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Abstract

Background: For medical artificial intelligence (AI) training and validation, human expert labels are considered the gold
standard that represents the correct answers or desired outputs for a given data set. These labels serve as a reference or benchmark
against which the model’s predictions are compared.

Objective: This study aimed to assess the accuracy of a custom deep learning (DL) algorithm on classifying diabetic retinopathy
(DR) and further demonstrate how label errors may contribute to this assessment in a nationwide DR-screening program.

Methods: Fundus photographs from the Lifeline Express, a nationwide DR-screening program, were analyzed to identify the
presence of referable DR using both (1) manual grading by National Health Service England–certificated graders and (2) a
DL-based DR-screening algorithm with validated good lab performance. To assess the accuracy of labels, a random sample of
images with disagreement between the DL algorithm and the labels was adjudicated by ophthalmologists who were masked to
the previous grading results. The error rates of labels in this sample were then used to correct the number of negative and positive
cases in the entire data set, serving as postcorrection labels. The DL algorithm’s performance was evaluated against both pre-
and postcorrection labels.

Results: The analysis included 736,083 images from 237,824 participants. The DL algorithm exhibited a gap between the
real-world performance and the lab-reported performance in this nationwide data set, with a sensitivity increase of 12.5% (from
79.6% to 92.5%, P<.001) and a specificity increase of 6.9% (from 91.6% to 98.5%, P<.001). In the random sample, 63.6%
(560/880) of negative images and 5.2% (140/2710) of positive images were misclassified in the precorrection human labels. High
myopia was the primary reason for misclassifying non-DR images as referable DR images, while laser spots were predominantly
responsible for misclassified referable cases. The estimated label error rate for the entire data set was 1.2%. The label correction
was estimated to bring about a 12.5% enhancement in the estimated sensitivity of the DL algorithm (P<.001).

Conclusions: Label errors based on human image grading, although in a small percentage, can significantly affect the performance
evaluation of DL algorithms in real-world DR screening.
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Introduction

In recent years, the application of artificial intelligence (AI) in
identifying ocular lesions and diseases has gained increasing
popularity [1-4]. One prominent example is the application of
deep learning (DL) in fundus image–based diabetic retinopathy
(DR) screening [5-8]. Despite the widely reported high accuracy
in existing studies, as well as the advantages in efficiency and
cost-effectiveness, the real-world implementation of DL-based
DR-screening models still faces challenges [9]. A major concern
is the gap observed between the high laboratory performance
and the unsatisfying real-world performance. For example,
although most DL algorithms have achieved a sensitivity of
over 90% in previous research, the reported sensitivity ranges
from 55% to 85% in real-world tasks [4,7,10]. A better
understanding of the reasons for the performance gap so as to
enhance the real-world performance of DL-based models could
help promote the implementation of AI on the ground, but
related evidence is scarce.

In the development of medical AI, human expert labels usually
serve as the gold standard to compare with and evaluate model
results [11]. The accuracy of AI model–based tasks critically
depends on high-quality labels. Assembling large data sets with
human expert labels can be a huge task, and ensuring the quality
of the gold standard remains an open problem [12]. In real-world
image data sets, the gold standard is usually generated by trained
graders who manually assign grades to the data [13-15].
However, human error is inevitable in this process, leading to
problems, such as bias, subjective judgement, inadequate
repeatability, and consistency. Studies have reported significant
discrepancies in DR grading among human graders, with
sensitivities ranging from approximately 60% to 90% [16]. As
a result, using manual grading outputs as an objective reference
standard can be problematic when the accuracy of manual
grading is in question [11,17,18].

We hypothesized that errors in human labels may exist in the
real world and exert a nonnegligible impact on real-world DL
model performance. Thus, in this study, we included over 0.7
million fundus images from 0.2 million individuals from a
nationwide DR-screening program, based on which we aimed
to assess the gap between lab-reported and real-world
performance of a previously validated DL-based DR-screening
model, identify the existence of label errors, and assess the
impact of those label errors on the observed performance gaps.

Methods

Ethical Considerations
The study adhered to the tenets of the Declaration of Helsinki
and received approval from the Institutional Review Board of

the Zhongshan Ophthalmic Centre (2023KYPJ108) and the
Chinese Foundation for Lifeline Express. All images were fully
anonymized. Written informed consent was obtained from all
Lifeline Express participants. Given the retrospective nature of
this study using anonymized images, the ethics review board
exempted this study from additional informed consent.

