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Abstract

Background: Robust and accurate prediction of severity for patients with COVID-19 is crucial for patient triaging decisions.
Many proposed models were prone to either high bias risk or low-to-moderate discrimination. Some also suffered from a lack of
clinical interpretability and were developed based on early pandemic period data. Hence, there has been a compelling need for
advancements in prediction models for better clinical applicability.

Objective: The primary objective of this study was to develop and validate a machine learning–based Robust and Interpretable
Early Triaging Support (RIETS) system that predicts severity progression (involving any of the following events: intensive care
unit admission, in-hospital death, mechanical ventilation required, or extracorporeal membrane oxygenation required) within 15
days upon hospitalization based on routinely available clinical and laboratory biomarkers.

Methods: We included data from 5945 hospitalized patients with COVID-19 from 19 hospitals in South Korea collected between
January 2020 and August 2022. For model development and external validation, the whole data set was partitioned into 2
independent cohorts by stratified random cluster sampling according to hospital type (general and tertiary care) and geographical
location (metropolitan and nonmetropolitan). Machine learning models were trained and internally validated through a
cross-validation technique on the development cohort. They were externally validated using a bootstrapped sampling technique
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on the external validation cohort. The best-performing model was selected primarily based on the area under the receiver operating
characteristic curve (AUROC), and its robustness was evaluated using bias risk assessment. For model interpretability, we used
Shapley and patient clustering methods.

Results: Our final model, RIETS, was developed based on a deep neural network of 11 clinical and laboratory biomarkers that
are readily available within the first day of hospitalization. The features predictive of severity included lactate dehydrogenase,
age, absolute lymphocyte count, dyspnea, respiratory rate, diabetes mellitus, c-reactive protein, absolute neutrophil count, platelet
count, white blood cell count, and saturation of peripheral oxygen. RIETS demonstrated excellent discrimination (AUROC=0.937;
95% CI 0.935-0.938) with high calibration (integrated calibration index=0.041), satisfied all the criteria of low bias risk in a risk
assessment tool, and provided detailed interpretations of model parameters and patient clusters. In addition, RIETS showed
potential for transportability across variant periods with its sustainable prediction on Omicron cases (AUROC=0.903, 95% CI
0.897-0.910).

Conclusions: RIETS was developed and validated to assist early triaging by promptly predicting the severity of hospitalized
patients with COVID-19. Its high performance with low bias risk ensures considerably reliable prediction. The use of a nationwide
multicenter cohort in the model development and validation implicates generalizability. The use of routinely collected features
may enable wide adaptability. Interpretations of model parameters and patients can promote clinical applicability. Together, we
anticipate that RIETS will facilitate the patient triaging workflow and efficient resource allocation when incorporated into a
routine clinical practice.

(J Med Internet Res 2024;26:e52134) doi: 10.2196/52134
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Introduction

During the COVID-19 pandemic, the global health care system
confronted an urgent threat despite concerted efforts from health
care institutions and providers to contain the rapid spread of the
disease, which has claimed the lives of 6.97 million people as
of October 2023 [1]. The overwhelming influx of patients into
hospitals strained medical resources and hindered optimal
treatment provision by health care practitioners [2]. This global
outbreak may continue to exist with the advent of new
SARS-CoV-2 variants due to its tendency to mutate during host
adaptation [3]. Recently, a high proportion of population
immunity and decreasing fatality rates initiated global
movements toward endemic status following the World Health
Organization’s (WHO) announcement that COVID-19 is no
longer a public health emergency of international concern [4,5].
However, COVID-19 cases continue to rise with the emergence
of new subvariants, such as SARS-CoV-2 EG.5 and BA.2.86
[6,7]. Therefore, a robust and interpretable early triaging system
is necessary to accurately triage patients in preparation for the
next pandemic [8].

Many prognostic models for patients with COVID-19 severity
and mortality have been proposed, yet most were reported
unsuitable for clinical application by several systematic review
studies [9-11]. Most models were either at a high or unclear
risk of bias (Wynants et al [10]: 305 out of 310 studies, 98.4%;
Buttia et al [11]: 312 out of 314 studies, 99.4%) such that their
reported discriminative performances were deemed neither
reliable nor generalizable [10,11]. These high-risk models were
developed with predictors selected based on univariable analysis,
failed to deal with model overfitting represented by
miscalibration, performed no or limited external validations

with sufficient samples, imputed missing data without a clear
explanation, or considered a limited number of machine learning
(ML) algorithms [10,11]. Although there were some models
with a low risk of bias, these models had low to moderate
discriminative power, were based on the data from the early
pandemic period, and had limited clinical interpretability [9,10].
Therefore, the development of a robust, interpretable, and
generalizable model with high discriminative power is required
to provide practical benefit in managing the next possible
pandemic [12,13].

