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Abstract

Background: Temporal bone computed tomography (CT) helps diagnose chronic otitis media (COM). However, its interpretation
requires training and expertise. Artificial intelligence (AI) can help clinicians evaluate COM through CT scans, but existing
models lack transparency and may not fully leverage multidimensional diagnostic information.

Objective: We aimed to develop an explainable AI system based on 3D convolutional neural networks (CNNs) for automatic
CT-based evaluation of COM.

Methods: Temporal bone CT scans were retrospectively obtained from patients operated for COM between December 2015
and July 2021 at 2 independent institutes. A region of interest encompassing the middle ear was automatically segmented, and
3D CNNs were subsequently trained to identify pathological ears and cholesteatoma. An ablation study was performed to refine
model architecture. Benchmark tests were conducted against a baseline 2D model and 7 clinical experts. Model performance was
measured through cross-validation and external validation. Heat maps, generated using Gradient-Weighted Class Activation
Mapping, were used to highlight critical decision-making regions. Finally, the AI system was assessed with a prospective cohort
to aid clinicians in preoperative COM assessment.

Results: Internal and external data sets contained 1661 and 108 patients (3153 and 211 eligible ears), respectively. The 3D
model exhibited decent performance with mean areas under the receiver operating characteristic curves of 0.96 (SD 0.01) and
0.93 (SD 0.01), and mean accuracies of 0.878 (SD 0.017) and 0.843 (SD 0.015), respectively, for detecting pathological ears on
the 2 data sets. Similar outcomes were observed for cholesteatoma identification (mean area under the receiver operating
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characteristic curve 0.85, SD 0.03 and 0.83, SD 0.05; mean accuracies 0.783, SD 0.04 and 0.813, SD 0.033, respectively). The
proposed 3D model achieved a commendable balance between performance and network size relative to alternative models. It
significantly outperformed the 2D approach in detecting COM (P≤.05) and exhibited a substantial gain in identifying cholesteatoma
(P<.001). The model also demonstrated superior diagnostic capabilities over resident fellows and the attending otologist (P<.05),
rivaling all senior clinicians in both tasks. The generated heat maps properly highlighted the middle ear and mastoid regions,
aligning with human knowledge in interpreting temporal bone CT. The resulting AI system achieved an accuracy of 81.8% in
generating preoperative diagnoses for 121 patients and contributed to clinical decision-making in 90.1% cases.

Conclusions: We present a 3D CNN model trained to detect pathological changes and identify cholesteatoma via temporal bone
CT scans. In both tasks, this model significantly outperforms the baseline 2D approach, achieving levels comparable with or
surpassing those of human experts. The model also exhibits decent generalizability and enhanced comprehensibility. This AI
system facilitates automatic COM assessment and shows promising viability in real-world clinical settings. These findings
underscore AI’s potential as a valuable aid for clinicians in COM evaluation.

Trial Registration: Chinese Clinical Trial Registry ChiCTR2000036300; https://www.chictr.org.cn/showprojEN.html?proj=58685

(J Med Internet Res 2024;26:e51706) doi: 10.2196/51706
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Introduction

Chronic otitis media (COM) represents a recurrent inflammatory
condition inside the tympanic cavity [1]. COM encompasses
various forms, including chronic suppurative otitis media
(CSOM) and cholesteatoma, each with unique histological
characteristics. CSOM involves the accumulation and discharge
of purulent fluid, affecting an estimated 330 million people
worldwide, with approximately half experiencing hearing loss
[2]. Cholesteatoma is characterized by the buildup of keratinized
squamous epithelium, which has the potential to erode auditory
structures and exhibits a notable tendency for relapse. Accurate
identification and differentiation of COM types are crucial for
effective disease management and surgical planning [3].
Mastoidectomy, which involves the removal of part of the
temporal bone, is the conventional surgical approach for COM.
However, less invasive techniques such as endoscopic
tympanoplasty are gaining favor for treating CSOM and other
noncholesteatoma conditions due to their potential for reduced
structural damage and faster recovery [4-9].

Temporal bone computed tomography (CT) is vital for assessing
COM and aiding in surgical planning, especially when initial
otoscopic examinations have restricted views and yield
inconclusive findings [10]. Offering a cost-effective alternative
to magnetic resonance imaging (MRI), CT is instrumental in
distinguishing cholesteatoma from CSOM by detecting osseous
erosion in the tympanum. Although studies have shown that
clinicians are capable of diagnosing COM based on CT alone
[11-17], distinguishing between COM subtypes poses greater
challenges to the human eye. Moreover, interpreting temporal
bone CT scans requires specialized training and experience,
which may not be universally available across otolaryngologists.

Artificial intelligence (AI) is making remarkable advancements
in health care. Deep learning (DL) models, particularly
convolutional neural networks (CNNs), have demonstrated
enhanced efficiency and reduced errors in disease diagnoses
and prediction of clinical outcomes [18-21]. While a few recent

papers have reported CNN models in evaluating COM with
accuracy scores ranging from 0.77 to 0.85, these studies
primarily relied on otoscopic or single-layer CT scans [22,23].
These 2D representations may not be optimal for revealing
pathological changes in concealed or peripheral anatomical
structures, such as the attic space and the mastoid air cells. In
addition, the inherent “black box” nature of DL models, where
decision-making strategies are challenging to understand, has
been a common criticism [24,25]. This lack of comprehensibility
hinders the widespread adoption of AI models in clinical
practice.

