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Abstract

Background: Hand function assessment heavily relies on specific task scenarios, making it challenging to ensure validity and
reliability. In addition, the wide range of assessment tools, limited and expensive data recording, and analysis systems further
aggravate the issue. However, smartphones provide a promising opportunity to address these challenges. Thus, the built-in,
high-efficiency sensors in smartphones can be used as effective tools for hand function assessment.

Objective: This review aims to evaluate existing studies on hand function evaluation using smartphones.

Methods: An information specialist searched 8 databases on June 8, 2023. The search criteria included two major concepts: (1)
smartphone or mobile phone or mHealth and (2) hand function or function assessment. Searches were limited to human studies
in the English language and excluded conference proceedings and trial register records. Two reviewers independently screened
all studies, with a third reviewer involved in resolving discrepancies. The included studies were rated according to the Mixed
Methods Appraisal Tool. One reviewer extracted data on publication, demographics, hand function types, sensors used for hand
function assessment, and statistical or machine learning (ML) methods. Accuracy was checked by another reviewer. The data
were synthesized and tabulated based on each of the research questions.

Results: In total, 46 studies were included. Overall, 11 types of hand dysfunction–related problems were identified, such as
Parkinson disease, wrist injury, stroke, and hand injury, and 6 types of hand dysfunctions were found, namely an abnormal range
of motion, tremors, bradykinesia, the decline of fine motor skills, hypokinesia, and nonspecific dysfunction related to hand
arthritis. Among all built-in smartphone sensors, the accelerometer was the most used, followed by the smartphone camera. Most
studies used statistical methods for data processing, whereas ML algorithms were applied for disease detection, disease severity
evaluation, disease prediction, and feature aggregation.

Conclusions: This systematic review highlights the potential of smartphone-based hand function assessment. The review
suggests that a smartphone is a promising tool for hand function evaluation. ML is a conducive method to classify levels of hand
dysfunction. Future research could (1) explore a gold standard for smartphone-based hand function assessment and (2) take
advantage of smartphones’ multiple built-in sensors to assess hand function comprehensively, focus on developing ML methods
for processing collected smartphone data, and focus on real-time assessment during rehabilitation training. The limitations of the
research are 2-fold. First, the nascent nature of smartphone-based hand function assessment led to limited relevant literature,
affecting the evidence’s completeness and comprehensiveness. This can hinder supporting viewpoints and drawing conclusions.
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Second, literature quality varies due to the exploratory nature of the topic, with potential inconsistencies and a lack of high-quality
reference studies and meta-analyses.

(J Med Internet Res 2024;26:e51564) doi: 10.2196/51564
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Introduction

Background
Hand function assessment is crucial in determining the extent
of functional loss in patients and the outcome of surgical and
rehabilitative procedures. Subtle changes in hand function could
be a good predictor for the early detection of certain
neuromuscular degeneration diseases, such as Parkinson disease
(PD), which could help take preventive measures to reduce the
severity of the illness [1]. However, most current hand function
assessments are conducted in a clinical context with the intensive
involvement of rehabilitation professionals. Clinical evaluation
requires frequent visits and long-duration treatment sessions
[2]. Hand function is usually assessed using standard
questionnaires, such as the Michigan Hand Outcome
Questionnaire and Disability of the Arm, Shoulder, and Hand
Index [3]. These measurements are subjective and could result
in different assessment results across different test scenarios
and medical professionals [4]. Clinical outcomes based on a
rating scale are often insensitive to subtle hand function changes
and do not support the provision of timely feedback [5]. As
such, a hand assessment tool that can overcome the clinical
assessment drawbacks of inconvenience, high cost, and
imprecision [1,5] and automatically evaluate hand function over
time would benefit patients.

Smartphones are equipped with advanced technologies, such
as touchscreens, accelerometers, and gyroscopes, which can be
used for measuring and evaluating hand function [6]. The
application of smartphones in clinical hand dysfunction
assessments can exploit built-in sensors (such as accelerometers
and gyroscopes) to collect real-time hand movement data with
convenience and at low cost [7]. Smartphones can precisely
monitor and analyze a patient’s hand condition for dysfunction
assessment using machine learning (ML) and artificial
intelligence algorithms [8]. Moreover, the smartphone-based
hand dysfunction assessment can be designed according to
clinical criteria to improve the system’s reliability and validity
[9-11]. Despite recent advances in smartphone-based hand
function assessment [12,13], no systematic reviews have been
conducted to provide a holistic perspective on how smartphones
can be applied to hand function assessment.