We aimed to develop and validate an ML-based Robust and
Interpretable Early Triaging Support (RIETS) system to predict
severity based on routinely collected biomarkers using a
nationwide multicenter cohort. In addition, we tried to improve
model interpretability through patient clustering and
characterization.

Methods

Ethical Considerations
The study protocol was approved and the requirement for
informed consent was waived by the institutional review boards
(IRBs) of all participating hospitals. In addition, the use and
management of a cloud-based data storage platform for the
secondary analysis was approved by the IRB of Samsung
Medical Center (SMC 2020-09-100-002). All unique identifiers
were removed prior to uploading. All data in the study database
were assigned a research specific serial number and deidentified
to protect the confidentiality of the study patients.
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Study Setting and Design
This study was a nationwide, multicenter, retrospective,
prognostic study conducted in South Korea. We collected data
for adult patients who were confirmed to have COVID-19 via
real-time polymerase chain reaction and were hospitalized at
19 main referral hospitals between January 5, 2020, and August
29, 2022 (Methods S1 in Multimedia Appendix 1). Among 9199
hospitalized patients with COVID-19, we excluded 406 patients
diagnosed either more than 15 days before or more than 1 day
after the hospitalization date, as well as 2848 patients who had
missing data in any variable of interest (Figure 1). A total of
5945 patients (5106 nonsevere and 839 severe) remained for
the analysis. The 19 hospitals were divided into 4 strata

according to hospital type and location: metropolitan area
general hospitals, nonmetropolitan area general hospitals,
metropolitan area tertiary care hospitals, and nonmetropolitan
area tertiary care hospitals. We then used a random cluster
sampling method to partition hospitals in each stratum and
construct development and validation cohorts. For reporting
and bias-risk assessment, we adhered to the following
guidelines: Guidelines for Developing Machine Learning
Predictive Models in Biomedical Research [14], Transparent
Reporting of a multivariable prediction model for Individual
Prognosis (TRIPOD; File S1 in Multimedia Appendix 1), and
Diagnosis and Prediction Model Risk of Bias Assessment Tool
(PROBAST; File S2 in Multimedia Appendix 1) [15].

Figure 1. Patient flowchart depicting the generation of development and validation cohorts among hospitalized patients with COVID-19 (n=5945).
Stratified random cluster sampling was applied to segment the cohorts based on hospital type (general vs tertiary) and geographical location (metropolitan
vs nonmetropolitan). RT-PCR: real time polymerase chain reaction.

Data Collection
A set of data collection guidelines were predetermined by our
clinical experts. We developed a standard data collection form
and prepared cloud database storage. Adhering to the set
guidelines, researchers affiliated with each participating hospital
gathered patient data with 32 features from demographic,
clinical, laboratory, and radiological findings within the first
day of hospitalization. We specified these features based on
previous prognostic models and a literature review describing
common biomarkers associated with severe COVID-19 [16].
The final severity status of each patient was determined on day
15 of hospitalization. All data collected in each hospital were
deidentified and uploaded onto the cloud database storage. The
entire data set underwent a quality assurance process, including
typo rectification, outlier handling, and double-checking with
the electronic health records in each participating hospital.

Definition of COVID-19 Severity
We declared the COVID-19 severity for patients under one or
more of the following conditions during their hospitalization:

(1) mechanical ventilation required; (2) extracorporeal
membrane oxygenation required; (3) admission to intensive
care unit; or (4) patient’s death. This criterion aligns closely
with severe status (score of 6 or higher) in the WHO Clinical
Progression Scale, which is developed by reaching a consensus
among a group of international medical experts [17].

Identification of Candidate Feature Subsets
Among the 32 collected features, 27 readily accessible features
without missing data remained for prediction modeling (Figure
2A). In order to identify subsets of robust features against feature
selection methods, we considered 6 feature engineering methods
(FEMs) based on 2 ML algorithms with optimal hyperparameter
tuning and 4 feature importance measures: random forest
(RF)-based mean decreases in Gini impurity feature importance;
RF-based permutation feature importance; RF-based Shapley
values; extreme gradient boosting (XGB)-based built-in feature
importance; XGB-based permutation feature importance; and
XGB-based Shapley values.
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Figure 2. Machine learning–based pipeline for developing and validating the prognosis prediction model for COVID-19 severity. AUROC: area under
receiver operating characteristic curve; DCA: decision curve analysis; DDRTree: Discriminative dimensionality reduction by learning a tree; DNN:
deep neural network; GBM: gradient boosting machine; MLR: multivariable logistic regression; RF: random forest; RF-MDIFI: random forest–based
mean decrease in Gini Impurity feature importance method; RF-PFI: random forest–based permutation feature importance method; RF-Shapley: random
forest–based Shapley method; ROC: receiver operating characteristic curve; SHAP: Shapley additive explanations; SVM: support vector machine;
XGB: extreme gradient boosting; XGB-BFI: extreme gradient boosting–based built-in feature importance method; XGB-PFI: extreme gradient
boosting–based permutation feature importance method; XGB-Shapley: extreme gradient boosting–based Shapley method.