In light of these challenges, this study aimed to create an
explainable, 3D CNN model for the automatic interpretation of
temporal bone CT scans. The model was designed to pinpoint
the region of interest (ROI) and identify pathological and
cholesteatomatous conditions in a 3D fashion. Comprehensive
benchmarks against baseline methods and human experts on
distinct data sets were conducted to demonstrate the robustness
and generalizability of this model. In addition, heat map
generation was used to highlight potential pathological changes
in CT scans and elucidate the model’s rationale for making
predictions. These features were integrated into an AI system
for the automatic, end-to-end evaluation of COM, which was
subsequently assessed in clinical settings. The overarching goal
of this system is to support clinicians in making informed
decisions for common otologic conditions, thereby enhancing
efficiency, reliability, and transparency.

Methods

Ethical Considerations
This study was conducted in accordance with the principles of
the Declaration of Helsinki. Ethical approval was granted by
the institutional review boards at Vanderbilt University Medical
Center (191804) and the Eye, Ear, Nose and Throat (EENT)
Hospital of Fudan University (2019076). Informed consent was
waived as all data were de-identified. The observational study,
which aimed to assess the model’s viability in aiding
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preoperative assessment, was registered with the Chinese
Clinical Trial Register (ChiCTR: 2000036300). No
compensation was provided to any study participants.

Participants
Data were retrospectively obtained from patients admitted for
middle ear surgeries from December 2015 to July 2021 at EENT

Hospital. Patients diagnosed with acute otitis media, any inner
or external ear diseases, or those with missing temporal bone
CT scan were excluded, resulting in 1661 patients eligible for
model development. An extra data set containing 108 patients
with COM was collected from Wuhan Union (WU) Hospital
for external validation (Figure 1).

Figure 1. Flowchart of data retrieval. CT: computed tomography; EAC: external auditory canal; EENT: Eye, Ear, Nose, and Throat Hospital of Fudan
University; TM: tympanic membrane; WU: Wuhan Union Hospital.

Temporal Bone CT Scans
As part of the routine preoperative assessment, each patient
underwent at least 1 temporal bone CT, conducted from the
lower margin of the external auditory meatus to the top margin
of the petrous bone using a SOMATOM Sensation 10 CT
scanner (Siemens Inc) at the EENT Hospital. The scanning
parameters were as follows: matrix (512 × 512), field of view
(220 mm × 220 mm), tube voltage (140 kV), tube current (100
mAs), section thickness (0.6-0.75 mm), window width (4000
HU), and window level (700 HU). CT scans from the WU
Hospital were obtained using a SOMATOM Plus 4 model
(Siemens Inc) with different settings for field of view (100 mm),
voltage (120 kV), and thickness (0.75 mm). All images were
saved in the DICOM format.

Label Assignment
All eligible ears were treated as independent cases and assigned
ground truth labels based on their diagnoses (Table 1). Each

label was verified according to intraoperative findings and
pathology reports for operated ears and using a combination of
history, ear examination, audiogram results, and imaging
findings for unoperated ears. In cases of unoperated ears, a
“normal” label was assigned when there was an absence of ear
symptoms, hearing loss, or signs of inflammation. A diagnosis
of CSOM was assigned when chronic purulent discharge,
conductive hearing loss, and the presence of a perforated
tympanic membrane or soft tissue shadow in the tympanic cavity
were observed. Cholesteatoma was considered if keratin debris
was identified, or if there were signs of osseous damage along
with retraction or perforation of the pars flaccida [22]. Two
otolaryngology residents with full access to patients’ medical
records independently reviewed these labels as unblinded
annotators. Any discrepancies were addressed with senior
specialists until a consensus was reached. All data were
deidentified and stored on password-protected computers.
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Table 1. Summary of patient characteristics and label assignment.

WUb data set (N=108; N=211)EENTa data set (N=1661; number of ears=3153)Characteristics

39.8 (14.0)41.1 (16.6)Patient age (years), mean (SD)

Patient sex, n (%)

49 (45.4)832 (50.1)Male

59 (54.6)829 (49.9)Female

Diagnosis per ear, n (%)

101 (47.9)1130 (35.8)Normal

30 (14.2)728 (23.1)Cholesteatoma

69 (32.7)1011 (32.1)CSOMc

2 (0.1)142 (4.5)Tympanosclerosis

1 (0.05)72 (2.3)Cholesterol granuloma

7 (3.3)41 (1.3)OMEd

1 (0.05)29 (0.1)Adhesive otitis media

Task 1 labels, n (%)

101 (47.9)1130 (35.8)Normal

110 (52.1)2023 (64.2)Pathological

Task 2 labels, n (%)

28 (26.4)728 (36.7)Cholesteatoma

78 (73.6)1258 (63.3)Noncholesteatoma

aEENT: Eye, Ear, Nose, and Throat Hospital of Fudan University.
bWU: Wuhan Union Hospital.
cCSOM: chronic suppurative otitis media.
dOME: otitis media with effusion.

Model Architecture
The framework consists of 2 functionally distinct units: a region
proposal network for 3D segmentation of ROI, and a
classification network for generating predictions. Both networks
are established based on CNN models.

Region Proposal Network
This network is designed to extract the middle ear on each side
from a full set of temporal bone CT scan (Figure 2A). It contains
a YOLO (You Only Look Once; v5) model that is trained to

detect and locate 2 auditory structures, including the internal
auditory canal and the horizontal semicircular canal, in a series
of 2D axial CT scans [26]. These landmarks, positioned at or
around the central level of the middle ear, possess unique
graphical appearances recognizable by the object detection
model. In our recent study, this model demonstrated a 100%
success rate in identifying the middle ear region from temporal
bone CT scans [22]. Subsequently, a 3D data matrix (150 × 150
× 32) of the ROI is extracted based on the center coordinates
of these 2 structures on each side.
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Figure 2. An overview of the AI framework. (A) The region proposal network used to locate landmark structures and segment the 3D ROI from the
original CT scans. (B) The classification network based on a 3D convolutional neural network architecture and trained to perform 2 classification tasks.
(C) The gradient heatmaps generated to highlight the critical regions for decision-making. Conv: convolution; CT: computed tomographic; FC: fully
connected; MP: max pooling; ReLu: rectified linear unit; ROI: region of interest.