Real-World Data Set
The pipeline of this study is depicted in Figure 1. The overall
design of this study comprised 3 sections. First, more than 0.8
million images were collected from a real-world data set, and
all images were included except those that failed quality control
or lacked human labels. Second, fundus images were reviewed
by National Health Service (NHS)–certificated human graders
and manually classified as nonreferable DR (R0 and R1) or
referable DR (R2, R3s, and R3a) according to NHS
DR-screening guidelines. Next, a previously validated DL model
was deployed for identifying referable DR, and the performance
of the DL model was evaluated against human labels. Third, a
random sample of images, comprising false-negative (FN) and
false-positive (FP) subsets, was extracted for adjudication by 2
ophthalmologists. The details of the process are given next.

When adjudication yielded consistent results with DL instead
of human labels, the errors of the labels were documented. The
extracted sample’s error rates were used to recalculate the
number of positive and negative cases in the entire data set, as
postcorrection labels. The diagnostic performance of the DL
algorithm was reassessed against the postcorrection labels.

We included 865,152 color fundus images of participants who
participated in a nationwide real-world DR screening program,
the Lifeline Express DR Screening Program, between 2014 and
2019. For each participant, nonmydriatic, 45° field color fundus
images were captured using locally available imaging devices
(including AFC-230, NIDEK; Canon CR-DGi; FundusVue,
Cystalvue) with at least 1 image centered on the macula or optic
disc. The size of the images was 512 × 512 pixels, at a resolution
of 72 pixels per inch. Images were subsequently sent to 5
different central grading centers (Peking Union Medical College
Hospital, Beijing Tongren Hospital, Peking University Third
Hospital, Joint Shantou International Eye Center, and Zhongshan
Ophthalmic Center) and graded for DR by human graders who
possessed English NHS-certified qualifications. The following
images were excluded: (1) those that failed the quality control
procedure and (2) those without human labels. Details regarding
the quality control and DR-grading criteria can be found in
Table S1 in Multimedia Appendix 1.
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Figure 1. Schematic pipeline of the study design. DL: deep learning; DR: diabetic retinopathy; FN: false negative; FP: false positive; NHS: National
Health Service; TN: true negative; TP true positive.

Grading Criteria
Based on NHS DR-screening guidelines, each fundus image
was classified into 1 of 5 grades: R0 (no DR), R1 (background
DR), R2 (preproliferative DR), R3s (static proliferative DR),
or R3a (active proliferative DR). Referable DR was defined as
preproliferative DR or worse (ie, R2, R3s, and R3a) and
recorded as positive, whereas nonreferable DR (ie, R0 and R1)
was recorded as negative. A participant was diagnosed as having
referable DR if at least 1 of their gradable images was classified
as positive.

The manual grading process involved the following stages.
Initially, all images were assessed by a primary grader. Images
classified as positive and a random sample of 15% of images
classified as negative were then subjected to a second round of
grading by another primary grader. Images with any discrepancy

between the assessments of the 2 primary graders were referred
to a secondary grader, whose conclusion served as a final
determination. The resulting manual grading outputs formed
human labels.

Development of the DR-Grading DL Algorithm
The DR-grading algorithm is based on a convolutional neural
network. The algorithm was trained using 71,043 retinal images
from 36 ophthalmic departments and validated using an
additional 106,244 retinal images from 3 population-based
studies. Image preprocessing involved scaling image pixel
values within a range of 0-1 and subtracting the local-space
average color. Images were resized to 299 × 299 pixels. We
performed data augmentation techniques on training data. This
involved randomly shifting each image horizontally by 0-3
pixels and rotating it by 90°, 180°, or 270°.
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The original version of the algorithm has been reported
previously [19]. The original DL algorithm achieved an area
under the receiver operating characteristic curve (AUROC) of
0.955 (sensitivity: 92.5%, specificity: 98.5%) in validation for
the detection of referable DR. The algorithm used in our study
was retrained using the Xception architecture to improve model
performance, while using the same training data set. Max
pooling of each Inception module and global average pooling
were used in the Xception architecture. For training, a minibatch
gradient descent size of 32 was used. The learning rate adopted
an inverse time decay schedule with an initial value of 0.001.