Although other technologies, such as wrist-worn or finger-worn
sensors, smartwatches, and specialized keyboards, also show
potential for automated hand function assessment, they typically
focus on simple physiological data collection with limited data
processing capabilities and display of basic information [14-16].
However, smartphones offer more extensive data acquisition,
accurate data processing, and richer data display options,
providing a more comprehensive technological solution [17,18].
Moreover, considering the widespread availability and

user-friendly nature of smartphones [19], directing research
efforts toward smartphone-centric studies can enhance
innovation and application possibilities. This approach not only
aligns with the current prevalence of smartphones but also
extends a broader scope for future technology transfer and
development specific to hand function assessment. Therefore,
focusing on smartphone research can lead to more innovation
and application possibilities, offering a broader scope for future
technology transfer and development. As such, the main goal
of this review was to synthesize the present ways in which
smartphones are applied in hand function assessment and the
extent to which hand function evaluation is achieved using
smartphones. It aimed to explore the system development
guidelines for the future application of smartphones in hand
function assessment.

Research Questions
The research questions (RQs) were as follows: (1) What types
of hand dysfunctions are studied, and what assessment inventory
tools are used? (2) How are smartphones applied in clinical
practice in hand function assessment? (3) What sensors are
integrated into smartphones to collect hand function data? (4)
What statistics or ML algorithms are used for hand function
assessment?

Methods

This systematic review is reported according to PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines (Multimedia Appendix 1).

Information Sources and Search Strategy
An information specialist (JB) developed and executed a
comprehensive search strategy. The following electronic
databases were searched: MEDLINE(R) ALL (Ovid), Embase
and Embase Classic (Ovid), CENTRAL (Ovid), Scopus,
Compendex (Engineering Village), INSPEC (Engineering
Village), IEEE Xplore, and ACM Digital Library. The search
strategy was first developed in MEDLINE ALL (Ovid) in
consultation with the research team. Search terms were also
sourced from a previously published review [20]. The search
strategy was then adapted into other databases.

Search strategies included the use of text words and subject
headings related to two major concepts: (1) smartphone or
mobile phone or mHealth and (2) hand function or function
assessment. Searches were limited to English-language papers.
When possible, searches were also limited to human studies
and excluded conference proceedings and trial register records.
No date limits were applied. All searches were conducted on
June 8, 2023. The complete search strategies for each database
are provided in Multimedia Appendix 2.
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Study Selection
The studies were imported into Covidence (Veritas Health
Innovation) after eliminating duplicates using EndNote
(Clarivate). Title and abstract screening and full-text screening
were completed by 2 researchers (YZ and YF) independently
based on the same inclusion and exclusion criteria. Any
disagreement was first discussed and solved by the 2 researchers.
Otherwise, a third researcher (BY) was involved to ensure that
an agreement was reached.

Neurocognition is evaluated as an independent criterion in
clinical hand assessments [21]. Therefore, neurocognitive studies
were excluded from this review to focus specifically on aspects
related to hand motor control and dysfunction. Although
cognitive functions play a significant role in hand motor control,
the primary aim of this review was to narrow its scope and focus
on the specific factors directly related to the mechanics and

dysfunction of the hand, with particular focus on methods and
techniques for using smartphones in assessment. Neurocognitive
research often involves specialized equipment and methods, for
example, neuroimaging techniques such as functional magnetic
resonance imaging or electroencephalogram, which may not be
practical for assessing hand function in smartphone-related
contexts.

After the screening stage, the research quality of selected studies
was evaluated using the Mixed Methods Appraisal Tool, a tool
designed for the systematic mixed research review evaluation
phase [22]. The quality assessment was completed by one
researcher and checked by another researcher. A conflict that
arose regarding the assessment was discussed between the 2
researchers, and an agreement was reached.

The inclusion and exclusion criteria used for the screening
process are presented in Textbox 1.

Textbox 1. The inclusion and exclusion criteria used for the screening process.