Classification Network
A 3D CNN model is built to interpret the extracted ROI and
classify different types of conditions (Figure 2B). This model
features 4 convolution blocks and 2 dense blocks (Table 2).
Each convolution block consists of a 3D convolutional layer to
summarize graphical features along all axes of the input image,

followed by a max-pooling layer for downsampling these
features and another layer for batch normalization. These
high-level features are then pooled and passed to the fully
connected layers of the dense blocks, where the diagnosis is
predicted based on the calculated probability of each class by
a softmax function. A dropout layer is applied to prevent
overfitting [27].
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Table 2. Architecture of the 3D convolutional neural network model.

SettingsBlock and kernel inputs

Convolution 1

(3,3,3,64)Conv3Da

(2,2,2)MaxPooling3Db

BatchNormalizationc

Convolution 2

(3,3,3,64)Conv3D

(2,2,2)MaxPooling3D

BatchNormalization

Convolution 3

(3,3,3,128)Conv3D

(2,2,2)MaxPooling3D

BatchNormalization

Convolution 4

(3,3,3,256)Conv3D

(2,2,2)MaxPooling3D

BatchNormalization

GlobalAveragePooling3Dd

Dense 1

64Fully connected

0.3Dropout

Output

2Fully connected

aConv3D: 3D convolutional layer.
bMaxPooling3D: 3D max pooling layer.
cBatchNormalization: batch normalization layer.
dGlobalAveragePooling3D: layer performing global average pooling for 3D data.

Model Training and Testing

Task 1—Detection of COM
The first classification model was trained in a binary task
distinguishing between normal and pathological ears in all cases
(n=3153). The training and testing procedures involved 5-fold
cross-validation on the internal (EENT) data set. Specifically,
the data set was evenly partitioned into 5 nonoverlapping subsets
in a random, stratified fashion. In each iteration, 1 subset was
reserved for testing (n=631), while the remaining 4 were used
for training (n=2522). Model performance metrics were
averaged over 5 iterations of this process. During each training
session, a random 20% of training images (n=504) were
allocated for validation. Training was set for 1000 epochs with
an initial learning rate of 0.0001, and the Adam optimizer was
used to dynamically adjust the algorithm’s learning capability
and minimize errors [28]. Early termination was implemented
if no further decrease in validation loss was observed for a
consecutive 10 epochs. These hyperparameters were determined
based on the resultant model performance and training efficiency

shown in a preliminary study. The trained model was also
evaluated on the external data set (n=211) in each round.

Task 2—Identification of Cholesteatoma
The second classification model was trained to specifically
identify cholesteatoma on selected CT scans that displayed signs
of inflammation in the middle ears. This task was designed to
simulate a common clinical scenario where clinicians need to
differentiate cholesteatoma from other types of COM in patients
with positive imaging findings. The aim was to provide a
preoperative assessment of the risk of cholesteatoma, assisting
clinicians in surgical planning [3,29]. For this task, a subset of
CT scans with visible soft tissue density or increased
opacification in the middle ear or mastoid was selected from
both the internal (n=1986) and external sets (n=106). The
remaining methods, including extraction of ROI, network
architecture, and the training and testing procedures, were
consistent with those used in the first task.
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Ablation Study
To refine model selection and gain a better understanding of
the network’s behavior, an ablation study was performed to
compare the proposed classification network with 3 alternative
models, each incorporating modifications to certain features.
Specifically, the number of convolutional blocks was decreased
and increased by 1 in alternative model 1 and model 2,
respectively, and a different size of filter was applied in model
3 (Tables S1-S3 in Multimedia Appendix 1). To ensure adequate
statistical power for detecting differences across models,
experiments were conducted on the main data set using the same
methodology as outlined in the preceding sections.

Benchmarking Against the 2D Approach
To investigate whether the use of 3D CT scans may enhance
diagnostic performance, a benchmark study was designed to
compare the proposed system with a baseline model using 2D
images. This baseline model, previously established by our
team, uses transfer learning on a pretrained Inception-V3
(Google LLC) model [22]. In this study, the base model of
Inception-V3 was retained, and the final classification layer was
customized with a binary output. Training and validation were
conducted in the same manner as the 3D model, except that
only a single CT scan at the central layer of the ROI was used
as the input for the 2D model. All image-preprocessing
techniques and hyperparameter settings remained consistent
with those outlined in the previous study [22].

Benchmarking Against Human Experts
Another benchmark test was performed against human experts
to provide an additional unbiased evaluation of the proposed
system. Seven human specialists with a broad range of
qualifications were recruited to perform both tasks based on the
same image data. The participants included 2 senior otologists,
each with 12 years of clinical experience, 1 senior head and
neck radiologist with 21 years of experience, 1 attending
otologist with 7 years of experience, and 3 otolaryngology
residents with 3, 3, and 2 years of experience, respectively. Each
expert was provided only with the CT scans and instructed to
make a task-specific diagnosis to each ear (task 1: normal or
pathological; task 2: cholesteatoma or noncholesteatoma). The
test data for clinicians comprised a random selection of 244
ears from the EENT set and all eligible ears from the WU set.
To assess intrarater reliability, a random replication of 10% of
test cases (n=48) was mixed with these data. All test cases
(N=502) had not been previously seen by any experts. They
were anonymized, shuffled, and stored on a password-protected
computer along with spreadsheets to record each expert’s
diagnoses for these cases.

