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Abstract

Background: Obstructive sleep apnea (OSA) is a prevalent sleep disorder characterized by frequent pauses or shallow breathing
during sleep. Polysomnography, the gold standard for OSA assessment, is time consuming and labor intensive, thus limiting
diagnostic efficiency.

Objective: This study aims to develop 2 sequential machine learning models to efficiently screen and differentiate OSA.

Methods: We used 2 datasets comprising 8444 cases from the Sleep Heart Health Study (SHHS) and 1229 cases from Taipei
Veterans General Hospital (TVGH). The Questionnaire Model (Model-Questionnaire) was designed to distinguish OSA from
primary insomnia using demographic information and Pittsburgh Sleep Quality Index questionnaires, while the Saturation Model
(Model-Saturation) categorized OSA severity based on multiple blood oxygen saturation parameters. The performance of the
sequential machine learning models in screening and assessing the severity of OSA was evaluated using an independent test set
derived from TVGH.

Results: The Model-Questionnaire achieved an F1-score of 0.86, incorporating demographic data and the Pittsburgh Sleep
Quality Index. Model-Saturation training by the SHHS dataset displayed an F1-score of 0.82 when using the power spectrum of
blood oxygen saturation signals and reached the highest F1-score of 0.85 when considering all saturation-related parameters.
Model-saturation training by the TVGH dataset displayed an F1-score of 0.82. The independent test set showed stable results for
Model-Questionnaire and Model-Saturation training by the TVGH dataset, but with a slightly decreased F1-score (0.78) in
Model-Saturation training by the SHHS dataset. Despite reduced model accuracy across different datasets, precision remained
at 0.89 for screening moderate to severe OSA.

Conclusions: Although a composite model using multiple saturation parameters exhibits higher accuracy, optimizing this model
by identifying key factors is essential. Both models demonstrated adequate at-home screening capabilities for sleep disorders,
particularly for patients unsuitable for in-laboratory sleep studies.
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Introduction

Obstructive sleep apnea (OSA) is a prevalent sleep-related
breathing disorder resulting from reduced muscle tension and
collapsed soft tissue, causing airway blockage or limited airflow.
This leads to fragmented sleep [1], nocturnal hypoxia [2],
intrathoracic pressure fluctuations [3], daytime sleepiness [4],
cognitive decline [5,6], and increased cardiovascular and
metabolic disease risk [7-9]. OSA negatively impacts patients’
long-term health, and quality of life, and increases medical and
societal burdens [10]. An 11-year analysis by the US Veterans
Health Administration identified sleep apnea and insomnia as
the most common sleep disorders, at 47% and 26%, respectively
[11]. Nearly 1 billion people worldwide experience from sleep
apnea, with 430 million experiencing moderate to severe cases
[12]. Prevalence increases with age, male gender, and higher
BMI [13].

Polysomnography is the gold standard for diagnosing sleep
apnea, requiring overnight monitoring in a sleep center with
sensors detecting physiological changes. Respiratory signals,
such as airflow, respiratory effort, snoring, and blood oxygen
saturation (SpO2), are analyzed by sleep technicians to calculate
the Apnea-Hypopnea Index (AHI), which classifies apnea
severity. Moderate to severe cases (ie, AHI values ≥ 15) require
further treatment and management.

The prevalence of sleep apnea is quite high, yet low diagnosis
rates persist. In a telephone survey of 4011 Taiwanese people,
51.9% reported snoring symptoms, and 2.6% were observed to
have sleep apnea [14], indicating many potential patients may
still be undiagnosed and untreated compared with other Asian
regions [15]. Low diagnosis rates may be due to
polysomnography limitations. Unfamiliar environments and
equipment can cause discomfort and affect sleep patterns,
potentially leading to misdiagnosis. The labor-intensive process
requires trained technicians to analyze only three patients per
night, causing longer waiting times. Manual analysis introduces
variability in interpretation, with past research showing
significant discrepancies in AHI values [16]. COVID-19 has
further complicated hospital visits for testing, reducing
confidence in diagnosis and increasing health care system
burdens.

Recent studies aim to provide comfortable and convenient sleep
apnea screening options, using subjective methods like
questionnaires (eg, STOP-Bang, an acronym for Snoring,
Tiredness, Observed apnea, high Blood Pressure, BMI, age,
neck circumference, and gender) or objective methods involving
wearable devices. The STOP-Bang questionnaire has high
sensitivity but low specificity [17], potentially misclassifying
patients. Objective methods analyze signals from wearables,
such as electrocardiogram signals combined with
cardiopulmonary coupling and cyclic variation of heart rate,
achieving 89% sensitivity and 79% specificity [18]. Pulse

oximeters are popular in research due to their simplicity and
affordability [19].