Adjudication and Human Label Correction
We adjudicated images that showed discrepancies between DL
and human labels in referable DR classification, including FN
(DL: negative, label: positive) and FP (DL: positive, label:
negative). Adjudication was performed by 2 experienced
ophthalmologists who were masked to the DL and human
grading results; they used a back-to-back method in accordance
with NHS DR-screening guidelines. Images with any
discrepancy between the 2 ophthalmologists were sent to a
senior ophthalmologist for reassessment, whose grading results
were deemed as final.

Given the large number of images in this study, reviewing all
images with discrepancies would have been impractical.
Therefore, random samples were drawn for adjudication. To
ascertain the representativeness of these random samples across
the entire data set, a series of gradual samplings were conducted,
varying in size from 100 to 500 FN images. Notably, a similar
distribution of the estimated error rate was observed across all
sample sizes (Figure S1 in Multimedia Appendix 1), suggesting
that even a subset as small as 100 images can effectively
represent the label distribution within the entire data set.
Considering the total volume of FN and FP cases, we examined
a 10% sample from FN cases and a 5% sample from FP cases,
at both image and participant levels, aiming for a representative
and manageable size of the sample. When adjudication yielded
consistent results with DL instead of human labels, the label
errors were documented in the FN and FP samples, respectively.
Using the label error rates in the FN and FP samples, we
recalculated the number of positive and negative cases in the
entire data set, serving as postcorrection labels.

Statistical Analysis
We evaluated the performance of the DL algorithm using pre-
and postcorrection labels as the gold standard. Primary
evaluations metrics for diagnostic performance included
accuracy, precision, sensitivity (recall), specificity, and the
F1-score. AUROC was calculated at the image level. These
evaluations were conducted at both image and individual levels.

Label error rates in adjudicated samples were calculated as
follows:

where fnr and fpr represent label error rates in FN and FP
samples, respectively. Label changes during label correction
included:

pn = fnr × FN cases,

np = fpr × FP cases,

where pn is the number of labels changing from positive to
negative, while np is the number of labels changing from
negative to positive. The total positive and negative cases after
label correction were calculated as follows:

Total positive cases = Positive labels + np – pn

Total negative cases = Negative labels + pn – np

Comparisons of diagnostic performance were conducted using
chi-square tests. Adjudication was conducted on the open source
LabelMe platform [20]. All statistical analyses were performed
using R version 4.1.2 (Foundation for Statistical Computing).
A 2-sided P value of <.05 was considered statistically
significant.

Results

Precorrection Model Performance
Of the 865,152 images acquired from 251,535 participants,
736,083 (85.1%) images from 237,824 (94.5%) participants
were included in this analysis. Table 1 shows the results of the
DL algorithm and precorrection labels for detecting referable
DR. At the image level, DL-based grading yielded 9339 (1.3%)
FN, 57,886 (7.9%) FP, 632,457 (85.9%) true negative (TN),
and 36,401 (5.0%) true positive (TP) images against
precorrection labels. The DL algorithm yielded an AUROC of
0.927, a sensitivity (recall) of 79.6%, and a specificity of 91.6%,
lower than the lab-reported performance values (AUROC: 0.955,
sensitivity: 92.5%, specificity: 98.5%). The corresponding gaps
in sensitivity and specificity were 12.9% and 6.9%, respectively.
The precision and F1-score at the image level were 38.6% and
52.0%, respectively. Evaluation at the individual level yielded
2062 (0.9%) FN, 33,878 (14.2%) FP, 186,648 (78.5%) TN, and
15,236 (6.4%) TP images. The sensitivity, specificity, and
accuracy for identifying individuals with referable DR were
88.1%, 84.6%, and 84.9%, respectively. The precision and
F1-score at the individual level were 31.0% and 45.9%,
respectively. Subgroup analysis for each DR grade indicated
label discrepancies between the DL algorithm and human labels,
mainly accumulated in R1, R2, and R3a (Figure S2 in
Multimedia Appendix 1).
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Table 1. Grading results of the DLa algorithm and the ground truth in identifying the presence of referable DRb,c.