Generation of Heat Maps
Gradient-Weighted Class Activation Mapping was used to
visualize model’s rationale for decision-making (Figure 2C).

In essence, this approach leverages the gradients of the target
class flowing into the final convolutional layer to produce a
coarse localization heat map, highlighting the critical regions
in the image [30]. In this study, heat maps were generated in a
3D fashion and rescaled to match the original images using
TensorFlow 2.11 in Python 3.91 (Python Core Team) [31].

Clinical Applications
The validated model was integrated into a Python program,
enabling the automated assessment of COM from raw CT inputs
to the generation of explainable diagnoses in an end-to-end
fashion (see the section “Data Availability Statements” and
Multimedia Appendix 2). To evaluate its viability in assisting
otologists in clinical settings, this system was used with a
prospective cohort of patients undergoing middle ear surgeries
at EENT hospital from November 2023 to January 2024 in a
single-arm observational study. Preoperative model predictions,
along with routine assessments, were provided to 2 senior
otologists, who were given autonomy to determine surgical
strategies based on their discretion. Surgeons were surveyed
regarding the use of model-generated information in their
decision-making processes for these cases. Model predictions
were used to analyze the selection of surgical approaches and
to measure model performance against pathological findings.
Hearing gain was assessed by comparing the air conduction
threshold at 2 weeks postoperatively with the baseline.

Statistical Analysis
Descriptive statistics were applied as appropriate. The overall
predictability of a model was evaluated by the area under the
receiver operating characteristic (AUROC) curve. The optimal
cutoff threshold on the curve was determined at the point with
minimal distance to the upper left corner on the validation set
and subsequently applied to the test set. The numbers of
correctly and incorrectly classified cases were displayed in a
confusion matrix, and these were used to calculate the
performance metrics, including accuracy, recall, specificity,
precision, and F1-score. These metrics offer comprehensive
insights into the model’s performance, covering overall
correctness in identifying both positives and negatives
(accuracy), sensitivity in detecting positive cases (recall),
capability in ruling in patients (specificity), propensity for
preventing false alarms (precision), and effectiveness in
identifying positive cases while minimizing false positives and
false negatives (F1-score). They were derived as shown in
Textbox 1. Results are averaged over 5 iterations of
cross-validation or external validation and presented as mean
(SD). Intrarater consistency was evaluated using Cohen kappa.
Significance was determined through pairwise 2-tailed t test for
difference in performance between models and via 1-way
analysis of variance between the proposed model and human
experts. The alpha level was set at .05. Statistical analyses were
conducted using Python 3.91 [31].
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Textbox 1. The calculation of performance metrics.

Accuracy = (True positive + True negative)/Total sample size

Recall = True positive/(True positive + False negative)

Specificity = True negative/(True negative + False positive)

Precision = True negative/(True negative + False negative)

F1-score=2 × True positive/(2 × True positive + False positive + False negative)

Results

ROI Extraction
The region proposal network successfully extracted the 3D ROI
containing the critical anatomies on each side, including the

tympanic cavity and sinus tympani (Figure 3). This has been
confirmed by manual inspection of the generated images in all
cases from both data sets.

Figure 3. Generation of the 3D ROI. The region proposal network identifies landmark structures in each of the full-sized sequential CT slices and
determines the center of the middle ear on each side. A 3D image comprising 32 stacks of axial slices in 150 × 150 pixels is subsequently segmented.
This ROI encompasses an extensive range of critical anatomies within the temporal bone for the evaluation of COM. CT: computed tomographic; HSC:
horizontal semicircular canal; IAC: internal auditory canal; ROI: region of interest.

Task 1
Our model exhibited decent performance in identifying
pathological changes in the middle ear, achieving a mean
accuracy of 87.8%, recall of 85.3%, specificity of 91.3%, and

precision of 93.3% on the internal data set (Table 3). It also
demonstrated a near-perfect AUROC score of 0.96. These
performance metrics remained generally consistent on the
external data set, with a comparable AUROC score of 0.93,
indicating reasonable generalizability (Figure 4).
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Table 3. Performance of the baseline 2D and the proposed 3D models.

P valueAUROCa,
mean (SD)

F1-score,
mean (SD)

Precision,
mean (SD)

Specificity,
mean (SD)

Recall, mean
(SD)

Accuracy,
mean (SD)

Data setSize (MB)Task and model

1

.0030.00959
(0.00011)

0.89 (0.012)0.933
(0.045)

0.913 (0.067)0.853
(0.032)

0.878
(0.017)

EENTb14.23D

N/Ac0.00939
(0.00013)

0.875
(0.016)

0.909
(0.036)

0.883 (0.052)0.845
(0.028)

0.861
(0.019)

EENT2742D

.050.00933
(0.0001)

0.83 (0.022)0.924
(0.018)

0.934 (0.021)0.756
(0.047)

0.843
(0.015)

WUd14.23D

N/A0.00918
(0.00012)

0.808
(0.036)

0.891
(0.039)

0.901 (0.046)0.744
(0.078)

0.821
(0.023)

WU2742D

2

<.0010.00853
(0.0003)

0.721
(0.042)

0.652 (0.06)0.77 (0.054)0.808
(0.025)

0.783 (0.04)EENT14.23D

N/A0.00744
(0.00025)

0.596
(0.036)

0.523
(0.044)

0.646 (0.119)0.716
(0.144)

0.67 (0.037)EENT2742D

<.0010.00826
(0.00055)

0.618
(0.069)

0.626
(0.078)

0.878 (0.031)0.614
(0.085)

0.812
(0.033)

WU14.23D

N/A0.00714
(0.00049)

0.411
(0.096)

0.41 (0.086)0.741 (0.185)0.479
(0.224)

0.676
(0.103)

WU2742D

aAUROC: area under the receiver operating characteristic curve.
bEENT: Eye, Ear, Nose, and Throat Hospital of Fudan University.
cN/A: not applicable.
dWU: Wuhan Union Hospital.
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Figure 4. Receiver operating characteristic plots for the benchmark tests. The curve and the shaded area indicate the mean (1 SD) of a model, respectively.
Clinical experts are marked by colored asterisks for individual performance and by an open circle for averaged performance. The dotted diagonal line
represents a random classifier. AUC: area under the curve; EENT: Eye, Ear, Nose, and Throat Hospital of Fudan University; WU: Wuhan Union
Hospital.