The primary objective of this study is therefore to create a
patient-friendly, clinically applicable tool for detecting OSA
using machine learning techniques. This tool will combine
subjective clinical questionnaires with objective blood oxygen
concentration signals. In total, 2 distinct models have been
developed: the Questionnaire Model (Model-Questionnaire)
and the Saturation Model (Model-Saturation).

The Model-Questionnaire collects relevant questionnaires from
a database, which includes demographic information and the
Pittsburgh Sleep Quality Index (PSQI). Machine learning is
then performed on these selected items. The Model-Saturation,
on the other hand, uses SpO2 signals. This model involves
preprocessing to eliminate noise interference and uses various
methods for feature extraction, such as time-domain analysis,
frequency-domain analysis, nonlinear analysis, and estimation
of oxygen desaturation index.

In this study, we used 2 extensive polysomnography datasets,
the Sleep Heart Health Study (SHHS) [20,21] and
polysomnography records from the Sleep Medicine Center of
Taipei Veterans General Hospital (TVGH), for the training,
testing, and validation of both models. We justified using
datasets from different geographic areas to enhance the
robustness and generalizability of their machine learning models
across diverse populations, addressing potential biases and
improving the study’s external validity. Furthermore, we will
assess these models using independent test data derived from
TVGH to confirm the combined process’s effectiveness and
applicability.

This approach presents several advantages. For example,
self-administered questionnaires can be implemented across
various medical settings, increasing awareness among high-risk
patients who might be unaware of their sleep apnea. In addition,
pulse oximeters offer a noninvasive, cost-effective, and
convenient solution for long-term monitoring, serving as an
alternative to standard polysomnography. The unique aspect of
this study lies in the integration of these methods for preliminary
screening and triaging patients with OSA, ultimately promoting
more efficient and accessible diagnosis and treatment options.

Methods

Sleep Data
We used 2 primary databases for this purpose: the clinical sleep
data from the Sleep Medicine Center at TVGH, and the SHHS
from the National Sleep Research Resource in the United States.

The Sleep Medicine Center’s clinical sleep database, operated
by the Department of Psychiatry at TVGH, contains clinical
questionnaires and full-night standard polysomnography data
for 4132 patients collected between December 1, 2012, and
December 31, 2019. These questionnaires included clinical
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information, the PSQI, the Insomnia Severity Index, the Epworth
Sleepiness Scale, and the Beck Depression Inventory-II. Sleep
studies were conducted at the Sleep Medicine Center of Taipei
Veterans General Hospital using Embla N7000 equipment
(Natus Medical Inc), and data analysis was performed using
RemLogic Version 3.4.1 software (Natus Medical Inc).

The SHHS is a multicenter cohort study designed to test whether
sleep-related breathing is associated with an increased risk of
cardiovascular disease. The study was conducted using the
home-based type II polysomnography device between November
1, 1995, and January 31, 1998, and involved 6441 men and
women aged 40 years and above for the initial evaluation and
sleep study. Between January 2001 and June 2003, 3295

participants underwent a second polysomnography. The SHHS
database provides 8444 records of home-based
polysomnography data with rigorous scoring. For the purposes
of this study, we used the provided 8444 records and extracted
the SpO2 signals for Model-Saturation training.

Data Preparation and Preprocessing
To develop 2 models for predicting the presence and severity
of OSA, the data will be divided into three groups: (1) the
TVGH training set and the SHHS dataset, (2) both used for
constructing the models, and (3) a TVGH independent test set
for evaluating the models’ performance, as illustrated in Figure
1.

Figure 1. Structure of Polysomnographic Data from Sleep Heart Health Study and Taipei Veterans Hospital. ModelQues: Model-Questionnaire;
ModelSat: Model-Saturation. SHHS: Sleep Heart Health Study; TVGH: Taipei Veterans General Hospital.

Initially, 1229 patients were selected from the TVGH database,
comprising 822 patients diagnosed with OSA and 407 patients
with primary insomnia through polysomnography. These
patients were split into the TVGH Model-Questionnaire training
set and the TVGH independent test set at a 9:1 ratio. The cases
were categorized into 3 groups based on the severity of their
condition: no sleep apnea, mild sleep apnea, and
moderate-to-severe sleep apnea. To ensure a more uniform
distribution of AHI across both datasets, participants in each
group were sorted by age and AHI. Every 10th participant was
chosen in sequence, resulting in 123 participants for the TVGH
independent test set and 1106 participants for the TVGH
Model-Questionnaire training set.

