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Abstract

Background: The 2022 global outbreak of mpox has significantly impacted health facilities, and necessitated additional infection
prevention and control measures and alterations to clinic processes. Early identification of suspected mpox cases will assist in
mitigating these impacts.

Objective: We aimed to develop and evaluate an artificial intelligence (AI)–based tool to differentiate mpox lesion images from
other skin lesions seen in a sexual health clinic.

Methods: We used a data set with 2200 images, that included mpox and non-mpox lesions images, collected from Melbourne
Sexual Health Centre and web resources. We adopted deep learning approaches which involved 6 different deep learning
architectures to train our AI models. We subsequently evaluated the performance of each model using a hold-out data set and an
external validation data set to determine the optimal model for differentiating between mpox and non-mpox lesions.

Results: The DenseNet-121 model outperformed other models with an overall area under the receiver operating characteristic
curve (AUC) of 0.928, an accuracy of 0.848, a precision of 0.942, a recall of 0.742, and an F1-score of 0.834. Implementation of
a region of interest approach significantly improved the performance of all models, with the AUC for the DenseNet-121 model
increasing to 0.982. This approach resulted in an increase in the correct classification of mpox images from 79% (55/70) to 94%
(66/70). The effectiveness of this approach was further validated by a visual analysis with gradient-weighted class activation
mapping, demonstrating a reduction in false detection within the background of lesion images. On the external validation data
set, ResNet-18 and DenseNet-121 achieved the highest performance. ResNet-18 achieved an AUC of 0.990 and an accuracy of
0.947, and DenseNet-121 achieved an AUC of 0.982 and an accuracy of 0.926.

Conclusions: Our study demonstrated it was possible to use an AI-based image recognition algorithm to accurately differentiate
between mpox and common skin lesions. Our findings provide a foundation for future investigations aimed at refining the algorithm
and establishing the place of such technology in a sexual health clinic.
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Introduction

Mpox is a zoonotic viral infection caused by the monkeypox
virus [1]. The infection originated from remote areas of Central
and West Africa and was first reported in 1970 in the
Democratic Republic of Congo. The disease typically presents
with initial symptoms including fever, headache, rash, and
lymph node enlargement [1,2]. It can also present as lesions,
sores, or ulcers in the face, mouth, extremities, and anogenital
areas [3]. Mpox shares many similarities with other pox-like
infections, such as chickenpox, smallpox, and other bacterial
and viral infections. Mpox is transmitted through close contact
with infected individuals and the most recent cases have
occurred predominantly in men who have sex with men,
especially those with multiple and anonymous sexual partners.
Although mpox is generally self-limiting, delayed diagnosis
could lead to transmission within communities and increase the
risk of complications in immunocompromised individuals,
children, and pregnant women [4].

The 2022 global mpox outbreak significantly impacted health
facilities because it required additional infection prevention and
control measures including personal protective equipment to
prevent the spread of infection to staff [5,6]. Moreover,
suspected mpox cases had to be separated from main clinic
patients to mitigate the risk of infection to others, and so the
processes in the clinic were modified and slowed [7]. If it were
possible to identify suspected mpox cases before their visit, it
would benefit the workflow of clinics.

Recently, artificial intelligence (AI)–assisted medical diagnosis
has emerged as a promising research area in the health care
sector [8]. AI has been used in medical imaging to assist
radiologists in identifying COVID-19–related abnormalities in
chest x-rays and computed tomographic scans [9]. AI algorithms
can diagnose skin lesions such as melanoma with high accuracy
[10-12] and have seen increasing use in risk prediction [13,14]
and early diagnosis of sexually transmitted infections (STIs)
[15]. To our knowledge, many studies [16-20] have been
conducted to examine the performance of tools using AI to
diagnose mpox. These studies were designed to differentiate
mpox from chickenpox, smallpox, cowpox, and measles. While
these studies provided valuable insights, their application may
be limited in today’s clinical setting where cowpox is rare and
smallpox has been eliminated. In the context of a sexual health
clinic, a diverse range of skin lesions, including STIs such as
genital herpes, genital warts, syphilis, and molluscum
contagiosum. Nonsexually transmitted skin conditions such as
dermatosis and other inflammatory skin diseases are also
commonly seen.

We aimed to develop an AI-assisted diagnostic tool and evaluate
its ability to distinguish mpox from other common skin lesions
(STIs and non-STIs) in a sexual health clinic setting. If proven

accurate, such a tool could offer a preliminary screening
capability through a web-based platform, potentially aiding in
the early detection of mpox cases and timely initiation of
treatment. Furthermore, its integration into clinical workflows
could streamline the triage process and enhance patient
management in the clinic.