All features were ranked by importance measure by each FEM.
We considered various criteria (ie, top K; K=5, 6, …, 15) for
high-ranking features, termed high rankers. Based on each
criterion K, we generated candidate feature subsets in two steps:
(1) we selected high rankers with K highest importance rankings
by each FEM, and (2) we identified features that were stably
selected as high rankers by at least 50% of all FEMs. This
process resulted in candidate subsets of robust features. The set
of all 27 features was used as the reference model to identify
the performance improvements in subset models during model
evaluation.

Model Development and Validation
A total of 60 candidate feature subsets were used for the model
development, including 59 identified subsets of robust features
and the reference set of all 27 features (Figure S1 in Multimedia
Appendix 1). We first fine-tuned the hyperparameters of 6
ML-based algorithms, namely, deep neural network (DNN),

multivariable logistic regression, RF, XGB, gradient boosting
machine, and support vector machine, by applying Bayesian
optimization on the development cohort. Then, we
simultaneously developed all possible 360 combinations of 6
ML-based algorithms and those 60 feature subsets and evaluated
the performances in both internal and external validations
(Figure 2B). The model predictive performance was evaluated
using the area under the receiver operating characteristic curve
(AUROC) score and other cutoff-based measures, such as
sensitivity, specificity, positive and negative predicted values,
positive and negative likelihood ratios, and diagnostic odds
ratio.

Model development and internal validation were done with the
development cohort in the following steps. First, we used 5
iterations of stratified 5-fold cross-validation to explore the
internal validity of each combination of feature subsets and ML
algorithms as a model development procedure. The procedures
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were evaluated by the mean values of performance metrics and
their 95% CIs calculated from the repeated cross-validation
process (Methods S2 in Multimedia Appendix 1). Second, we
used the entire development cohort to construct prediction
models based on each of the internally validated development
procedures.

External validation was conducted for the prediction models
with the validation cohort. Each prediction model was evaluated
by the mean values and 95% CIs of performance measures that
were calculated from 100 iterations of bootstrapped sampling
(Methods S2 in Multimedia Appendix 1). The final prediction
model was proposed in three steps: (1) for each ML algorithm,
we selected the optimal feature subset that produced the model
with best discriminative performance in both internal and
external validations; (2) the 3 prediction models with the best
predictivity were chosen to compare their usefulness via
calibration, reclassification improvement, and decision curve
analysis (DCA); (3) the DNN-based final prediction model,
RIETS, was proposed by considering its discriminative ability
along with clinical applicability [18].

Model Performance Visualization and Feature
Interpretation
We used graphical representations to visualize the performance
of RIETS contrasted with other ML-based models and provided
interpretation for the selected features (Figure 2C; Methods S3
in Multimedia Appendix 1). Receiver operating characteristic
curves demonstrated the discriminative model performance.
Calibration plots implicated the model’s reliability in practical
settings by displaying the correlation between predicted and
observed risks. DCA plots indicated the net benefit of

incorporating the model in clinical decision-making by
quantifying the weighted trade-off between true positive and
false positive identifications [19]. Reclassification plots
displayed the proportion of patients that were reclassified
correctly or incorrectly by RIETS compared to other ML-based
models. Lastly, the Shapley additive explanations summary plot
interpreted the contributions of individual features in RIETS
when classifying severe and nonsevere cases [20].

Patient Clustering and Characterization Using
Discriminative Dimensionality Reduction
We used discriminative dimensionality reduction via learning
a tree (DDRTree) to cluster and characterize patients based on
the features in RIETS. DDRTree is a tree-based unsupervised
learning technique that reduces multidimensional features into
a 2-dimensional space to visualize patients in the form of a tree
structure (see Methods S3 in Multimedia Appendix 1 for
procedures). This tool is known to capture cluster information
with higher accuracy compared to conventional dimensionality
reduction methods [21,22].

Each patient in a tree was colored with dark red to indicate high
odds for severity and light green to indicate low odds for severity
(Figure 3). Then, in Figure 4, dark blue and light green colors
were overlaid to represent high and low concentrations of each
laboratory marker, respectively. Severity risk of each patient
can be identified through Figure 3A, the risk distribution with
or without a pre-existing condition can be seen in Figures 3B
and 3C, and feature values associated with each patient can be
inferred from Figure 4. We integrated these observations to
cluster patients into subgroups and characterize each subgroup
(subgroup boundaries are shown in Figure 3A).