All 8444 sleep study records in the SHHS database served as
the SHHS Model-Saturation training set. In addition, the
polysomnography data obtained from these 1106 participants
at TVGH also served as a training dataset for the
Model-Saturation, which was trained separately from the SHHS
database. SpO2 signals were obtained from both the SHHS and
TVGH databases. However, due to the different equipment
used, the sampling frequency of SpO2 signals varied between
the 2 databases, 1 Hz in the SHHS database and 10 Hz in the
TVGH database. To achieve signal consistency, the blood

oxygen concentration signal in the TVGH database was
down-sampled to 1 Hz. After standardizing the sampling
frequency, SpO2 signals underwent a three-step preprocessing
procedure, which involved (1) excluding data points with blood
oxygen concentrations below 50; (2) eliminating data exhibiting
abrupt drops in blood oxygen concentration signals exceeding
4% within 1 second; and (3) excluding noncontinuous blood
oxygen concentration signals for over 1 minute, to eliminate
noise arising from instrument disconnection or participant
movement during monitoring.

Feature Extraction

Model-Questionnaire
The Model-Questionnaire used questionnaires as the screening
process for determining the presence of sleep apnea. Clinical
data collected by the questionnaires and the PSQI served as
feature values. Clinical data included gender, age, BMI, and the
patient’s history of hypertension, diabetes, and cardiovascular
disease, resulting in a total of 6 items.

The PSQI is a retrospective questionnaire that prompts
participants to recall their sleep patterns over the past month.
It consists of 18 self-reported questions. Once completed, a
specific calculation method is used to derive 7 subscores
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representing subjective sleep quality, sleep latency, sleep
duration, sleep efficiency, sleep disturbance, medication use,
and daytime dysfunction. The subscores are then summed to
produce the final PSQI score. This study used 18 self-reported
questions, 7 subscores, and the final PSQI score, a total of 26
items, as feature values.

Model-Saturation
The Model-Saturation used SpO2 signals to classify patients’
sleep apnea severity. After preprocessing the blood oxygen
concentration signal, four methods were used to extract signal
features:

Saturation Distribution

Sleep-disordered breathing indirectly influences blood oxygen
concentration changes. The average blood oxygen concentration
distribution graph, plotted after grouping participants with
varying apnea severities, indicates changes in blood oxygen
concentration distribution based on severity. This study
calculated the mean, median, maximum, minimum, kurtosis,
variance, and skewness of SpO2 signal from the collected
overnight signals to describe the blood oxygen concentration
distribution and use these 7 parameters as feature values.

Power Spectral Density

Sleep-disordered breathing induces fluctuations in blood oxygen
concentration. Therefore, frequency analysis can be used to
assess the oxygen desaturation index. By analyzing the power
spectral density of the signal from the time domain to the
frequency domain, the proportion of different frequencies can
be obtained. This study will use 100 feature values acquired at
intervals of 0.001 Hz from 0 to 0.1 Hz.

Multiscale Entropy

This study also attempted to use multiscale entropy (MSE) to
detect changes in blood oxygen concentration. As a nonlinear
analysis method, MSE observes the complexity of the signal at
different time scales by using data points of varying lengths and
averaging their values [22]. It then calculates the sample entropy
[23] at different scales. This study used 20 scales and adopted
these 20 items as feature values.

Approximation of Oxygen Desaturation Index

The oxygen desaturation index is defined as the average number
of times that blood oxygen concentration drops by more than
4% per hour during an entire night’s sleep. However, this study
only used a single signal and cannot determine the patient’s
sleep and wake times. Therefore, the total number of times
blood oxygen concentration decreases by 4% is divided by the
total recording time to obtain an approximate value of the
oxygen desaturation index.

In summary, the Model-Saturation adopts a total of 128 feature
values, including 7 features from saturation distribution, 100
features from Power spectral density (PSD), 20 features from
MSE, and 1 feature from the approximation of oxygen
desaturation index (ODI).

Ground Truth Labels for Machine Learning Models

Model-Questionnaire
This study used the database from TVGH for training and testing
the Model-Questionnaire. Patients with an AHI ≥ 5 after
undergoing overnight polysomnography were labeled as having
OSA. In contrast, those diagnosed with primary insomnia by a
physician, without any other sleep disorders detected during
polysomnography, were labeled as having primary insomnia.
The Model-Questionnaire used 6 features from clinical data and
26 features from the PSQI, targeting OSA and primary insomnia
as the ground truth values obtained from polysomnography
results.

Model-Saturation
The Model-Saturation used preprocessed and feature-extracted
SpO2 signals to further categorize the severity of OSA in patients
identified by the Model-Questionnaire. In this study, the AHI
defined OSA severity. Patients with an AHI of <5 were labeled
as without sleep apnea, those with an AHI of ≥5 but <15 were
labeled as having mild sleep apnea, and those with an AHI of
≥15 were labeled as having moderate to severe sleep apnea. To
ensure consistency among different databases, this study adopted
the criteria published by the American Academy of Sleep
Medicine (AASM) in 2012 to calculate the AHI. Apnea was
defined as a reduction in airflow by ≥90% lasting for at least
10 seconds, while hypopnea was defined as a reduction in
airflow by ≥30% lasting for at least 10 seconds accompanied
by ≥4% oxygen desaturation. The total number of apnea and
hypopnea events was divided by the total sleep time to obtain
the AHI.