Task 2
This model also demonstrated satisfactory predictive capabilities
in differentiating between cholesteatoma and
noncholesteatomatous cases. On both data sets, the model
managed to correctly identify whether a case involved
cholesteatoma in approximately 4 out of 5 instances (with
accuracies of 78.3% and 81.3%). Generalizability was further
supported by the comparable AUROC scores of 0.85 and 0.83
on the internal and the external data set, respectively (Table 3).

Ablation Study
This model exhibited a reasonable balance between
predictability and efficiency (Table 4). Compared with models
1 and 3, it achieved significantly better performance in both
tasks (P<.01). In addition, despite having approximately 60%
fewer parameters, the proposed model demonstrated equivalent
performance to model 2 in both tasks (P=.26 and .91,
respectively), indicating its enhanced computational efficiency.
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Table 4. Ablation study on the 3D classification network.

P valueAUROCa,
mean (SD)

F1-score,
mean (SD)

Precision, mean
(SD)

Specificity, mean
(SD)

Recall,
mean (SD)

Accuracy,
mean (SD)

Size (MB)Task and model

1

N/Ab0.00959
(0.00011)

0.89 (0.012)0.933 (0.045)0.913 (0.067)0.853
(0.032)

0.878 (0.017)14.2Proposed

<.0010.00947
(0.00019)

0.87 (0.028)0.921 (0.043)0.901 (0.058)0.827
(0.046)

0.858 (0.03)4.0Model 1

.260.00961
(0.00009)

0.895
(0.012)

0.933 (0.03)0.914 (0.041)0.862
(0.021)

0.884 (0.014)34.5Model 2

.0030.0095
(0.00019)

0.878
(0.019)

0.914 (0.053)0.887 (0.074)0.851
(0.062)

0.864 (0.022)64.8Model 3

2

N/A0.00853
(0.0003)

0.721
(0.042)

0.652 (0.06)0.77 (0.054)0.808
(0.025)

0.783 (4.0)14.2Proposed

.0060.00817
(0.0006)

0.668
(0.075)

0.636 (0.064)0.783 (0.065)0.712
(0.118)

0.758 (0.048)4.0Model 1

.910.00862
(0.00031)

0.716
(0.032)

0.659 (0.071)0.775 (0.074)0.795
(0.071)

0.782 (0.036)34.5Model 2

.0030.00826
(0.000047)

0.685
(0.037)

0.634 (0.088)0.754 (0.109)0.76
(0.059)

0.756 (0.056)64.8Model 3

aAUROC: area under the receiver operating characteristic curve.
bN/A: not applicable.

Benchmarks
Compared with the 2D approach, the 3D network demonstrated
significantly superior performance in both tasks across data sets
(P≤.05). In particular, the proposed model exhibited a substantial
performance gain in differentiating between cholesteatoma and
noncholesteatomata, with an increase of more than 10% in all
outcome metrics on both data sets (Table 3).

This model also matched or even surpassed the diagnostic
capabilities of human experts in both tasks (Figure 4). It
exhibited marginally superior performance compared with

human eyes in the first task (P=.05) and significantly
outperformed them in the visually challenging task 2 (P<.001).
Post hoc pairwise comparisons revealed that the model excelled
over the attending otologist in task 1 and 2 resident fellows in
task 2, rivaling all senior clinicians (Table 5). Similar results
were shown across the breakdown of data sources, with a notable
finding that the model outperformed a senior otologist in task
2 on the EENT subset (Table S4 in Multimedia Appendix 1).
Moreover, the proposed model demonstrated perfect
consistency, surpassing all human experts who exhibited higher
SDs in all outcome metrics and lower scores of intrarater
reliability.
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Table 5. Benchmark performance against human experts.

P valueKappa valuesF1-scorePrecisionSpecificityRecallAccuracyTask and rater

1

N/Aa0.01 (0.00)0.89 (0.012)0.933 (0.045)0.913 (0.067)0.853 (0.032)0.878 (0.017)The 3D model, mean (SD)

.050.0082
(0.0009)

0.876 (0.013)0.86 (0.05)0.804 (0.094)0.898 (0.042)0.857 (0.022)Expert average, mean (SD)

.790.7588.8%87.9%84.1%89.8%87.3%Senior otologist A: 12 Yb

.490.9287.7%85.6%80.4%89.9%85.7%Senior otologist B: 12 Y

.370.8787.7%83.4%76.3%92.4%85.4%Senior radiologist: 21 Y

.0020.7385.2%76.5%61.9%96.0%81.1%Attending otologist: 7 Y

.560.7187.2%89.1%86.4%85.5%85.9%Resident A: 3 Y

.740.8189.1%87.1%82.5%91.2%87.4%Resident B: 3 Y

.960.9287.7%92.4%91.2%83.5%86.8%Resident C: 2 Y

2

N/A0.01 (0.00)0.83 (0.022)0.924 (0.018)0.934 (0.021)0.756 (0.047)0.843 (0.015)The 3D model, mean (SD)