Participants (N=237,824)Images (N=736,083)Performance

Human labelsDL modelHuman labelsdDL model

17,298 (7.3)49,114 (20.7)45,740 (6.2)98,127 (13.3)Positive, n (%)

220,526 (92.7)188,710 (79.4)690,343 (93.8)666,055 (90.5)Negative, n (%)

—15,236 (6.4)—f36,401 (5.0)TPe, n (%)

—33,878 (14.2)—57,886 (7.9)FPg, n (%)

—186,648 (78.5)—632,457 (85.9)TNh, n (%)

—2,062 (0.9)—9,339 (1.3)FNi, n (%)

—84.9—90.9Accuracy, %

—31.0—38.6Precision, %

—88.1—79.6Sensitivity (recall), %

—84.6—91.6Specificity, %

—45.9—52.0F1-score, %

aDL: deep learning.
bDR: diabetic retinopathy.
cReferable DR was defined as preproliferative and proliferative DR.
dHuman labels came from the final DR-grading results of human graders, based on the NHS DR-screening guidelines.
eTP: true positive.
fNot applicable.
gFP: false positive.
hTN: true negative.
iFN: false negative.

Adjudication and Label Correction
Table 2 presents the adjudication results of extracted samples
with inconsistent grading results between DL and human labels.
After adjudication, 560 (63.6%) of 880 images labeled positive
were deemed negative, leading to a mean estimated FN error
rate of 63.6% (SD 1.6%, 95% CI 60.4%-66.8%). However, 140

(5.2%) of 2710 images labeled negative were deemed positive,
with a mean estimated FP error rate of 5.2% (SD 0.4%, 95%
CI 4.4%-6.1%). The adjudication at the individual level yielded
a similar finding (FN error rate: mean 65.3%, SD 3.4%, 95%
CI 58.2%-72.0%; FP error rate: mean 5.1%, SD 0.5%, 95% CI
4.1%-6.3%). Detailed classifications are listed in Table S2 in
Multimedia Appendix 1.

Table 2. Adjudicated results of sample images.

Participant levelImage levelSample adjudication

Images labeled negative
(n=1657)

Images labeled positive
(n=195)

Images labeled negative
(n=2710)

Images labeled positive
(n=880)

85 (5.1%)128 (65.3%)140 (5.2%)560 (63.6%)Erroneous labels

1572 (94.9%)68 (34.7%)2570 (94.8%)320 (36.4%)Accurate labels

As shown in Table 3, the top reasons for misclassifying R0
images as referable DR images in precorrection labels included
high myopia (n=106, 28.5%), a normal-appearing fundus (n=82,
22%), artifacts (n=40, 10.8%), and age-related macular
degeneration (AMD; n=37, 10%). The predominant reasons for
misclassified referable DR cases in precorrection labels included
undetected laser spots (n=56, 41.8%), potential venous
anomalies (n=25, 18.7%), and intraretinal microvascular

anomalies (IRMAs; n=22, 16.4%). Typical images with
erroneous labels are presented in Figure 2: Figures 2A and 2B
show referable DR images misclassified as negative in human
labels, with laser spots and retinal neovascularization, while
Figures 2C and 2D show nonreferable DR images misclassified
as positive in labels, probably due to a high-myopia fundus and
artifacts.
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Table 3. Potential reasons for errorsa in precorrection labels.

Count, n (%)Probable reasons

Images misclassified as positive

106 (28.5)High myopia

82 (22.0)Normal-appearing fundus

40 (10.8)Artifacts

37 (10.0)AMDb

33 (8.9)Underexposure

20 (5.4)Other retinopathies

11 (3.0)Poor quality

8 (2.2)Hypertensive retinopathy

6 (1.6)Media opacity

Images m isclassified as negative

56 (41.8)Laser spots

25 (18.7)Venous anomalies

22 (16.4)IRMAsc

14 (10.5)Neovascularization

11 (8.2)Multiple blot hemorrhages

3 (2.2)Fibrous membrane

1 (0.8)Vitreous hemorrhage

aErrors in precorrection labels were estimated against the results of the adjudication. Images misclassified as positive represented those graded as
referable diabetic retinopathy (DR) in the labels but turned out to be adjudicated as R0; images misclassified as negative represented those graded as
nonreferable DR in the labels but turned out to be referable DR after adjudication.
bAMD: age-related macular degeneration.
cIRMA: intraretinal microvascular anomaly.