Machine Learning Models
In building the machine learning models, this study used a
machine learning training platform (Invent AI by Chunghwa
Telecom in Taiwan) to train and establish the
Model-Questionnaire and Model-Saturation. TVGH independent
test set was used to test the process after creating the 2 models.
Three algorithms, including CatBoost, Random Forest, and
Extra Trees were used in the AI platform for this study.

During the modeling process, the training sets for both the
Model-Questionnaire and the Model-Saturation were divided
into 3 sets by a fixed ratio. Specifically, 70%
(Model-Questionnaire: 774/1106, Model-Saturation: 5910/8444)
was allocated for training, 15% (Model-Questionnaire:
166/1106, Model-Saturation: 1267/8444) for validation, and
the remaining 15% (Model-Questionnaire: 166/1106,
Model-Saturation: 1267/8444) of the data was designated as
the testing set for each model. Synthesized Minority
Oversampling Technique method, which is an oversampling
technique that artificially increases the data by interpolating
among the minority samples, was used to deal with the issue of
data imbalance. After the model building was completed, the
reserved TVGH independent test set of 123 samples was used
to evaluate whether the 2 models could classify OSA well in a
sequential manner. First, the questionnaire data in the TVGH
independent test set was inputted into the established
Model-Questionnaire, resulting in the classification of primary
insomnia and OSA. Then, the SpO2 signal from cases predicted
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by Model-Questionnaire to have OSA was used in
Model-Saturation, resulting in the final classification into three
categories: (1) without sleep apnea, (2) mild sleep apnea, and
(3) moderate to severe sleep apnea.

Statistical Analysis and Model Evaluation
As the data for this study were obtained from 2 different
databases and was subsequently divided into 3 datasets for
model training and testing, descriptive statistics were used to
calculate the mean and SD of age, BMI, and AHI for each
dataset. The number and proportion of cases by gender and
severity of OSA were also calculated.

To evaluate the machine learning models, this study generated
a confusion matrix by comparing the predicted values generated
by the model with the actual classifications. F1-score, precision,
recall, accuracy, and area under the curve (AUC) were calculated
to assess the predictive ability of the classifiers. The independent
test dataset was used to validate the established
model-questionnaire and model-saturation, and the results were
used to generate a confusion matrix. F1-score, precision, recall,
and accuracy were calculated to evaluate the model’s
performance.

In this study, we also presented the ranking of feature
importance based on the weights in the algorithms. The weights,
which indicate the number of times a feature appears across all
trees, were retrieved from the model to evaluate the feature
importance, thereby yielding the average gain associated with
each feature and highlighting how each contributes to the
model’s decision-making process.

Ethical Considerations
This study was approved by the institutional review board of
Taipei Veterans General Hospital (approval number

2020-09-008BC) for the TVGH dataset, and approval for the
use of data from the National Sleep Research Resource (NSRR
R24 HL114473: NHLBI National Sleep Research Resource)
was also obtained. Both databases do not contain any personally
identifiable information or sensitive individual data, and the
researchers were unable to determine the identities of the
participants or contact them.

Results

Data Characteristics
This study used 2 large databases and divided them into 3
datasets for training and validation of the models. Table 1
displays the demographic data for the 3 datasets. The TVGH
training set and independent testing datasets were both from
the TVGH database. The SHHS dataset had slight differences
in gender, age, and AHI distribution compared with the other
2 datasets. This was because the SHHS database included
participants over the age of 40, while the TVGH database
included participants over the age of 18 years who underwent
sleep studies for sleep disorders. These differences in data
collection purpose can affect the results but also provide insight
into whether using a Model-Saturation trained from the SHHS
dataset can predict well for Taiwanese data.

As shown in Table 1, both databases had data imbalance issues.
The proportions of patients with primary insomnia and those
with OSA in the TVGH training set were 33.1% (366/1106)
and 66.9% (740/1106), respectively, while the SHHS dataset
included 46.2% (3904/8444) of no sleep apnea, 31.2%
(2630/8444) of mild sleep apnea, and 22.6% (1910/8444) of
moderate-to-severe sleep apnea. Since data imbalance can affect
the model’s prediction, we employed the Synthesized Minority
Oversampling Technique method to balance the data.
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Table 1. Demographic data of 3 datasets.