Inclusion criteria

• Technology: using smartphone sensors

• Study focus: hand function screening, including hand movement assessment and hand performance measurement

• Clinical assessment: measurement of motor function–related criteria, such as grip strength, posture, and degree of freedom

• Study design: peer-reviewed academic studies

• Language: English

Population: human participants

Exclusion criteria

• Technology: not using a smartphone for hand function assessment

• Study focus: health management and neurocognitive studies

• Clinical assessment: qualitative, non–peer-reviewed, and nonacademic studies

• Study design: systematic reviews, literature reviews, case reports, and letters

• Language: non-English

Population: nonhuman participants

Results

Overview
A total of 8898 records were retrieved from the search. After
removing duplicates, 64.31% (5722/8898) of the records were
filtered at the title and abstract screening stage. After title and
abstract screening, 97.68% (5589/5722) of the records were

removed. The remaining 2.32% (133/5722) of the records
underwent full-text screening. A total of 46 studies were
included after both screening stages and included in the final
review. Figure 1 presents the PRISMA [23] flow diagram.
Multimedia Appendix 3 [6,9-11,24-58] details the results of the
evaluation of included studies based on the Mixed Methods
Appraisal Tool. All 46 studies were published after 2012, and
67% (n=31) of them were published between 2017 and 2023.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram illustrating the screening process for papers
included in this study.

Study Characteristics
Of the 46 studies, 14 (30%) recruited participants with hand
dysfunction, 7 (15%) included only healthy participants, and
23 (50%) recruited both types of participants (Table 1). The

summarized smartphone specification is shown in Table 2. The
age range was 21 to 91 years for patients with hand dysfunction
and 17 to 81 years for healthy participants; the sample size
varied from 1 to 1815.
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Table 1. Characteristics of the studies (n=46).

ReferencesCharacteristic

Participants

[9,24-36]Patients only

[37-41,59,60]Healthy participants only

[6,10,11,29,42-55,61-65]Patients and healthy participants

[56,57]—a

Sex

[25,37]Male only

[58]Female only

[6,9-11,26-28,30,31,33-35,39,40,42,43,45,48,49,52,53,55,56,59-65]Male and female

[24,29,32,36,38,41,44,46,47,50,51,54,57]—

Study design

[9,24-29,31-42,45,46,51,56,57,59,60]Quantitative descriptive study

[43,44,47,48,52,62,64,66]Observation study

[6,10,11,25,30,38,43,44,47-50,52-55,58,61-65]Nonrandomized study

[58]Case-control study

Study duration

[10,28,29,31,39,58,64]0-4 minutes

[59]10 minutes

[48]1.5 hours

[61]10 hours

[9,26,42,52]1-4 weeks

[51,63,66]6-12 weeks

[11,24,25,27,30,32-38,40,41,43-47,49,50,52-57,60,62,65]—

Sample size distribution

[10,24-26,31-33,37-39,42,45,52,57,58,60,64]0-32

[27,28,30,35,40,41,46,47,49,53,55,62,65]33-64

[11,34,51,61,66]65-95

[9,44,48,56]96-126

[43,59]127-189

—190-220

[29]221-252

—253-598

[63]599-629

[36,50,54]630-1851

aNot applicable.
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Table 2. Summary of smartphone specification.

Camera resolutionSensor sampling rateSmartphone typeOperating systemProcessing powerStudy, year

——Nuans Neo Reloaded and
HUAWEI GR5

Android—aMatera et al [26], 2016

—Accelerometer (range
+2 to –2 g, 100 Hz)

——1.2 GHz dual-core pro-
cessor

Miyake et al [24], 2020

——Samsung Galaxy Trend
Plus

Android—García-Magariño et al
[42], 2016

——iPhone 4S，Samsung
Galaxy S4, and Google
Nexus 5

iOS and Android 4.4.2—Bercht et al [25], 2012

——LG Optimus G smart-
phone

Android—Janarthanan et al [39],
2020

—Accelerometer (100
Hz)

iPhoneiOS—Pan et al [28], 2015

—Accelerometer (100
Hz)

Android smartphoneAndroid—Orozco-Arroyave et al
[61], 2020

—————Sarwat et al [32], 2021

—Accelerometer and
gyroscope (20 Hz)