Methods

Data Collection
Melbourne Sexual Health Centre (MSHC) conducted this study
using the checklist for Artificial Intelligence in Medical Imaging
(CLAIM) [21]. Since 2010, we have collected clinical images
of STIs and non-STI skin lesions. In 2022 we added mpox lesion
images to our database. The MSHC data set included 86 mpox
and 1565 non-mpox images. We also implemented web scraping
techniques on Google and Bing (Microsoft) search engines with
different terms (“monkeypox,” “Monkey Pox,” “MPX,” and
“Mpox”) to collect public domain or Creative Commons mpox
images. This enabled us to collect 271 mpox images which
required clinicians’validation. Both MSHC and internet-sourced
data sets contained uncropped original images. Moreover, we
included 278 mpox images from the Kaggle data set [22] used
in previous studies [16-18] for model evaluation. This data set
consists of anonymized skin lesion images without any
associated patient information, precluding the comparison of
patient characteristics across different data sets. The images
from the Kaggle data set had already undergone preprocessing
and their lesion areas were cropped for evaluation.

Inclusion and Exclusion Criteria
The study included images collected from the MSHC attendees
who provided written informed consent for the use of their
image for research purposes and who were diagnosed with
mpox, genital herpes, genital warts, primary or secondary
syphilis, molluscum contagiosum, dermatosis, or healthy skin.
The web-scraped mpox images were included if they were open
source and could be verified by MSHC clinicians. Images not
meeting these criteria were excluded.

Data Labeling
Two experienced sexual health physicians independently labeled
images that did not have diagnoses and ensured they were
correct by reviewing the clinical notes, and laboratory results
from the Clinical Patient Management System. For the images
from the Kaggle data sets, the diagnoses were also verified
visually by the experts. Any discrepancies in image diagnosis
between the 2 clinicians were reviewed by a third clinician. If
consensus on the diagnosis could not be reached between the
3 clinicians, the image was discarded. Our study focused on
distinguishing mpox from other common skin lesions, thus,
labeled images were organized into mpox and non-mpox folders.
Table 1 shows the number of images for each disease class.
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Table 1. Distribution of images across diagnostic classes.

# Total images, n# Augmented images, n# Original images, n (%)Class and diseases

1537Mpox

902635 (28.86)Mpox

1565Non-mpox

0215 (9.77)Dermatosis

0250 (11.36)Genital herpes

0200 (9.09)Molluscum contagiosum

0250 (11.36)Healthy skin

0200 (9.09)Primary syphilis

0250 (11.36)Secondary syphilis

0200 (9.09)Genital warts

31029022200 (100.00)Total

Data Processing
We manually checked all images to ensure they had no
identifiable features (eg, face, tattoos, and birthmarks). We then
removed 14 duplicated and low-resolution images from the
whole data set by using the difPy Python package (Python
Software Foundation) [23]. As part of the image preprocessing
pipeline, all original images were resized to a fixed resolution
of 320×320 pixels and converted to JPEG format to ensure
uniformity and facilitate subsequent processing.

Data Partition
We divided the main data set into 3 subsets for training, testing,
and external validation (see Figure 1). Except for those from
the Kaggle data set, all mpox images were randomly divided
into the “training and validation” data set (n=274, 80% of
images) and the “testing” data set (n=70, 20% of images). The
277 mpox images from the Kaggle data set were reserved for
“external validation.” Similarly, non-mpox images were also
randomly divided into “training and validation,” “testing,” and
“external validation,” with 1172, 76, and 317 images,
respectively.

Figure 1. Workflow of the AI-based mpox classification model. AI: artificial intelligence; AUC: area under the receiver operating characteristic curve;
MPX: mpox; MSHC: Melbourne Sexual Health Centre.
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Image Augmentation
The training and validation data set was imbalanced, with 274
mpox images but 1172 non-mpox images. To address this
imbalanced data set [24], we applied data augmentation to
increase the number of images in the mpox data set [25]. This
included rotating images, cropping areas, zooming in or out,
flipping horizontally or vertically, and adjusting brightness and
contrast (see Table S1 in Multimedia Appendix 1 for data
augmentations). We generated 902 new images for mpox with
augmentation, resulting in a final training and validation data
set of 1176 mpox and 1172 non-mpox images. Testing and
external validation data sets were not augmented and the final
data sets contained 146 and 594 images, respectively (see Table
1 and Figure 1).