Figure 3. Patient clustering based on features in RIETS and characterization with dyspnea, DM, age, and severity. (A) DDRTree plot for severity
probability. (B) DDRTree plot for patients with dyspnea, DM, and age ≥60 years. (C) DDRTree plot for patients with dyspnea, DM, and age <60 years.
Points closer to dark red indicate a high severity probability, while points closer to light green indicate a low severity probability. DDRTree: discriminative
dimensionality reduction via learning a tree; DM: diabetes mellitus; LLG: lower left group; LRG: lower right group; MRG: middle right group; RIETS:
robust and interpretable early triaging support system; URG: upper right group.
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Figure 4. Patient clustering based on features in RIETS and characterization with vital signs and laboratory results. A dark blue color indicates a high
concentration and a light green color indicates a low concentration of each corresponding feature. ALC: absolute lymphocyte count; ANC: absolute
neutrophil count; CRP: c-reactive protein; DDRTree: discriminative dimensionality reduction via learning a tree; LDH: lactate dehydrogenase; PLT:
platelet count; RIETS: Robust and Interpretable Early Triaging Support; RR: respiratory rate; SPO2: saturation of peripheral oxygen; WBC: white blood
cell.

Definition of Variant-Dominant Periods
The predominant circulating variant at the time of hospitalization
was identified through viral whole genome sequencing and
could differ across nations [23]. According to predominant
circulating variants during the pandemic in South Korea, we
segmented our study period into 3 variant-dominant periods
and constructed the corresponding patient subcohorts: original
Alpha-dominant period (January 5, 2020 to May 1, 2021),
Delta-dominant period (May 1, 2021 to November 24, 2021),
and Omicron-dominant period (November 24, 2021 to August
24, 2022) [23].

Analysis of Model Transportability on Omicron
Variant Cases
We developed modifications of RIETS to explore its prediction
transportability across different variant-dominant periods. Each
modified model was constructed using the variant dominant
subcohorts in the development cohort. For instance, the
“RIETS-All” model was based on the entire development cohort
and the “RIETS-Omicron” model was based on the
Omicron-dominant development cohort. We evaluated all
possible combinations of modified RIETS and compared their
discriminative performances among patients in the external
validation cohort. Consequently, we identified the
best-performing model, named “RIETS-Ensemble,” that
integrates the 3 models based on original Alpha-Omicron,
Delta-Omicron, and Omicron. Then, the “RIETS-Ensemble”
model was contrasted to the “RIETS-All” and
“RIETS-Omicron” models to visualize marginal improvements.
All developed models were compared using the AUROC as a
measure for discriminative performance.

Statistical Analysis
Patient characteristics were summarized as median (IQR) and
number (%) for continuous and categorical variables,
respectively, and compared between the development and
validation cohorts via absolute standardized mean difference
(ASMD). The ASMD was calculated using Cohen D and H
formulas for continuous and categorical variables, respectively.
No considerable difference was identified with an ASMD below
0.2. For cutoff-based performance measures, Youden index was
used to find an optimal threshold at which the average of
sensitivity and specificity was maximized. The integrated
calibration index (ICI), derived from the weighted mean
difference between observed and predicted probabilities for the
outcome, was used to quantify and assess calibration. ICI was
preferred over other calibration metrics (eg,
calibration-in-the-large and slope) due to its high stability from
capturing the entire range of predicted probabilities during its
computation [24]. A 2-sided P value below 0.05 was set to
declare statistical significance. All statistical analyses were
performed using Python (Python Software Foundation, version
3.9).

Results

Patient Characteristics
Among the 5945 hospitalized patients with COVID-19 used for
the development and validation of RIETS, 4019 (67.6%) and
1926 (32.4%) were allocated into the development and
validation cohorts, respectively (Table 1). The median age was
higher in the development cohort than in the validation cohort
(mean 60, SD 45-70 years vs mean 55, SD 35-65 years,
respectively; ASMD=0.333). The proportion of male patients
was similar in both the development (n=2130, 48.8%) and
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validation (n=757, 47.9%) cohorts. Hypertension was the most
prevalent comorbidity for both the development (n=1622,
37.2%) and validation (n=492, 31.1%) cohorts. While the most
frequent symptoms across both cohorts were cough (n=2623,
44.1%) and fever (n=2366, 39.8%), the rankings of observed

symptoms were similar in both cohorts. All variables pertaining
to vital signs and blood biochemistry showed no considerable
difference between cohorts (ASMD<0.2), except for the absolute
neutrophil count (ANC; ASMD=0.319).

Table 1. Baseline characteristics in the development and validation cohorts of hospitalized South Korean patients with COVID-19.