—Android—Kostikis et al [10], 2015

——Galaxy S3 mini and An-
droid phone

Android—Lee et al [43], 2016

—Accelerometer and
gyroscope (+66.6 to

TabletAndroid—Lipsmeier et al [6],
2018

–10 Hz), magnetome-
ter (+66.6 to –7 Hz),
and microphone (44.1
kHz)

—————Sandison et al [45],
2020

——iPhone 5iOS—Halic et al [46], 2014

—————Koyama et al [30],
2021

——iPhone 4iOS—Chén et al [51], 2020

—Custom screen key-
board (1.2 GHz)

Huawei P9 PlusAndroid 7.0—Arroyo-Gallego et al
[62], 2017

——Huawei Mate 9 Pro
smartphone

——Pratap et al [63], 2020

—App touchscreen, ac-
celerometer, and gyro-
scope (50 Hz)

———Waddell et al [64],
2021

—Mobile accelerometer
software (100 Hz)

—Android 4.0—Mousavi et al [56],
2020

—————Lee et al [55], 2016

——Huawei P10 Lite——Hidayat et al [58], 2015

—————Wang et al [37], 2016

———Android—Lee et al [38], 2018

——iPhone XS MaxiOS—Iakovakis et al [44],
2019

——iPhone XS MaxiOS—Modest et al [47], 2019

——iPhoneiOS—Lendner et al [59], 2019

——Samsung Galaxy S3 MiniAndroid—Tian et al [48], 2019
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Camera resolutionSensor sampling rateSmartphone typeOperating systemProcessing powerStudy, year

20 million pixels——Android—Ge et al [27], 2020

——LG Optimus S smart-
phone

Android—Lee et al [9], 2016

——Motorola Moto G IIAndroid 5.0—Reed et al [29], 2022

60 frames per second
and 1920×1080–pixel
resolution

—HTC Desire smartphoneAndroid 2.2—Williams et al [31],
2021

Image resolution:
1980×1080 pixels

—Sony XperiaAndroid—Gu et al [49], 2022

Image resolution:
1980×1081 pixels

—iPhone 5 or a newer de-
vice

iOS—Gu et al [60], 2023

———Android—Prince et al [50], 2018

—————Arora et al [52], 2015

—Smartphone ac-
celerometers (50 Hz)

Huawei Mate 9 Pro——Kassavetis et al [33],
2015

—————Ienaga et al [41], 2022

——iPhone SEiOS—Espinoza et al [34],
2016

20 million pixels————Chén et al [51], 2020

——iPhoneiOS—Surangsrirat et al [36],
2022

60 frames per second,
1920×1080 pixels

—iPhone 11 Pro MaxiOS and Android—Williams et al [53],
2020

———Android—Williams et al [11],
2020

—Smartphone app,
screen, and accelerom-
eter (100 Hz)

—Android—Prince and de Vos [54],
2018

——iPhone 5Ios—Santos et al [65], 2017

2400×1080–pixels
and 64 megapixel
f/1.89

——Android—Porkodi et al [40], 2023

20.7 mega pixel—Sony Xperia Z1——Akhbardeh et al [57],
2015

aNot applicable.

RQ 1: What Types of Hand Dysfunctions Are Studied,
and What Clinical Hand Assessment Tools Are Used?

Overview
The hand dysfunctions discussed in the 46 articles were
classified as an abnormal hand range of motion (ROM; n=18,

39%), hand tremor (n=15, 33%), hand bradykinesia (n=9, 20%),
fine hand use decline (n=9, 20%), hypokinesia (n=4, 9%), and
hand arthritis–related hand dysfunction (n=2, 4%). A total of
27 (59%) studies used clinical hand assessment tools (Table 3).
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Table 3. Hand dysfunction type.