Based on the FN and FP error rates in the sample, we assumed
that approximately 8933 images (from 3084 individuals) were
misclassified in the precorrection labels in the entire data set,
resulting in a mean estimated image error rate of 1.2% (SD
0.01%, 95% CI 1.1%-1.3%; individual level: mean 1.3%, SD

0.02%, 95% CI 1.1%-1.5%). The postcorrection labels of the
entire data set were estimated to include 42,787 truly positive
images and 693,296 truly negative images (from n=17,689,
7.4%, referable DR participants and n=220,135, 92.6%,
nonreferable DR participants, respectively).
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Figure 2. Typical images with human label errors before correction.

Postcorrection Model Performance
The confusion matrixes in Figure 3 show the comparison of DL
model performance before and after label correction. After
correction at the image level, sensitivity significantly improved
by 12.5% (from 79.6% to 92.1%, P<.001), and the
corresponding improvement in specificity and accuracy was
0.5% (from 91.6% to 92.1%, P<.001) and 1.2% (from 90.9%
to 92.1%, P<.001), respectively. Similarly, postcorrection results

at the individual level showed a 7.9% increase in sensitivity
(from 88.1% to 96%, P<.001), a 0.8% increase in specificity
(from 84.6% to 85.4%, P<.001), and a 1.3% increase in accuracy
(from 84.9% to 86.2%, P<.001). The lab/real-world performance
gap was significantly smaller after label correction, with a
significantly reduced sensitivity gap from 12.9% to 0.4%
(P<.001), as well as a reduced specificity gap from 6.9% to
6.4% (P<.001).

J Med Internet Res 2024 | vol. 26 | e52506 | p. 7https://www.jmir.org/2024/1/e52506
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Performance of the DL model before and after label correction. DL: deep learning.

Discussion

Principal Findings
Based on a nationwide DR-screening program, we identified a
significant gap between the lab-reported and real-world
performance of a DL-based DR-screening model, which could
be largely reduced by checking and correcting the errors in
human labels. These results highlight the significance of
acknowledging potential inaccuracies in human labels, which
is often regarded as the gold standard. In this study, we proposed
an approach of sampling adjudication to address this issue for
a large data set. By evaluating the error rate within sampled
subsets, we extrapolated and approximated the accurate
distribution of labels across the entire data set. This approach
enables a more precise evaluation of AI performance in
real-world practice by providing estimates that consider and
mitigate the impact of label errors.

Currently, there are 2 predominant approaches to generate a
manually labeled gold standard in image-based real-world
investigations [6-8,21-28]. The first approach involves a 2-stage
grading process. In this process, 2 primary graders review all
images, and a senior grader intervenes to make a final decision
in the case of a disagreement between the primary graders [21].
The second method is a 1-stage grading process, wherein a
single grader reviews all images to obtain human labels. In some
instances, the 1-stage grading process might need additional
verification for positive cases or a subsample of images [6].
Although accuracy may be somewhat compromised, the 1-stage
grading method has advantages in terms of efficiency,
convenience, time-effectiveness, and cost-effectiveness.

Therefore, 1-stage grading is more commonly used in real-world
practice, such as in the case of the Lifeline Express in this study.
However, regardless of which grading method is used, we
recommend double-checking human labels, even in a subsample
of the data, before assessing the performance of the DL model
in the real world.

Despite increasing endeavors aimed at enhancing the accuracy
of human labels through measures such as standardized training
for graders, the issue of mislabeling remains inevitable. Even
if human graders make just 1 mistake in 100 cases, such as
misclassifying different retinal conditions as DR or missing
laser scars on the peripheral retina, it affects the gold standard.
These small flaws can significantly influence the development
and evaluation of AI algorithms. However, the amount of
research available that evaluates the accuracy of manual grading
outputs in DR screening is limited. In one study, 7379 images
collected from 735 individuals were used to assess the
performance of manual grading, which achieved a sensitivity
of 82.2% and a specificity of 84.4% [7]. In another study
involving 2384 images collected from 1208 participants in a
nationwide DR-screening program in Thailand, the grading
performance of human graders was deemed relatively reliable
(accuracy: 93.5%, sensitivity: 84.8%, specificity: 95.5%) [28].
Moreover, Krause et al [29] compared DR-grading outcomes
of a majority decision made by 3 ophthalmologists with the
standard reference of adjudication by retinal specialists [29]. A
discrepancy rate of around 0.8% can be drawn for identifying
vision-threatening DR from their conclusion. These previous
studies, in conjunction with our findings, support the need to
estimate the error rate associated with manual grading in various
real-world DR-screening settings. These estimates range from
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approximately 1% to 7%. Variations in the DR prevalence in
the target population, grading workflow, and grader
certifications may serve as contributing factors.