ASMDaValidation cohort (n=1926)Development cohort (n=4019)Total cohort (n=5945)

Patient Characteristics

0.33350 (35-65)60 (45-70)60 (40-70)Age (years), median (IQR)

0.018757 (47.9)2130 (48.8)2887 (48.6)Male sex, n (%)

Comorbidities, n (%)

0.127492 (31.1)1622 (37.2)2114 (35.6)Hypertension

0.132271 (17.2)978 (22.4)1249 (21)Diabetes mellitus

0.050119 (7.5)389 (8.9)508 (8.5)Cardiovascular disease

0.061108 (6.8)369 (8.5)477 (8)Cancer

0.304429 (27.2)1813 (41.5)2242 (37.7)Others

Clinical symptoms, n (%)

0.104688 (43.5)1678 (38.4)2366 (39.8)Fever

0.128771 (48.8)1852 (42.4)2623 (44.1)Cough

0.127464 (29.4)1038 (23.8)1502 (25.3)Sputum

0.159276 (17.5)1042 (23.9)1318 (22.2)Dyspnea

0.162450 (28.5)938 (21.5)1388 (23.3)Myalgia

0.161379 (24)763 (17.5)1142 (19.2)Sore throat

0.109118 (7.5)212 (4.9)330 (5.6)Loss of sensor

0.157177 (11.2)295 (6.8)472 (7.9)Gastrointestinal symptom

Vital sign, median (IQR)

0.05136.5 (36.3-37.2)36.6 (36.3-37.2)36.6 (36.3-37.2)Body temperature (℃)

0.021129 (117-141)129 (116-140)129 (116-141)Systolic blood pressure (mmHg)

0.20080 (72-90)80 (70-86)80 (70-87)Diastolic blood pressure (mmHg)

0.12886 (76-97)84 (74-95)84 (74-95)Pulse rate (counts)

0.19120 (18-20)20 (18-20)20 (18-20)Respiratory rate (counts)

0.02197 (96-98)97 (96-98)97 (96-98)SPO2b (%)

Blood biochemistry, median (IQR)

0.1435.1 (4.0-6.6)5.3 (4.1-7.1)5.2 (4.1-6.9)White blood cells (103/µL)

0.3193.0 (2.1-4.3)3.7 (2.5-5.8)3.5 (2.4-5.4)Absolute neutrophil count (103/µL)

0.1051.3 (1.0-1.8)1.1 (0.8-1.6)1.2 (0.8-1.7)Absolute lymphocyte count

(103/µL)

0.068205 (166-248)198 (154-248)200 (157-248)Platelet count (103/µL)

0.0770.7 (0.2-2.9)1.5 (0.3-6.0)1.2 (0.3-5.2)C-reactive protein (mg/dL)

0.161369 (289-476)287 (212-428)316 (221-445)Lactate dehydrogenase (U/L)

aASMD: absolute standardized mean difference.
bSPO2: saturation of peripheral oxygen.

The baseline characteristics were also compared between 839
(14.1%) patients with nonsevere COVID-19 and 5106 (85.9%)

patients with severe COVID-19 (Table S1 in Multimedia
Appendix 1). Patients with severe COVID-19 were older (mean
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70, SD 60-75 years vs mean 55, SD 40-70 years; ASMD=0.733).
A larger proportion of patients with severe COVID-19 had
dyspnea (ASMD=0.902) and diabetes mellitus (DM;
ASMD=0.524). Patients with severe COVID-19 were more
likely to have an increased respiratory rate (RR; ASMD=0.911)
and decreased saturation of peripheral oxygen (SPO2;
ASMD=0.705) upon hospital admission. In addition, patients
with severe COVID-19 presented with higher ANC
(ASMD=0.971), higher lactate dehydrogenase (LDH;
ASMD=0.726), and higher white blood cell (WBC) count
(ASMD=0.693).

Performance of RIETS
RIETS is a DNN-based final model with the subset of 11
features that demonstrated the highest discriminative power
(AUROC=0.937, 95% CI 0.935-0.938; diagnostic odds
ratio=46.14, 95% CI 43.40-48.87; specificity=0.867, 95% CI
0.865-0.869; sensitivity=0.869, 95% CI 0.864-0.875) amongst
the 6 ML-based models (AUROC=0.862-0.929) (Figure 5A
and Table 2). RIETS also exhibited a superior discriminative
ability compared to the existing low risk of bias models
(AUROC=0.60-0.80; Table S2 in Multimedia Appendix 1).

