality of data3.3

The authors stated the threshold values used to detect outliers [5]Strategies for handling outliers3.4

Showed how variable similarity is achieved between synthetic and
real data in the context of augmentation [24]

Strategies for data augmentation3.5

Describes and illustrates (Figure 1) how models from other data sets
were trained and used in the new model [23]

Strategies for model pretraining3.6

Discusses properties of the selected algorithm relevant to the problem
at hand as motivation [20]

The rationale for selecting the ML algorithm3.7

Presents a separate discussion of evolution in cross-validation settings
and external evaluation while also describing hyperparameter tuning
[23]

The method of evaluating model performance during
training

3.8
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Example illustrating the itemItemItem number

Comprehensive description of tuning within nested cross-validation
(this is a tutorial but illustrates how to describe the process) [25]

The method used for hyperparameter tuning3.9

Describes the final model, how it was calibrated and discusses the
impact of embedding on patient data for interpretation [22]

Model’s output adjustments3.10

Evaluation

Comprehensive and detailed discussion of evaluation and quality
metrics [24]

Performance metrics used to evaluate the model4.1

Comprehensive error analysis [25]The cost or consequence of errors4.2

Detailed validation discussion (internally and externally) [25]The results of internal validation4.3

Presents details of the final model and the winning parameters [5]The final model hyperparameters4.4

Detailed and comprehensive external validation that is separate from
model testing [5]

Model evaluation on an external data set4.5

Implements performance monitoring, addresses data shifts over time,
and illustrates them in detail [21]

Characteristics relevant for detecting data shift and drift4.6

Explainability and transparency

Presents variable importance (SHAPd values) in the context of inter-
pretation and compares it to existing literature [5]

The most important features and how they relate to the
outcomes

5.1

Shows sample output (Figure 4 in the paper by Kendale et al [5])Plausibility of model outputs5.2

Good discussion about interpretability and use of the final model [5]Interpretation of a model's results by an end user5.3

aML: machine learning.
bAUC: area under the curve.
cSMOTE: synthetic minority oversampling technique.
dSHAP: Shapely additive explanations.

We strongly advise authors who seek to submit their manuscripts
describing the development, evaluation, and application of ML
models to the Journal of Medical Internet Research, JMIR AI,
JMIR Medical Informatics, or other JMIR Publications journals
to adhere to the CREMLS guidelines and checklist to ensure
that they have considered and addressed all relevant details for
their work before initiating their submission and review process.
More complete and high-quality reporting benefits the authors
by accelerating the review cycle and reducing the burden on
reviewers. Hence, the need exists for reporting guidelines and
checklists for papers describing prognostic and diagnostic ML
studies. This is expected to assist, for example, in reducing
missing documentation on hyperparameters for an ML model
and to clarify how data leakage was avoided. We have observed
that peer reviewers have, in practice, been asking authors to
improve reporting on the same topics covered in the CREMLS
checklist. This is not a surprise given that peer reviewers are
experts in the field and would note important information that
is missing. Nevertheless, we would encourage reviewers to use
the checklist regularly to ensure completeness and consistency.

The CREMLS checklist’s scope is limited to ML models using
structured data that are trained and evaluated in silico and in
shadow mode. This provides a significant opportunity to expand

on the CREMLS to different data modalities and additional
phases of model deployment. Should such extended reporting
guidelines and checklists be developed, they may be considered
for recommendation for submissions to JMIR Publications
journals, incorporating lessons learned from the initial checklist
for studies reporting the use of ML models.

Conclusion

There is evidence that the completeness of reporting of research
studies is beneficial to the authors and the broader scientific
community. For prognostic and diagnostic ML studies, many
reporting guidelines have been developed, and these have been
consolidated into CREMLS, capturing the combined value of
the source guidelines and checklists in one place. In this
Editorial, we extend journal policy and recommend that authors
follow these guidelines when submitting articles to journals in
the JMIR Publications portfolio. This will improve the
reproducibility of research studies using ML methods, accelerate
review cycles, and improve the quality of published papers
overall. Given the rapid growth of studies developing,
evaluating, and applying ML models, it is important to establish
reporting standards early.
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