Model Training and Validation
We adopted a transfer learning approach to develop the binary
image classification model. This approach involved using the
pretrained model on a large data set and fine-tuning it on a
smaller target data set, making it effective in training a deep
model with fewer images [26,27]. During transfer learning, we
froze the weights of all backbone layers and replaced the last
fully connected layer with a new classification layer. We only
trained it with random weights thereafter. We experimented
with 6 pretrained deep neural network architectures with
different-sized parameters—MobileNet-V2 [28], ShuffleNet-V2
[29], DenseNet-121 [30], ResNet-18 [31], ResNet-34 [31], and
Swin-Transformer [32] (see Figure 2). The size of the
parameters can be seen in Table S2 in Multimedia Appendix 1.

Figure 2. Overview of convolutional neural network (CNN) architecture.

A 5-fold cross-validation was performed on the training and
validation data sets, to enhance the model’s robustness and
generalizability. We trained and validated each pretrained model
5 times with different subsets, and the results were averaged
for better performance evaluation. We trained an AI image
classification model using a pretrained model backbone, Adam
optimizer, cross-entropy loss function, a batch size of 72, a
dropout rate of 0.2, an image size of 320×320 pixels, 150

epochs, and a learning rate of 3e-4. We implemented model
training with PyTorch (Meta AI) on a Tesla T4 GPU machine.
The model training time ranged from 3 to 4 hours for smaller
models like MobileNet-V2 and ShuffleNet-V2, while larger
models like Swin-Transformer took up to 5 to 6 hours.

Performance Evaluation Metrics
The model performance for distinguishing between mpox and
non-mpox images was evaluated with various metrics including
area under the receiver operating characteristic curve (AUC),
accuracy, precision, recall, and F1-score. AUC measures the
model’s ability for binary classification, ranging from 0 to 1,
where 1 indicates perfect classification [33-35]. The equation
and definition of the performance metrics are shown in Table
S3 in Multimedia Appendix 1. The scikit-learn Python package
(version 1.2.0) was used to calculate all metrics [36].

Region of Interest Approach to Improve Model
Performance
In this study, the original images from MSHC were used for
the testing data set without any cropping of the lesion areas,
whereas the mpox images from the Kaggle data set were
precropped for the area of interest in the external validation data
set. The performance of the model was compared between the
testing and external validation data sets. Following this, a region
of interest (ROI) approach was applied to the testing data set,
whereby the lesion areas were cropped from the original images,
and the model’s performance was reevaluated. The efficacy of
this approach was visualized using gradient-weighted class
activation mapping (Grad-CAM), which enabled the assessment
of the model’s performance before and after the ROI approach.

Model External Validation
We first evaluated all 6 models with a testing data set that had
never been used for model training and calculated the
performance metrics. To further test the generalizability and
robustness of those models, we evaluated their performance
with an external validation data set containing unseen images
from the Kaggle data set, which was commonly used in previous
studies (Figure 1). Then, we computed the confusion matrices
for the best models on testing and external validation data sets
to analyze the model’s correct and incorrect predictions. Finally,
we conducted the visual analysis on a set of sample prediction
outputs from the best model using Grad-CAM [33]. We
generated the image with a heatmap where the most important
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region for the predicted class was highlighted. In other words,
the features of the images used for prediction were highlighted
with color gradients from the most important to the least
important areas, helping to understand the model’s behavior
and to identify the error for wrong predictions.

Ethical Considerations
The study protocol received ethics approval from the Alfred
Hospital Ethics Committee (683/22). All research activities
were carried out in compliance with relevant ethical principles
and guidelines. To protect participant privacy, all data underwent
a deidentification process before being used for model
development and analysis.

Results

Overview
Table 1 shows the number of images with mpox and non-mpox
conditions in the data set. The mpox images accounted for 29%
(635/2200) of the original images while other non-mpox images
included conditions that individually accounted for between
9% (200/2200) and 11% (250/2200) of the data set. Figure 1
shows the processes for how the final data sets were created
and the source of images for the final data sets.

Table 2 shows key performance metrics for the 6 different
models, including AUC, accuracy, precision, recall, and
F1-score. These metrics are presented for the testing data set
both before cropping and after applying the ROI approach, as
well as for the external validation data set. Additionally, Figure
3 shows the visual comparison of the AUC for 6 different
models across different data sets.