Figure 5. Performance comparisons of RIETS to other prediction models in the external validation. (A) Receiver operating characteristic curves for
displaying the discriminative performances. (B) Calibration plots for showing the practical reliability of risk prediction. (C) Decision curve analysis
plots for demonstrating the net clinical utility when deployed in a clinical practice. All dashed lines represent the references. Shaded areas represent the
95% CI bands. AUROC: area under receiver operating characteristic curve; GBM: gradient boosting machine; ICI: integrated calibration index; MLR:
multivariable logistic regression; RIETS: Robust and Interpretable Early Triaging System; RF: random forest; SVM: support vector machine; XGB:
extreme gradient boosting.
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Table 2. Discriminative performance of machine learning–based models based on 11 clinical and laboratory features collected within the first day of
hospitalization in the internal and external validation (IV and EV, respectively). The IV and EV results were computed from 5 iterations of stratified
5-fold cross-validations and 100 iterations of bootstrapped sampling, respectively. The Youden index was used to determine the optimal cutoff point.

CutoffPredictive measures (95% CI)Model and valida-
tion type

DORfLRNeLRPdNPVcPPVbSpecificitySensitivityAUROCa

0.171RIETSg

25.96
(24.22-
27.71)

0.18 (0.17-
0.19)

4.57 (4.30-
4.84)

96.59
(96.45-
96.73)

46.58
(45.24-
47.93)

0.808
(0.796-
0.819)

0.852
(0.844-
0.860)

0.891
(0.889-
0.892)

IV

46.14
(43.40-
48.87)

0.15 (0.14-
0.16)

6.56 (6.46-
6.66)

98.63
(98.57-
98.69)

37.65
(37.07-
38.24)

0.867
(0.865-
0.869)

0.869
(0.864-
0.875)

0.937
(0.935-
0.938)

EV

0.164Multivariable logistic regression

21.93
(21.35-
22.52)

0.19 (0.19-
0.20)

4.17 (4.08-
4.26)

96.40
(96.35-
96.45)

44.40
(43.99-
44.81)

0.792
(0.789-
0.795)

0.847
(0.845-
0.849)

0.887
(0.886-
0.888)

IV

38.10
(36.11-
40.10)

0.15 (0.14-
0.15)

5.25 (5.18-
5.32)

98.67
(98.61-
98.73)

32.61
(32.08-
33.14)

0.832
(0.830-
0.834)

0.879
(0.874-
0.884)

0.929
(0.927-
0.930)

EV

0.193Random forest

25.40
(23.75-
27.05)

0.19 (0.17-
0.21)

4.55 (4.27-
4.82)

96.51
(96.17-
96.85)

46.47
(44.98-
47.96)

0.807
(0.791-
0.823)

0.848
(0.831-
0.866)

0.894
(0.893-
0.896)

IV

42.35
(40.09-
44.60)

0.16 (0.15-
0.17)

6.36 (6.26-
6.46)

98.56
(98.49-
98.62)

36.94
(36.30-
37.57)

0.864
(0.862-
0.866)

0.863
(0.857-
0.869)

0.925
(0.923-
0.927)

EV

0.105Extreme gradient boosting

19.54
(18.05-
21.02)

0.21 (0.19-
0.23)

4.01 (3.82-
4.20)

96.08
(95.68-
96.47)

43.34
(42.36-
44.33)

0.784
(0.772-
0.796)

0.833
(0.813-
0.853)

0.878
(0.875-
0.880)

IV

25.39
(24.21-
26.57)

0.21 (0.20-
0.21)

5.07 (5.00-
5.14)

98.11
(98.04-
98.19)

31.85
(31.33-
32.37)

0.836
(0.835-
0.838)

0.826
(0.820-
0.832)

0.900
(0.898-
0.903)

EV

0.010Gradient boosting machine

21.74
(20.75-
22.74)

0.20 (0.19-
0.22)

4.27 (3.95-
4.60)

96.23
(95.94-
96.51)

44.66
(42.94-
46.37)

0.791
(0.775-
0.808)

0.837
(0.820-
0.853)

0.879
(0.877-
0.882)

IV

32.28
(30.58-
33.97)

0.18 (0.17-
0.18)

5.38 (5.30-
5.47)

98.40
(98.33-
98.47)

33.15
(32.56-
33.74)

0.841
(0.839-
0.843)

0.852
(0.847-
0.858)

0.907
(0.904-
0.910)

EV

0.105Support vector machine

19.19
(17.97-
20.42)

0.26 (0.25-
0.27)

4.88 (4.69-
5.08)

95.20
(95.00-
95.40)

48.15
(47.20-
49.09)

0.833
(0.826-
0.841)

0.782
(0.771-
0.794)

0.834
(0.830-
0.837)

IV

35.83
(34.22-
37.43)

0.23 (0.22-
0.24)

7.92 (7.78-
8.05)

97.93
(97.85-
98.00)

42.12
(41.49-
42.76)

0.899
(0.898-
0.901)

0.794
(0.787-
0.801)

0.862
(0.858-
0.866)

EV

aAUROC: area under receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLRP: likelihood ratio positive.
eLRN: likelihood ratio negative.
fDOR: diagnostic odds ratio.
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gRIETS: Robust and Interpretable Early Triaging System.