TVGH independent test det (n=123)TVGHb training set (n=1106)SHHSa dataset (n=8444)

Sex, n (%)

69 (56.1)651 (58.9)3986 (47.2)Male

54 (43.9)455 (41.1)4458 (52.8)Female

51.80 (15.16)52.35 (15.61)64.55 (11.17)Age (years),

mean (SD)

25.20 (4.56)25.04 (4.82)28.21 (5.79)BMI (kg/m2),

mean (SD)

16.84 (19.88)17.43 (21.08)10.67 (13.78)AHIc (events/hour),

mean (SD)

Severity of Sleep Apnea, n (%)

41 (33.3)366 (33.1)3904 (46.2)Normal (AHI<5)

36 (29.3)325 (29.4)2630 (31.2)Mild (5≦AHI<15)

22 (17.9)194 (17.5)1218 (14.4)Moderate (15≦AHI<30)

24 (19.5)221 (20.0)692 (8.2)Severe (30≦AHI)

aSHHS: Sleep Heart Health Study.
bTVGH: Taipei Veterans General Hospital.
cAHI: Apnea-Hypopnea Index.

Model-Questionnaire
The training results of Model-Questionnaire for different
algorithms and feature selection are presented in Table 2. Using
all features for model training resulted in the same accuracy for
all three algorithms. However, CatBoost had a better F1-score
of 0.85 compared with the other 2 algorithms. The feature

importance ranking showed that BMI, age, self-reported snoring,
gender, and hypertension history were the most frequently
occurring 5 features. Reducing the features to only these 5 and
training the model again resulted in a slightly improved F1-score
and accuracy compared with using all features. The best
algorithm for this reduced feature model was ExtraTrees, which
may be related to the preselection of features.

Table 2. Results of Model-Questionnaire.

Feature importanceAUCa
Accuracy
(%)RecallPrecisionF1-scoreModel name

LowHigh

All features

PSQIdGenderPSQIcAgeBMI0.8486.49%0.860.860.85bCatBoost

HBPeBMIGenderPSQIaAge0.8586.49%0.860.870.85ExtraTrees

HBPGenderPSQIcAgeBMI0.8686.49%0.860.880.84Random Forest

5 features

HBPGenderPSQIcBMIAge0.8486.49%0.860.860.86CatBoost

HBPGenderBMIPSQIaAge0.8687.39%0.870.870.86bExtraTrees

HBPGenderPSQIcAgeBMI0.8687.39%0.870.870.86Random Forest

aAUC: Area Under Curve.
bThe machine learning model with the highest F1-score.
cPSQI: PSQI question 5.5 (During the past month, how often have you had trouble sleeping because you cough or snore loudly?).
dPSQI: PSQI question 5.4 (During the past month, how often have you had trouble sleeping because you cannot breathe comfortably?).
eHBP: high blood pressure.
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Model-Saturation

Model Training Using the Sleep Heart Health Study
Dataset
The training results of Model-Saturation for different algorithms
and feature selection are presented in Table 3. Using all features
for model training, CatBoost had the best F1-score of 0.85 and
an accuracy of 84.5% among the 3 algorithms. The feature

importance ranking showed that the estimated oxygen
desaturation index, MSE, and spectral density analysis were all
important features. However, after removing the SpO2

distribution–related parameters, the model performance was
not as good as using all features. Using single feature analysis
for model training (Table 4), the model using spectral density
analysis with Random Forest had the best prediction
performance, with an F1-score of 0.82 and an accuracy of 82%.

Table 3. Results of Model-Saturation by Sleep Heart Health Study dataset.

Feature importanceAUCa
Accuracy
(%)RecallPrecisionF1-scoreModel name

LowHigh

All features

PSD (0.017
Hz)

PSD (0.020
Hz)

PSDe (0.013
Hz)

MSE1dODIc0.9584.47%0.840.850.85bCatBoost

PSD (0.021
Hz)

PSD (0.016
Hz)

PSD (0.013
Hz)

MSE1ODI0.9480.55%0.810.810.81ExtraTrees

PSD (0.017
Hz)

PSD (0.021
Hz)

PSD (0.022
Hz)

PSD (0.019
Hz)

PSD
(0.020
Hz)

0.9583.19%0.830.830.83Random For-
est

ODI+MSE+PSD

PSD (0.019
Hz)

PSD (0.017
Hz)

PSD (0.022
Hz)

MSE1ODI40.9583.87%0.840.840.84bCatBoost

PSD (0.020
Hz)

MSE3PSD (0.019
Hz)

ODI4MSE10.9481.57%0.820.820.82ExtraTrees

PSD (0.017
Hz)

PSD (0.024
Hz)

PSD (0.021
Hz)

PSD (0.019
Hz)

PSD
(0.020
Hz)

0.9378.58%0.790.800.79Random For-
est

aAUC: area under curve.
bThe machine learning model with the highest F1-score.
cODI: oxygen desaturation index.
dMSE1: multiscale entropy.
ePSD: power spectral density.
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Table 4. Model training results of SpO2
a signal by single feature analysis