Table 2. Model evaluation: performance metrics across 5 folds.

F1-score, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)AUCa, mean (SD)Model

Model evaluation on testing data set (before cropping)

0.792 (0.033)0.686 (0.054)0.942 (0.025)0.832 (0.022)0.918 (0.011)MobileNet-V2

0.752 (0.035)0.618 (0.049)0.964 (0.022)0.820 (0.014)0.908 (0.004)ShuffleNet-V2

0.834 (0.018)0.742 (0.024)0.942 (0.013)0.848 (0.041)0.928 (0.022)DenseNet-121

0.79 (0.010)0.688 (0.016)0.934 (0.026)0.828 (0.008)0.916 (0.005)ResNet-18

0.734 (0.005)0.618 (0.011)0.900 (0.000)0.798 (0.015)0.876 (0.043)ResNet-34

0.746 (0.011)0.622 (0.022)0.926 (0.019)0.798 (0.008)0.928 (0.016)Swin-Transformer

Model evaluation on testing data set (with region of interest approach)

0.898 (0.008)0.851 (0.016)0.949 (0.006)0.907 (0.006)0.963 (0.004)MobileNet-V2

0.856 (0.005)0.797 (0.012)0.924 (0.008)0.871 (0.003)0.964 (0.002)ShuffleNet-V2

0.948 (0.003)0.940 (0.006)0.956 (0.000)0.951 (0.003)0.982 (0.002)DenseNet-121

0.894 (0.008)0.869 (0.012)0.922 (0.018)0.901 (0.008)0.963 (0.001)ResNet-18

0.871 (0.011)0.829 (0.017)0.918 (0.007)0.882 (0.009)0.959 (0.004)ResNet-34

0.842 (0.018)0.769 (0.027)0.931 (0.002)0.862 (0.013)0.967 (0.011)Swin-Transformer

Model evaluation on external validation data set

0.934 (0.007)0.959 (0.017)0.911 (0.019)0.937 (0.007)0.985 (0.002)MobileNet-V2

0.917 (0.005)0.910 (0.003)0.925 (0.009)0.923 (0.005)0.963 (0.040)ShuffleNet-V2

0.922 (0.003)0.939 (0.006)0.906 (0.006)0.926 (0.003)0.982 (0.001)DenseNet-121

0.943 (0.006)0.953 (0.009)0.934 (0.009)0.947 (0.006)0.990 (0.001)ResNet-18

0.903 (0.008)0.920 (0.006)0.887 (0.013)0.908 (0.008)0.974 (0.002)ResNet-34

0.901 (0.009)0.862 (0.012)0.944 (0.005)0.912 (0.007)0.979 (0.003)Swin-Transformer

aAUC: area under the receiver operating characteristic curve.
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Figure 3. AUC comparison of 6 different models on testing and external validation data set. AUC: Area Under the Receiver Operating Characteristic
Curve; ROC: Receiver Operating Characteristics Curve.

Evaluation of Model Performance on the Testing Data
Set (Before Cropping)
Evaluation of the performance of 6 different models with the
testing data set (before cropping) showed that the DenseNet-121
outperformed the other models in terms of overall AUC (0.928,
SD 0.022), accuracy (0.848, SD 0.041), precision (0.942, SD
0.013), recall (0.742, SD 0.024), and F1-score (0.834, SD 0.018;
Table 2).

Evaluation of the Model With the ROI Approach on
the Testing Data Set
We applied the ROI approach to the testing data set and
conducted a reevaluation of the models (Table 2). This approach
significantly improved the performance of all 6 models for
image classification. The AUC score of MobileNet-V2 increased
from a mean of 0.918 (SD 0.011) to a mean of 0.963 (SD 0.004),
ShuffleNet-V2 from a mean of 0.908 (SD 0.004) to a mean of
0.964 (SD 0.002), ResNet-18 from a mean of 0.916 (SD 0.005)
to a mean of 0.963 (SD 0.001), ResNet-34 from a mean of 0.876
(SD 0.043) to a mean of 0.959 (SD 0.004), and
Swin-Transformer from a mean of 0.928 (SD 0.016) to a mean
of 0.967 (SD 0.011). The AUC score of the best-performing
DenseNet-121 model increased from a mean of 0.928 (SD 0.022)
to mean of 0.982 (SD 0.002) on the testing data set following
the adoption of the ROI approach.