In comparison with other ML-based models, RIETS exhibited
net reclassification improvement (0.54%-6.14%), especially on
nonsevere cases (2.14%-6.14%) (Table S3 and Figure S2 in
Multimedia Appendix 1) and had the most stable prediction
during cost sensitivity learning [25] (Figure S3 in Multimedia
Appendix 1). RIETS also maintained sustainable prediction
transportability (AUROC=0.903, 95% CI 0.897-0.910) on the
limited number of cases (n=449, 7.6%) in the Omicron-dominant
period when an ensemble learning technique was applied (Figure
S4, Table S4, and Methods S4 in Multimedia Appendix 1).

Moreover, a PROBAST evaluation indicated that RIETS has a
low risk of bias and minimal concerns regarding applicability
(Methods S2 in Multimedia Appendix 1). RIETS also attained
the best calibration (ICI=0.041) among comparable ML-based

models (ICI=0.052-0.071; Figure 5B). Overall, it showed a
higher net clinical benefit than the “intervention for none” and
“intervention for all” reference strategies in DCA (Figure 5C).

Feature Interpretation
RIETS comprised 11 clinical and laboratory features: LDH,
age, absolute lymphocyte counts (ALC), dyspnea, RR, DM,
c-reactive protein (CRP), ANC, platelet counts (PLT), WBC,
and SPO2. These features were ordered by their contribution
to the severity prediction by using Shapley values (Figure 6).
LDH was the highest ranked, followed by age, ALC, and
dyspnea. In addition, pre-existing conditions (age, dyspnea, and
DM) available at the time of admission were generally ranked
higher relative to those of laboratory markers (CRP, ANC, PLT,
WBC, and SPO2).

Figure 6. Average impact of 11 selected features in RIETS on COVID-19 severity prediction. To compute SHAP values based on the RIETS model,
we properly modified KernelExplainer. Specific SHAP values are shown on the right of each feature name in the y-axis labels. ALC: absolute lymphocyte
count; ANC: absolute neutrophil count; CRP: c-reactive protein; DM: diabetes mellitus; LDH: lactate dehydrogenase; PLT: platelet count; RIETS:
Robust and Interpretable Early Triaging System; RR: respiratory rate; SHAP: Shapley additive explanations; SPO2: saturation of peripheral oxygen;
WBC: white blood cell.

Patient Clustering and Characterization
We identified 4 patient subgroups using DDRTree, a tree-based
unsupervised learning technique, based on the features in
RIETS: the upper-right group (URG), middle-right group
(MRG), lower-right group (LRG), and lower-left group (LLG)
(Figure 3A). Among the 4 subgroups, the URG comprised the
largest proportion of patients at high risk for severity, followed
by the MRG, LRG, and LLG. The majority of patients in the
URG and MRG had dyspnea, were older than 60 years, and had
elevated RR, CRP, and LDH (Figure 3B). High ANC and WBC

were additionally observed in the MRG. Those in the LRG and
LLG had elevated ANC, WBC, and PLT. There was a negligible
variation in SPO2 or DM across the tree. Moreover, we
compared the patient distribution per each variant period
(original Alpha-dominant, Delta-dominant, and
Omicron-dominant) and found no distinguishable pattern (Figure
S5 in Multimedia Appendix 1).
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Discussion

Principal Findings
We developed and validated RIETS, an ML-based prognostic
model for severity among patients hospitalized with COVID-19,
based on a temporally and geographically extensive cohort with
heterogeneous feature distributions (Figure S6 in Multimedia
Appendix 1). RIETS incorporates 11 promptly and routinely
available features upon hospitalization and is intended to assist
early patient triaging. RIETS provides risk estimates that
indicate the odds for severity progression along with feature
and patient interpretation. These outputs can support clinicians
in making decisions for appropriate medical measures, such as
the administration of antiviral medication, transportation to the
intensive care unit, and proactive preparation of medical
resources. Although several prognostic models with low risk
of bias excel in analogous tasks [26-30], RIETS offers
substantial improvements in several aspects owing to its
discriminative power and novel interpretability (Table S2 and
S5 in Multimedia Appendix 1).