Area under curveAccuracy, %RecallPrecisionF1-scoreModel name

Power spectrum density

0.9480.890.810.810.81CatBoost

0.9379.100.790.800.79ExtraTrees

0.9482.000.820.820.82bRandom Forest

Multiscale entropy

0.8669.540.700.700.70CatBoost

0.8668.770.690.690.69ExtraTrees

0.8771.250.710.720.71bRandom Forest

Saturation distribution

0.8467.320.670.670.67bCatBoost

0.8365.270.650.660.65ExtraTrees

0.8467.060.670.670.66Random Forest

Approximation of oxygen desaturation index

0.8366.300.660.670.67bCatBoost

0.8266.300.660.670.66ExtraTrees

0.8366.210.660.670.66Random Forest

aSpO2: blood oxygen saturation.
bThe machine learning model with the highest F1-score.

Model Training Using the Taipei Veterans General
Hospital Dataset
Table 5 presents the Model-Saturation built for 1106 cases in
the TVGH training dataset. When using all features, the

CatBoost algorithm achieves the best F1-score of 0.83 and an
accuracy of 0.82. The feature importance, in order, includes
ODI, power spectral density, and variance as well as kurtosis
of SpO2 signal.

Table 5. Results of Model-Saturation using the Taipei Veterans General Hospital training set.

Feature importanceAUCa
Accuracy
(%)RecallPrecisionF1-scoreModel name

LowHigh

SpO2 KurtosisPSD (0.014
Hz)

SpO2 VariancePSDd (0.022
Hz)

ODIc0.9482.40%0.820.830.82bCatBoost

MSE2PSD (0.039
Hz)

MSE9PSD (0.022
Hz)

ODI0.9280.80%0.800.830.81ExtraTrees

PSD (0.025 Hz)PSD (0.014
Hz)

SpO2 VariancePSD (0.020
Hz)

ODI0.9381.60%0.810.830.82Random For-
est

aAUC: area under the curve.
bThe machine learning model with the highest F1-score.
cODI: Oxygen desaturation index.
dPSD: Power spectral density.

Validation of Models Using TVGH Independent Test
Data
The ultimate purpose of this study was to use 2 machine learning
models to screen patients who may have OSA for further
diagnosis and triage. Therefore, the best Model-Questionnaire
and Model-Saturation were selected from the training models

for use in the final validation. Based on the results in Table 2,
the Extra Trees algorithm using the 5 features had good F1-score,
accuracy, and recall, and was chosen as the final
Model-Questionnaire for the screening process. The
Model-Saturation using all features with CatBoost was chosen
for the second step of OSA triage, as it had the best performance
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in terms of recall, precision, accuracy, and F1-score compared
with other combinations.

The TVGH independent test dataset contains 123 cases, all of
which included questionnaire data and SpO2 signal. For the
Model-Questionnaire, the results using the independent testing
dataset are shown in Table 6. Although the accuracy and
precision are lower than those in Table 2, the recall rate is 0.94,
indicating that the model has a high sensitivity to the
independent testing dataset. The F1-score is also slightly higher.
The confusion matrix in Figure 2a shows that although almost
half of the 41 patients with primary insomnia were classified
as having sleep apnea, 77 out of 82 patients with true sleep
apnea were correctly classified, which suggests the model has
high sensitivity despite the lower precision.

For the Model-Saturation, 97 cases classified as having sleep
apnea by the Model-Questionnaire were further classified
according to the severity of sleep apnea. Table 6 shows that
although the accuracy of the Model-Saturation for
moderate-to-severe sleep apnea is only 65.98% (64/97), which
is significantly lower than the result obtained from the SHHS
dataset (as shown in Table 3), this may be due to differences

between the databases. However, the confusion matrix (Figure
2b) shows that, among those classified as having
moderate-to-severe sleep apnea, all but four patients who
actually had mild sleep apnea were correctly classified. The
precision also slightly increased to 0.89, indicating that if a
patient is classified as having moderate-to-severe sleep apnea
by the Model-Saturation, there is a high possibility of having
moderate-to-severe sleep apnea. Therefore, this
Model-Saturation is considered effective in achieving the initial
screening goal of moderate-to-severe sleep apnea even when
using databases from different sources.

Finally, when tested on a TVGH-independent test set, the
Model-Saturation trained using the TVGH training set showed
an improved F1-score from 0.775 to 0.828 (Table 6) compared
with the Model-Saturation trained with the SHHS database. The
results were closer to the accuracy obtained from the TVGH
training set, and as shown in Figure 2c, the Model-Saturation
trained with TVGH data demonstrates better performance in
classifying patients with mild and moderate-severe sleep apnea
compared with the Model-Saturation trained on the SHHS
database.

Table 6. Testing results of two models by independent testing dataset.