<.0010.0072
(0.0012)

0.622 (0.061)0.772 (0.135)0.865 (0.139)0.549 (0.123)0.741 (0.052)Expert average, mean (SD)

.070.7052.6%93.0%98.2%36.7%73.8%Senior otologist A: 12 Y

.250.4766.3%73.3%85.7%60.6%75.8%Senior otologist B: 12 Y

.820.8666.7%91.9%97.0%52.3%79.5%Senior radiologist: 21 Y

.110.7462.8%73.2%87.0%55.0%74.5%Attending otologist: 7 Y

<.0010.6761.8%52.9%56.9%74.3%63.8%Resident A: 3 Y

.020.7755.8%76.2%90.9%44.0%72.3%Resident B: 3 Y

.960.8069.4%79.8%89.9%61.5%78.8%Resident C: 2 Y

aN/A: not applicable.
bY: years of experience in clinical practice.

Visual Assessment of Heat Maps
Heat Maps from both models consistently highlighted the
tympanic cavity and mastoid that manifested pathological
findings characteristic of the target condition (Figure 5).
Specifically, the first model generated a hot signal indicative
of soft tissue density in an affected middle ear (Figure 5A),
while the signal remained subdued in a normal ear (Figure 5B).
Similarly, the second model revealed a distinct hot spot in a

cholesteatomatous ear exhibiting the classic patterns of
tympanum widening and ossicular destruction [17,32,33] (Figure
5C). In contrast, a case of CSOM showing intact ossicles
surrounded by soft tissue shadows in a normal-sized tympanic
cavity did not exhibit a corresponding hot spot (Figure 5D).
These observations reflect that the AI’s decision-making strategy
aligns reasonably well with established human knowledge for
both tasks.
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Figure 5. Examples of heat maps. The heat maps, generated in 3D fashion, are superimposed on the original computed tomographic scans and flattened
to a series of 2D images for demonstration purpose. (A-B) A pathological and a normal ear, respectively. (C-D) A cholesteatoma and a noncholesteatoma
case, respectively. Area marked by hot signals indicate the presence of graphic patterns contributing to a “positive” prediction (ie, a pathological ear in
task 1 and a cholesteatoma in task 2).

Clinical Use
The automatic evaluation system, incorporating the validated
3D model and the heatmap visualization technique, was
evaluated for its viability in aiding preoperative assessment in
121 patients with COM (mean age 46.8, SD 16.1 years, 40.5%
male). This system achieved an overall accuracy of 81.8% in

distinguishing between cholesteatoma and noncholesteatoma
cases. Sixty-nine ears were identified as free of cholesteatoma
by the model, all of which received minimally invasive
tympanoplasty under endoscopy. During the procedure, 9 ears
(13.0%) revealed signs of cholesteatoma, and 5 of them required
additional bone-grinding technique for complete removal of the
mass. Cholesteatoma was initially predicted in 52 ears, with 37
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(71.2%) of them undergoing canal-wall-down mastoidectomy.
In the remaining 15 ears, the treating surgeons opted for
endoscopic tympanoplasty, overriding the conventional
technique for the model’s predicted diagnosis. Clinicians
reported that the model predictions aligned with their initial
judgment or helped with their decision-making in 90.1%

(109/121) cases. Postoperative hearing results were obtained in
87.6% (106/121) patients who maintained follow-up. Both
groups of ears showed normal recovery, with a mean hearing
gain of 8.5 (SD 15.6) and 5.5 (SD 18.1) dB, respectively (Figure
6).

Figure 6. Postoperative hearing gain for the operated ears with available audiometry outcomes (n=106). Data are categorized according to model
predictions. Predictions that agree with the pathological results are denoted by close symbols, while open symbols indicate disagreements. Circles and
triangles represent the treatment of endoscopic tympanoplasty and mastoidectomy, respectively. The error bars indicate ±1 SD from the mean.

Discussion

Principal Results
This study demonstrates the robustness and generalizability of
an AI model based on 3D CNN for the detection and differential
diagnosis of COM using temporal bone CT scans. This model
leverages multidimensional diagnostic information from the
middle ear, resulting in a significant performance improvement
compared with the traditional 2D approach. The framework
exhibits comparable or even superior performances to human
experts in otologic tasks with clinical significance and visual
challenges, especially for classifying between cholesteatoma
and noncholesteatomatous cases. In addition, the novel heatmap
technique allows inspection of the AI’s logic for
decision-making, thereby enhancing the transparency of this
model. The resulting AI system serves to automate
summarization of critical radiologic findings and enables
efficient evaluation of COM with minimum manual input. It
provides tangible benefit in assisting otologists during
preoperative assessment and results in favorable clinical
outcomes that are comparable with historical results [34-37].
These findings further support the clinical viability and
advantages of AI technology, which is expected to improve

efficiency, reduce errors, and facilitate precision medicine in
health care in the new era of big data.

Comparison With Prior Work
A few AI models have recently been developed to classify
common middle ear conditions, such as CSOM, otitis media
with effusion, and cholesteatoma [38-41]. However, these
models were primarily based on traditional otoscopic images,
which are potentially limited by a narrow field of view and
insufficient diagnostic information. Temporal bone CT scans,
which are increasingly used in otologic workup by virtue of its
accessibility, rich amount of anatomical information, and
adequate sensitivity in revealing pathological changes, have
also been explored in a limited number of studies [22,42-45].
Although these AI models demonstrated decent AUROC scores
(eg, >0.9) in common classification tasks, they were all trained
to generate predictions based on 2D single-layer CT scans. A
potential drawback is the increased likelihood of missing small
or peripheral pathological changes (eg, an attic cholesteatoma)
and the resultant false negatives.