Evaluation of Model Performance on the External
Validation Data Set
We evaluated the performance of these models with the external
validation data set. The findings in Table 2 showed that the
ResNet-18 performed best on this data set, achieving an AUC
of mean 0.990 (SD 0.001), an accuracy of 0.947 (SD 0.006), a
precision of 0.934 (SD 0.009), a recall of 0.953 (SD 0.009), and
an F-score of 0.943 (SD 0.006). DenseNet-121 also achieved
high performance with an AUC of 0.982 (SD 0.001) on the
external validation data set.

Confusion Matrix Results for DenseNet-121 and
ResNet-18 Models
Figure 4 shows the confusion matrixes for 5 folds for the
DenseNet-121 and ResNet-18 models. In the testing data set
(before cropping), the confusion matrix of the best fold in
DenseNet-121 showed that 55 out of 70 (79%) mpox and 74
out of 77 (96%) non-mpox images were correctly classified
(Figure 4A). After applying the ROI approach, the confusion
matrix of the best fold in DenseNet-121 showed that 66 out of
70 (94%) mpox images were correctly classified which
represents a notable increase from 79% (55/70) before applying
this approach (Figure 4A). In the external validation data set,
the confusion matrix of the best fold in ResNet-18 showed that
283 out of 268 (95%) mpox and 302 out of 312 (97%) non-mpox
images were correctly identified by the model (Figure 4B).

J Med Internet Res 2024 | vol. 26 | e52490 | p. 6https://www.jmir.org/2024/1/e52490
(page number not for citation purposes)

Soe et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Confusion matrix for best models (5-fold cross-validations). ROI: region of interest.

Visual Analysis With Grad-CAM
Figure 5 shows the visual analysis of the lesion images with
Grad-CAM. The visual analysis using Grad-CAM on random
images from the testing data set (before cropping) showed
inaccuracies in the areas of importance for predicted diagnosis

(see Figure 5B, first row). We observed false detections
occurring in the background rather than the lesion areas of the
images from the testing data set. After applying the ROI
approach to the testing data set, the model’s accuracy in
detecting lesion areas showed a significant improvement (Figure
5B, second row).
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Figure 5. Visual analysis on predicted image class from DenseNet-121. (A) The original image (left) and the corresponding heatmap image (right)
generated by Grad-CAM were shown and the heatmap highlighted regions of the image that the model used to make its prediction. (B)The first row
showed the original image, and the second row showed the same image after cropping ROI, showing the accuracy of the model improved after the ROI
approach. Grad-CAM: gradient-weighted class activation mapping; ROI: region of interest.

Discussion

Principal Findings
Previous studies [16-18] have shown AI tools can differentiate
mpox from non-STI lesions such as measles, smallpox, and
chickenpox. Our study added to this by demonstrating that AI
can differentiate mpox from images of common skin lesions
including STIs and non-STIs collected from a sexual health
clinic. We showed that the DenseNet-121 model performed
most accurately compared to other models although the
differences were small. We also demonstrated that the accuracy
of the image classification models could be significantly
improved by cropping the main ROI lesion areas from the
original image prior to feeding it to the model.

Our study found similar results to other published studies that
used AI-based image recognition algorithms to detect mpox
cases among symptomatic clinic attendees. The DenseNet-121
model outperformed the other models, achieving a 0.951
accuracy on the testing data set with 147 MSHC mpox images
confirmed by laboratory diagnosis. In addition, our
DenseNet-121 model also demonstrated a 0.926 accuracy on
the external validation data set consisting of 544 mpox images
from the Kaggle data set. This external validation data set was
previously used in other studies [16-18]. Our model’s
performance was similar to those used in previous studies. The
study by Akin et al [18] achieved a 0.980 accuracy with

ResNet-18 for binary classification between mpox and other
lesions. Similarly, Shams et al [16] achieved an 0.830 accuracy
with ResNet-50 for the same classification task. This higher
accuracy was possibly due to the limited variety of lesion images
in the testing data sets, consisting of 45 and 56 images,
respectively. Another study by Islam et al [17] achieved 0.790
accuracy with ShuffleNet-V2 for multiple classifications among
6 different lesions, with a testing data set of 158 images.
However, it is important to note that our findings could not be
directly compared with these studies because they used smaller
testing data sets, different lesion types, and different model
architectures.