Accuracy, %RecallPrecisionF1-scoreModel

Model-Questionnaire

79.670.9390.79380.8603ExtraTrees

Model-Saturation using the Sleep Heart Health Study dataset

65.980.68890.88570.775CatBoost

Model-Saturation using the Taipei Veterans General Hospital dataset

77.320.80000.85710.8276CatBoost
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Figure 2. Confusion Matrix of Two Models: (a) Confusion matrix of Model-Questionnaire (b) Confusion matrix of Model-Saturation by the Sleep
Heart Health Study data set (c) Confusion matrix of Model-Saturation by the Taipei Veterans General Hospital training set. PI: Primary insomnia; SA:
Sleep apnea; 0: Without sleep apnea; 1: Mild sleep apnea; 2: Moderate and severe sleep apnea. SHHS: Sleep Heart Health Study; TVGH: Taipei Veterans
General Hospital.

Discussion

Principal Findings
To the best of our knowledge, this study is the first to use a
large amount of polysomnography data to establish sequential
questionnaire and saturation models as a preliminary screening
process for OSA. Previous studies mostly used a combination
of questionnaires and blood oxygen signal features for prediction
rather than building 2 models separately. For example, Mashaqi
et al [24] used the STOP-Bang questionnaire combined with
ODI to predict sleep apnea but achieved better classification
only for severe cases.

However, if we can use a questionnaire to quickly and easily
classify potential patients and then use SpO2 signals to classify
patients with moderate to severe sleep apnea who need to be
diagnosed through polysomnography tests, it can improve the
efficiency of sleep examinations and reduce unnecessary medical
resource consumption. Therefore, compared with previous
studies that used a model combining questionnaire and blood
oxygen concentration for prediction, this study constructed a
process consisting of 2 machine learning models that are more
suitable for clinical applications.

Model-Questionnaire
The Model-Questionnaire was established using PSQI
questionnaire data collected from the TVGH and was mainly
used to distinguish between patients with sleep apnea and those
with primary insomnia. As these are the 2 most common sleep
disorders, the established model can cover a wide range of
clinical applications. Based on the results in Table 2, using only
the 5 features with the highest importance for the ExtraTrees

algorithm, namely age, gender, BMI, snoring status, and history
of hypertension, resulted in the highest accuracy for the
questionnaire model while also improving model efficiency.
These 5 features have been proven in previous studies to be risk
factors for sleep apnea and are similar to STOP-Bang
questionnaire items [17].

Although the STOP-Bang questionnaire has high sensitivity but
low accuracy in detecting sleep apnea, with an AUC of only
0.56 in East Asian populations [25], our Model-Questionnaire
achieved an AUC of 0.86, indicating better performance.
Furthermore, since the database used for the questionnaire model
only included data for sleep apnea and primary insomnia
diagnoses, the trained model classified cases into these 2
categories. However, based on the important features for
screening sleep apnea exhibited in the Model-Questionnaire, it
may be possible to more broadly classify patients as having or
not having sleep apnea.

Model-Saturation
Since the Model-Questionnaire has high sensitivity but low
accuracy, it may result in misclassifying patients without sleep
apnea. Therefore, it is important to further classify patients using
physiological signals, which led to the development of the
Model-Saturation in this study. Four different analyses were
used to obtain features from the SpO2 signal, and sleep apnea
was classified into 3 different severity levels.

According to the feature importance in Table 3, the estimated
ODI is the most important parameter in the model. Hang et al
[26] used a support vector machine algorithm with ODI to
predict moderate to severe sleep apnea and achieved an accuracy
rate of 87.3%-87.8%. However, the accuracy rate of this study’s
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model using only ODI as a feature was only 66.3%, which may
be due to differences in signal quality and feature analysis
methods. The data used in the study by Hang et al [26] were
obtained from a single sleep center and SpO2 signals were
collected through traditional sleep tests. In contrast, this study
used the SHHS database, which is a multicenter home sleep test
that cannot control for artifacts and other interferences, making
it more challenging to estimate ODI from blood oxygen signals.
However, this approach is more representative of real-world
clinical data collected from patients at home. In addition, the
calculation of ODI in this study only considered oxygen
desaturation of 4%, while Hang et al. included both 2% and 4%
desaturation. This difference in methodology may be worth
considering in future studies to improve the results.

In terms of feature importance, sample entropy (ie, entropy
obtained in the original time series calculation under a time
scale of 1) was found to be the second most important feature
after ODI. Previous studies have also used MSE to study
pediatric sleep apnea and calculated sample entropy over a range
of time scales from 1 to 6. However, the final model only
included sample entropy calculated under a time scale of 1 [27].
Based on the results of this study and previous literature, using
sample entropy directly calculated from the original signal may
be more efficient than using a time-consuming preprocessing
method such as MSE.