The label error rate in our study was around 1%, primarily
attributed to the misclassification of nonreferable cases as
referable DR. This is not anticipated to impede prompt referral
and intervention for patients truly requiring medical attention.
However, even such a small error rate can largely deteriorate
the performance of DL algorithms in the real world. To address
this concern, 1 previously proposed solution is to establish a
rigorous reference standard during the human labeling
process—for example, incorporating adjudication consensus
from retinal specialists, rather than relying on major decisions
made by multiple graders [29]. However, implementing a
rigorous grading workflow in large-scale real-world screening
practices can be time-consuming and resource intensive.
Additionally, this process cannot be executed after study
completion. Our study introduced an optimization strategy based
on sample adjudication and label correction. Importantly, this
strategy does not require modifications to the grading workflow
or retraining of the DL model. Despite addressing only around
1% of label errors in the entire data set, this optimization
strategy has been shown to bring about 12% enhancement in
the AI model’s sensitivity.

The label correction strategy in our study can be considered a
post hoc quality control procedure. It has been reported that
label corrections for model tuning could effectively enhance
the performance of AI algorithms [29]. Our findings further
support the potential beneficial effect of adding this quality
control procedure in existing and future DR-screening programs,
especially when a large gap is observed between the real-world
and lab-reported performance of the AI algorithm. However,
implementation of this strategy in real-world practice may
present challenges. Even if only a small subsample of images
is selected for review, this would increase the workload of
ophthalmologists, necessitating additional time and resources.
Based on our study, we recommend that sampling approximately
5% of images with disagreement is reasonable for post hoc
quality control. We recommend that future studies determine
an appropriate sample size based on their expected error rate,
resources, and other real-world considerations. We believe that
this label correction strategy offers a standardized quality control
pipeline across diverse image-based AI applications. Future
investigations could explore the potential effect of this strategy
in other AI-based models (eg, other diseases or imaging
modalities) and other health care scenarios (eg, disease diagnosis
or prognosis).

Strengths
This study possesses several notable strengths. First, it was
embedded in a nationwide DR-screening program, ensuring a
large and robust data set comprising over 0.7 million fundus
images collected from more than 0.2 million participants. This
considerable scale enhanced the reliability of our findings.
Second, to the best of our knowledge, this study represents a
pioneering effort in evaluating the impact of label errors on the
performance of a DR-grading DL algorithm. In addition, the
proposal and validation of an effective optimization strategy in
this study contribute significantly to the understanding and
advancement of DL implementation in real-world DR screening.

Limitations
This study has some limitations. In our evaluation, images with
identical outputs between DL and labels (TP and TN cases)
were considered correctly classified, without undergoing further
adjudication. In smaller-scale trials, we adjudicated a limited
subset of TP (200 images) and TN (1000 images) cases. These
assessments revealed a minimal error rate in human labeling,
at 2.5% for TP and 0.1% for TN (further details in Table S3 in
Multimedia Appendix 1). Given the substantial quantity of TP
and TN images within our data set, refraining from label
correction in these subsets would unlikely cause a significant
alteration in the estimated performance of the DL model.
Additionally, during the adjudication process, we conducted
random sampling instead of reviewing all images with
discrepancies. To ensure the representativity of the random
sample, we performed multiple samplings with varying sample
sizes and validated consistent distributions of the obtained
results. Moreover, the Lifeline Express program exclusively
recruited Chinese participants. It is imperative to conduct
additional validation studies encompassing diverse ethnicities
to corroborate our findings. Lastly, our analysis focused solely
on a single DR-screening model. Nevertheless, it is reasonable
to infer that our conclusions are applicable to alternative models
used in the screening of other ocular diseases. Therefore, further
investigations are warranted to substantiate this discovery.

Conclusion
In conclusion, we found that even a small percentage of label
errors could have a substantial impact on the performance of
DL algorithms in real-world DR screening. Attention should
be paid to minimizing and correcting label errors in future
studies and implementations of AI-based DR-screening models
in the real world.
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