According to PROBAST, RIETS can be regarded as a clinically
applicable model with a low risk of bias because of its
generalizability and methodologically rigorous procedure. First,
RIETS can be generalized across diverse populations because
it was developed and validated based on a large data set from
a multicenter cohort (19 general and tertiary care hospitals) over
the 3-year pandemic period (from January 2020 to August 2022).
In contrast, previous prognostic models were either based on a
large multicenter cohort during the early pandemic period
[28,31,32] or a single center cohort covering a longer pandemic
period [29,30,33]. Second, we executed a rigorous modeling
procedure to establish RIETS. We exhaustively developed and
simultaneously validated all possible combinations of candidate
feature subsets and modeling algorithms (Figure S7 in
Multimedia Appendix 1). Contrary to our study design, previous
prognostic studies relied on a single feature selection approach
(clinical consensus, least absolute shrinkage and selection
operator regression, recursive feature elimination, and sequential
forward selection) [26,28,32,34,35]. Since there is no
one-size-fits-all solution in the model fine-tuning process [36],
this comprehensive modeling procedure can provide engineering
value in attaining optimal prediction with parsimonious feature
usage.

RIETS demonstrated superior discriminative performance in
contrast to previous prognostic models with a low risk of bias
(RIETS: AUROC=0.937, 95% CI 0.935-0.938; previous studies:
95% CI 0.60-0.80) while maintaining comparable calibration
(ICI=0.041 vs calibration-in-the-large=0.00; slope=0.96; Table
S2 in Multimedia Appendix 1). It has high accuracies both in
severe cases (sensitivity=0.869, 95% CI 0.864-0.875) and in
nonsevere cases (specificity=0.867, 95% CI 0.865-0.869). This
strength can offer considerable benefits in triaging situations
because prompt treatment for critically ill patients is facilitated
without the resource overutilization on less critical patients [37].

RIETS also can be broadly adaptable across health care systems.
Unlike some well-established models based on advanced
technology-based, expensive, and time-consuming features

[30,32,38], RIETS comprises 11 readily available features
obtainable from routine blood tests and patient-reported
conditions at admission. Thus, it is interoperable even for health
care systems in low- and middle-income countries and may
offer significant operational benefits during resource allocation
across the global population [12]. In addition, RIETS exhibited
sustainable performance on Omicron cases, implicating its
potential for transportability across new variant cases with
differing virulency [39] and limited case availability (Figure
S4 and Table S4 in Multimedia Appendix 1).

Lastly, RIETS offers substantial interpretability that may induce
improvements in model reliability and operational workflow.
To our knowledge, this is the first attempt in patient clustering
and characterization amongst the COVID-19 prognostic models
(Figures 3 and 4). Given that bias risks are inevitable in ML
systems, the interpretability of RIETS can promote transparent
feedback, mitigate those bias risks, and earn trust as a clinical
decision support system [40,41]. Moreover, the patient clustering
tool in RIETS provides clinicians with useful information for
treatment planning and resource preparation. For instance, the
graphical representations of patients can enable monitoring of
the characteristics of incoming patients and facilitate the
identification of representative clusters at the moment. This can
be used to plan the customized patient care and to initiate the
preemptive preparation of medical resources for those
representative patient clusters.

Limitations
This study has some limitations to be addressed. First, the study
participants were patients hospitalized with COVID-19 in South
Korea from January 2020 to August 2022. Hence, a further
study with other ethnic and variant groups is recommended to
validate the generalizability of RIETS. Second, the vaccination
records were not accounted for during the analysis due to a high
missing rate. Although vaccination often decreases the severity
[42,43], a recent study showed that some vaccinated patients
with certain chief complaints remained at high risk for severity
[44]. This finding implicates that the impact of vaccination on
severe case discrimination may not be large as long as the
distributions of clinical signs remain similar across different
variants. Lastly, the information on SARS-CoV-2 variants
confirmed by viral whole genome sequencing were not available
for each patient. We used variant dominant periods to define
variant subcohorts while anticipating some misclassifications.

Conclusions
We developed and validated RIETS, an ML-based COVID-19
severity prediction system, to promote the early triaging of
hospitalized patients with COVID-19. RIETS demonstrated
high prediction power and considerable reliability with low bias
risk. Model development and validation on a nationwide,
multicenter cohort implicated its generalizability. The use of
routinely collected features for model construction facilitated
its adaptability. Visual interpretations of model parameters and
patients improved its usability and applicability. When
incorporated into routine clinical practice, we anticipate RIETS
to have a direct clinical impact for enabling efficient medical
resource allocation as well as proactive patient care.
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AUROC: area under the receiver operating characteristic curve
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DCA: decision curve analysis
DDRTree: discriminative dimensionality reduction via learning a tree
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DNN: deep neural network
FEM: feature engineering method
ICI: integrated calibration index
IRB: institutional review board
LDH: lactate dehydrogenase
LLG: lower-left group
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LRG: lower-right group
ML: machine learning
MRG: middle-right group
PLT: platelet count
PROBAST: Diagnosis and Prediction Model Risk of Bias Assessment Tool
RF: random forest
RR: respiratory rate
SPO2: saturation of peripheral oxygen
TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis
URG: upper-right group
WBC: white blood cell
WHO: World Health Organization
XGB: extreme gradient boosting
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