Table 4 shows that the highest accuracy rate was achieved using
spectral density analysis, with an accuracy rate of 82% and an
AUC of 0.94. This feature also ranked high in the feature
importance analysis in Table 3. Alvarez et al also found that
spectral density analysis had better accuracy in classifying sleep
apnea compared with other time-domain and nonlinear analysis
methods. Among the features obtained through spectral density
analysis, the peak amplitude between 0.014 Hz and 0.033 Hz
had the highest accuracy rate of 83.1% [28]. In this study, using
an interval of 0.001 Hz, the most important frequencies in the
top 5 features were found to be between 0.013-0.014 Hz,
indicating that the duration of blood oxygen desaturation of
around 71.4-76.9 seconds is a discriminating factor for
classifying the severity of sleep apnea.

In addition, from Table 5, which presents the Model-Saturation
built for the 1106 cases at TVGH, it is evident that the
importance of the variance of SpO2 signal has significantly
increased. In spectral analysis, the feature importance has
slightly increased, and the frequency adopted is somewhat higher
compared with that of the SHHS database. Comparing the
validation results of the TVGH independent test set for
Model-Saturation trained on 2 different databases in Table 6,
it can be seen that using the TVGH database yields better
predictions than the SHHS database. This suggests that different
predictive models may be needed for different populations.

Finally, the change in feature importance reveals that variance
has more significant importance in distinguishing sleep apnea
in the TVGH database, implying that the blood oxygen
fluctuations in patients with sleep apnea are more notable than
those without sleep apnea. Furthermore, the slight increase in
frequency from the spectral analysis indicates that the duration
of blood oxygen fluctuations is shorter.

Limitations
There are several limitations that need to be addressed in this
study. First, using SpO2 signals as a physiological signal for
OSA detection is intuitive and widely used because repetitive
airway obstruction can cause fluctuations in blood oxygen levels.
However, not all respiratory events result in changes in blood
oxygen levels. According to the definition of apnea by the
AASM, it is based on the degree of airflow reduction, not
changes in blood oxygen levels. Therefore, using a single blood
oxygen concentration signal may miss such events.

Second, this study used the acceptable definition published by
the AASM in 2012 to estimate the AHI. Compared with the
recommended definition, the main difference is in the evaluation
of hypopnea. According to the acceptable definition, hypopnea
is defined as a decrease in airflow of 30% or more for at least
10 seconds, accompanied by a decrease in blood oxygen levels
of 4% or more. The recommended definition is defined as a
decrease in airflow of 30% or more for at least 10 seconds,
accompanied by a decrease in blood oxygen levels of 3% or
more or awakening from sleep due to brain wave changes. Due
to the differences in definitions, the Model-Saturation may
provide relatively lenient results compared to the current
standards, resulting in an underestimation of the severity of
sleep apnea.

Third, the Model-Saturation was established using the SHHS
database, which was collected in the United States and includes
middle-aged and elderly participants older than 40 years.
Although the advantage of this database is a large amount of
home-based polysomnography data, there is still concern about
whether the model established from this database is suitable for
the Taiwanese population, in terms of social determinants of
health and access to health care resources, as well as a
generalization to young and middle-aged adults. However, there
is currently no similar large-scale home-based polysomnography
database in Taiwan for training purposes. If there are future
integration efforts for relevant sleep examination data, it may
be possible to train models that are more tailored to the needs
of Taiwanese patients and more accurate.

Fourth, the Model-Questionnaire trained using the TVGH
dataset lacked data from a healthy control group. This dataset
consisted exclusively of patients diagnosed with OSA and
primary insomnia, which may affect the model’s ability to
accurately distinguish healthy participants. Despite this
limitation, the PSQI questionnaire, incorporated within our
model, served a critical role. In practical clinical settings, it
enables the preliminary differentiation between patients and
potentially healthy individuals through the identification of
nonapnea cases, specifically by using a PSQI score below 5 as
a screening criterion.

Conclusions
This study aimed to develop an efficient and cost-effective sleep
apnea screening process by combining 2 machine learning
models based on subjective questionnaires and objective SpO2

signals. The Model-Questionnaire achieved an F1-score of 0.86
using key features and the ExtraTrees algorithm, while the
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Model-Saturation scored 0.85 using CatBoost. Both models
demonstrated good predictive ability.

The screening process of combined models started with a
questionnaire to identify patients with potential sleep apnea,
followed by a SpO2 analysis for those classified with sleep

apnea. The Model-Saturation showed high precision in
classifying moderate to severe sleep apnea cases. This combined
approach enhanced screening accuracy and reduced resource
waste compared with using solely subjective or objective
methods, potentially benefiting practical clinical applications
and optimizing resources.
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SMOTE: Synthesized Minority Oversampling Technique
SpO2: blood oxygen saturation
STOP: Snoring, Tiredness, Observed apnea, high Blood Pressure
TVGH: Taipei Veterans General Hospital
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