There are a number of advantages to our study over other
published studies. First, our study was the first one to
demonstrate the potential for developing an AI tool to
differentiate mpox from common skin lesions from images
collected from a sexual health clinic. Second, we used a
significantly larger data set compared to previous AI-based
mpox classification studies [16-18]. Our data set included 2200
images, in contrast to previous studies’data sets, which included
804 and 228 images. Third, our study included the clinic images
in addition to the open-source images from the web-scraping
method. All diagnoses of the images from MSHC were
confirmed with laboratory tests and clinically by
well-experienced sexual health physicians. Finally, we used a
5-fold cross-validation process to improve the robustness and
generalizability of our models.
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Our study demonstrated the crucial role of preprocessing
techniques, specifically focused on cropping the ROI lesion
areas, within the context of differentiating mpox from non-mpox
lesions. As exemplified by the incorrectly classified cases in
Figure 5B, in the first row, confusing backgrounds such as
fabrics or hairy skin patterns appeared to contribute to inaccurate
model predictions prior to the ROI approach. Additionally,
when the main lesion areas comprised very small regions relative
to the entire image area, the model struggled to focus on the
relevant features. By cropping the images to solely focus on the
lesion areas, the model was able to better recognize the lesion
features, resulting in improved accuracy. Our study highlights
the importance of focusing on the lesion area with minimum
background in achieving optimal performance of the AI model.
This also underscores the importance of user education and
training to ensure that users are able to apply them effectively
when using the model in a clinical setting. Nonetheless, it could
be a challenge when end users submit images without
preprocessing in a real-world setting. It emphasizes the need to
integrate image preprocessing functions into the user interface
of the tool during deployment; however, it was out of the scope
of our study. Overall, our findings provide important insights
into the development and optimization of image classification
models in medical applications.

There are substantial potential applications of this AI-assisted
diagnosis tool. First, this AI-assisted diagnosis tool could be
integrated with existing health care platforms, such as patient
booking systems, to identify suspected mpox cases among clinic
attendees even before they attend the service. Early identification
of infectious cases could help manage clinic workflows through
appropriate infection control processes. Moreover, the tool could
be integrated into the clinic’s web-based services, allowing
patients to check their symptoms and we could prioritize health
services for those identified as mpox and also warn individuals
of their risk of transmission. Furthermore, this tool could be
integrated into a mobile app for point-of-care services, especially
in low-resource health care settings where access to medical
professionals may be limited. The mobile app could potentially
provide real-time assistance to rural health care providers,
enabling more efficient and cost-effective diagnosis. However,
it is important to consider the ethical implications associated
with the use of AI-assisted diagnostic tools, including concerns
about data privacy and unintended consequences. It is necessary
to develop appropriate guidelines and frameworks to mitigate
these concerns.

Our study had several limitations. First, we used augmentation
methods to multiply mpox classes to solve the imbalanced data
which might affect the model performance during the training
and validation process. Second, we included web-scraped mpox
images and this limitation of not being able to confirm their
diagnosis with laboratory tests was addressed by having them
reviewed and visually diagnosed by sexual health physicians.
Third, although our models yielded promising results, they also
highlighted opportunities for improvement. The evaluation of
model performance showed that there were some
misclassifications between classes and false detection areas
during visual analysis with Grad-CAM. Given these findings,
further research could explore whether increasing the data set
size and developing more customized deep learning approaches
rather than relying on fine-tuning and ROI cropping methods
might improve the model performance. Furthermore, while our
models demonstrated differentiation between mpox and
non-mpox, it has not been validated in a real-world clinical
setting due to the declining number of mpox cases. Our study’s
aim was primarily to demonstrate the potential use of AI tools
to differentiate skin lesions and provide a foundation for future
research to test the AI model in real-world scenarios. Finally,
we did not use any epidemiological or clinical history data that
may also improve the model. For example, currently, there are
no new cases of mpox in Australia and so the low underlying
incidence of mpox would be likely to influence the accuracy of
the models. Moreover, the integration of demographic and
sexual behavioral data, such as whether an individual identifies
as men who have sex with men and number of sexual partners,
could potentially improve the model’s performance.

Conclusions
In this study, our study demonstrated the potential use of an
AI-based image recognition algorithm to differentiate between
mpox and common skin lesions. The model with a high accuracy
of 95% indicates its potential benefit from clinic workflow
management and prevention of the transmission of mpox
infection. However, further research is needed to improve the
performance of the model and validate its effectiveness in
real-world clinical settings. Overall, the successful development
and evaluation of this AI-based image recognition algorithm
offer a promising approach to improving diagnostic accuracy
and efficiency in sexual health clinics.
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