Efforts were made in this study to establish a 3D approach to
take full advantage of all available anatomical information and
achieve a better coverage of the tympanum and the mastoid.
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Inspection of the extracted ROI suggests that all critical
anatomies are visible. Results from the benchmark test indicate
that the proposed 3D model outperforms the state-of-the-art 2D
approach by a modest performance gain in the detection of COM
and by a much larger extent in differentiating between
cholesteatoma and noncholesteatoma. This finding has several
implications. First, both models are generally adequate in
identifying common abnormal patterns from the CT, which are
graphically characterized by increased opacification or soft
tissue shadows in the middle ear cavity and indicative of
pathological conditions in general. This is a relatively simple
visual task, during which diagnostic information obtained from
a single 2D CT slice is likely sufficient for the purpose and extra
findings from other layers provide only minimal contribution
to the decision-making. Second, the 3D model has huge
advantage over the 2D approach in differentiating cholesteatoma
from other types of COM. This task is known to be more
visually challenging for humans, often requiring detection of
subtle osseous erosions from multiple CT slices, as quite a few
pathological changes caused by cholesteatoma are peripheral
or noncharacteristic [32,33]. A substantial increase in each
outcome measure justifies the advantage of the current 3D model
for this task. Moreover, this 3D model has only a simple network
structure with a small size (14.5 MB) as opposed to a complex
and large-sized 2D network (274 MB), suggesting both higher
computational efficiency and performance of the 3D approach.
Finally, the AUROC of 0.92-0.94 and accuracy scores of
82.1%-86.1% achieved by the 2D network in this study in
detecting COM were equivalent to historical results
(0.92%-86%, respectively) in our previous study [22], further
indicating the reliability of these findings and potentially the
intrinsic limit of using single-layer CT scan for this task. To the
best of our knowledge, this is the first study showing quantitative
evidence to support the advantage of a 3D CNN model in 2
common otologic tasks based on temporal bone CT scans. It
also advances beyond prior retrospective research by showcasing
the practicality and benefits of the model in a clinical
environment.

Clinical Implications
Cholesteatoma exhibits distinct histology marked by local
invasiveness and a propensity for recurrence. The imperative
for successful outcomes necessitates complete removal of the
mass, particularly because recurrent cholesteatoma complicates
revision surgery [46]. Suspected cases often require a
canal-wall-down mastoidectomy to expose the tympanum,
resulting in an open cavity and a permanently altered sound
conduction pathway [46]. Accumulating evidence suggests that
noncholesteatoma may spare from mastoidectomy and benefit
from minimally invasive procedures such as endoscopic
tympanoplasty [47,48]. Therefore, the current AI system holds
potential value for otologists in surgical planning. Ears with a
low risk of cholesteatoma, as identified by the model, could
potentially be treated by less invasive procedures that retain the
integrity of canal wall, leading to reduced procedural time and
enhanced recovery [6,7,9,49,50]. This clinical merit is supported
by the superior benchmark performance in identifying
cholesteatoma and the favorable outcomes observed in the
prospective study.

While detecting COM in task 1 involves spotting any
pathological patterns on CT, which may not fully capture the
differences between models in diagnostic capabilities, the
increased visual challenges in identifying cholesteatoma
substantiate the advantages of the proposed 3D approach for
this task. In this study, the 3D model outperformed junior
clinicians and demonstrated equivalent or superior performance
to senior experts in identifying cholesteatoma based on CT.
Notably, the 3D model achieved outcomes that were on par
with or better than those based on human interpretation of MRI,
which, despite its higher sensitivity, is a more expensive
diagnostic method [22,43,45,51-53]. These findings underscore
the 3D model’s potential as a reliable and cost-effective
alternative, offering sufficient COM evaluation with CT alone,
thereby reducing the need for the pricier MRI.

The findings from the prospective study indicate that the model
is efficacious in clinical environments, especially in
distinguishing cholesteatoma from noncholesteatoma. Feedback
from our clinical team highlights that the system serves as a
reliable and streamlined source for a second opinion. Before
surgery, the treating physician can rapidly identify essential
details such as the lesion’s location and properties, using the
model’s diagnostic output, and heatmaps. Concordance between
the model’s predictions and the physician’s initial assessment
bolsters confidence in surgical planning, thereby streamlining
the diagnostic and therapeutic process. In contrast, discrepancies
between the model’s results and the physician’s judgment
prompt a detailed case reassessment or team consultation, aiding
in the validation of a suitable treatment plan or preparing for
intraoperative modifications. This process provides timely
advisory support for complex cases, encouraging meticulous
evaluation by the physician, minimizing errors, and keeping the
clinician’s cognitive load in check without compromising their
autonomy in decision-making.

It should be noted that even for seasoned otologists and
radiologists, who are adept at quickly and accurately reading
temporal bone CT scans, a second opinion can add an extra
layer of confidence to their assessments. For novice clinicians,
who may find the diagnostic process more challenging and
time-intensive (Table 5), the model may offer substantial
improvements in both the accuracy and the speed of diagnosing
and managing COM. This is particularly beneficial for
physicians in smaller medical facilities or those early in their
careers. Looking ahead, the integration of this model into
electronic medical systems or cloud-based servers stands to
streamline the provision of immediate second opinions or enable
physicians from diverse locations to upload imaging data for
dependable diagnostic insights. Such technological progress is
poised to advance individualized COM treatments in the big
data era, boosting efficiency, reducing costs, and enhancing the
quality of patient care.

Research Insights
Efforts were undertaken in this study to demystify the criticized
nontransparency of DL models, characterized by intricate
decision-making strategies within multilayer architectures
[30,54]. The nonlinear interactions among these components
can yield incomprehensible logic and untraceable predictions
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vulnerable to bias or errors, posing a significant challenge to
the widespread application of AI in health care. To address this
issue, heatmaps, and specifically, the Gradient-Weighted Class
Activation Mapping technique, have been used as a method to
inspect AI’s strategy and enhance human interpretation in a
parsimonious manner [55-57]. In this study, the strategy learned
by our models to focus on the middle ear and mastoid regions
appeared reasonable and aligned with human knowledge in
interpreting CT for COM, reinforcing the reliability of this
framework. These informative heatmaps can aid clinicians in
understanding and validating AI predictions for specific cases,
or serve as educational tools for training medical students or
junior residents in reading temporal bone CT scans. Ultimately,
this approach presents a viable solution for developing
explainable AI models for clinical tasks.

Overfitting is a common concern with DL models, especially
when data are limited or sourced from a single institute. It can
lead to poor performance on new data despite promising results
on the original data set. Previous DL models were trained on
monocentric CT scans with participant counts ranging from 61
to 562. Lack of external validation and small sample sizes may
raise concern about potential overfitting of these models
[22,42,43]. Several approaches were used in this study to
enhance the generalizability of our framework. First, our models
underwent cross-validation on a major data set comprising more
than 3000 ears, the largest sample size reported to date. Second,
these models were evaluated on external data with different
patient origins and image properties. Third, several machine
learning methods were applied to minimize the risk of models
being tuned to the random features, including early termination
of training and the use of a dropout function to decrease the
interdependency among network nodes [27]. Consistent
performance metrics across data sets in both tasks substantiated
the generalizability of this framework. Moreover, the region
proposal method proved applicable to CT scans from both
sources, demonstrating adaptability despite differences in CT
scanner, scan settings, and image quality.

Limitations
This study has several limitations. First, although an external
data set was obtained from a hospital in a different city, patients
in both data sets shared a common racial background. Further
validation on data collected from patients with diverse origins
may be necessary to ensure the generalizability of these models.
Second, the research was constrained to 2 binary classification
tasks relevant to COM. Incorporating additional diagnostic
tasks, such as assessing the ossicular chain’s integrity and
forecasting auditory outcomes, may enrich the diagnostic toolkit.
Third, the models were exclusively trained to analyze CT scans,
potentially not leveraging AI’s full potential in COM evaluation.
Comprehensive diagnostics often involve synthesizing
information from patient history, clinical symptoms, ear
examinations, audiological testing, otoscopy, and various
imaging techniques. Overreliance on CT scans alone may
introduce limitations in performance and may not always lead
to conclusive diagnoses (Figure 7). Fourth, the ablation study
examined a limited array of model alternatives. Despite
achieving notable performance through initial model structure
refinement, future endeavors should include ongoing
optimization of the model architecture and detailed analysis of
network component functions to optimize the trade-off between
model efficacy and computational demands. In addition, this
study did not place extensive emphasis on exploring common
ethical issues, such as patient privacy, data security, and human
autonomy, which are critical considerations in the clinical
application of AI and warrant ongoing attention. Finally, this
study reported initial findings from the clinical application of
the AI system in a small, prospective cohort without a control
group. Although the main objective was to show that the current
model is ready for clinical implementation, a thorough
assessment of the model’s clinical benefits will be conducted
in an upcoming clinical trial with a more rigorous research
design.
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Figure 7. Examples of misclassified cases. (A) A pathological ear showing a small-sized soft tissue density near the ossicles (arrows) with no evident
sign of osseous erosion or mastoid opacification. (B) A case of cholesteatoma showing soft tissue density (asterisks) but with a visually intact ossicular
chain (arrows) and a normal-sized tympanic cavity.

Future Research
Future studies will focus on leveraging novel techniques to
enhance model performance and evaluate the effectiveness in
larger-scale controlled trials. For example, new models will be
trained to perform additional tasks, including evaluation of
ossicular chain and forecasting postoperative hearing, which
may enhance features of the current AI framework. A broader
data set will be compiled from hospitals worldwide to assess
and refine the generalizability of these models. Moreover, future
models will potentially incorporate multiple sources of clinical
information with a fusion layer for generating predictions,
mimicking human decision-making strategies, and potentially
enhancing model robustness. Ongoing efforts will also be made
to refine model architectures and to address ethical issues
associated with the use of AI in health care. An active learning
framework may be established to integrate feedback loops,
allowing clinicians to provide input to the model. This approach
is expected to support ongoing model enhancement and
reinforcement learning based on human feedback. In the next
stage, multicenter, prospective human trials will be conducted

to assess the practical benefits of implementing these AI models
in clinical contexts. The ultimate goal of this research line is to
establish a robust AI system that can assist clinicians with
reliability, efficiency, and transparency in the evaluation and
management of ear diseases.

Conclusions
This study presents a 3D CNN model trained to detect
pathological changes and identify cholesteatoma based on
temporal bone CT scans. The model’s performance significantly
surpasses the baseline 2D approach, reaching a level comparable
with or even exceeding that of human experts in both tasks. The
model also exhibits decent generalizability and enhanced
comprehensibility through the gradient heatmaps. The resulting
AI system allows automatic assessment of COM and shows
promising viability in real-word clinical settings. These findings
imply the potential of AI as a valuable tool for aiding clinicians
in the evaluation of COM. Future research will involve
enhancing models with additional source of diagnostic
information to perform various clinical tasks and evaluating the
benefits of AI models in large-scale controlled trials.
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