ReferenceHand dysfunction

[24-27,32,35,37-41,45-47,49,59,60,65]Abnormal range of motion

[6,9,10,28,31,33,36,42,48,51,52,54,56,61,63]Tremor

[6,9,11,33,36,43,48,53,54]Bradykinesia

[9,39,44,51,55,61-64]Decline of fine motor skills

[30,32,34,58]Hypokinesia

[29,57]Hand arthritis–related hand dysfunction

Abnormal Hand ROM
ROM describes how far a joint or muscle can move [67]. The
measurement of ROM can indicate joint impairments in patients
or the efficacy of rehabilitation programs [67]. Of the 46 studies,
19 (41%) focused on abnormal ROM, 11 (24%) focused on
wrist ROM, and 10 (21%) focused on finger ROM. Smartphones
were generally placed on the flexor carpi radialis and extensor
pollicis longus [25,37,59] to measure wrist ROM and on the
distal interphalangeal joint and proximal interphalangeal joint
to measure finger ROM [24,25,35,37-39,45,49,60]. In addition,
6 related problems, namely hand injury [24,25,37,38,40,46,65],
wrist injury [26,27,46,47,59], stroke [32,37,39,45], after hand
surgery [41,60], flexor tendon injury [35], and nerve injury [49],
were studied. Most studies (13/19, 68%) showed that the
smartphone-based measurement method had the same reliability
as the conventional goniometer when evaluating the ROM of
healthy people and patients.

Hand Tremor
Hand tremor is a rhythmic, involuntary, and oscillatory (ie,
rotating around a central plane) movement involving hand distal
joints (eg, fingers and wrist) that is regularly recurrent [68]. All
studies, except for 1 study on multiple sclerosis (MS), focused
on PD hand tremors. For PD hand tremor assessment, the
acceleration, rotational velocity, signal shake number and
intensity were collected during daily life activities
[6,10,28,36,42,51,56,61]. The number of taps or accuracy of
each tap was measured during the finger-tapping activity of the
smartphone app [33,48,50,52,63]. Smartphone-based hand
dysfunction assessment shows satisfactory repeatability and
validity when measured against the Movement Disorder Society
of Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
[28,33,36,50,52].

Hand Bradykinesia
Hand bradykinesia is characterized by slowness, reduced
amplitude of movement, and sequence effect [69]. Hand
bradykinesia is observed in patients with PD and patients with
MS. PD and MS bradykinesia were detected in touch gestures,
including finger tapping [9,11,36,43,53,54] and flick and pinch
tactile behaviors [48]. The number of tapping trials and finger
positions were examined to assess bradykinesia in hands. Daily
activities and finger-to-nose tests were performed when holding
the smartphone [6,33]. It was found that smartphones were
comparable to conventional methods (such as MDS-UPDRS
and Modified Bradykinesia Rating Scale) for assessing hand

bradykinesia and may be useful in clinical practice
[11,33,36,53].

Fine Hand Use Decline
Fine hand use refers to the use of small hand muscles to create
movements, such as the use of a pencil to draw [70]. A total of
4 diseases were mentioned: PD [9,44,51,55,61,62], stroke [39],
MS [63], and Huntington disease [64]. This type of hand
dysfunction was assessed through smartphone screen interaction,
such as playing games and typing activities [39]. Users’ hold
time, flight time, and pressure sequences during smartphone
keystroke typing activity were used to quantify fine motor
functions [9,44,51,55,62-64]. Studies show that smartphone has
the potential to detect PD symptoms from the users’ typing
activity, which facilitates the development of digital tools for
remote pathological symptom screening [39,44,61].

Hypokinesia
Hypokinesia is a decline in muscle strength that causes the
muscle to not contract or move as it used to [71]. Three diseases
related to this type of hand dysfunction are stroke [32,58], carpal
tunnel syndrome (CTS) [30], and hand arthritis [34]. Patients
who had a stroke were asked to perform gestures of grasping
and floating [32,58] with a sensor glove worn. Hand
information, such as finger position and velocity, were collected
from patients with CTS as they played a game [30]. Patients
with arthritis participated in power, pinch, and tripod grip tasks
to capture grip measures [34]. These new methods show high
sensitivity and specificity for disease detection and
self-assessment [30,34].

Hand Arthritis–Related Hand Dysfunction
Arthritis is a common condition and is the most frequent cause
of disability in American adults [57]. The most common form
of arthritis is osteoarthritis, followed by inflammatory arthritis
[72]. A method of analyzing hand dysfunction related to hand
arthritis involved capturing photographs of each patient’s hands.
The results indicated that this approach could assist in the
primary care, clinical assessment, and management of patients
with hand arthritis [29].

Hand assessment tools used in the reviewed studies included
clinical scales and instruments (Table 4). Clinical hand
assessment tools were used for 2 purposes in 32 (70%) of the
46 studies: task design (n=7, 15% studies) and smartphone
assessment outcome validation (n=25, 54% studies). The rest
of the studies (14/46, 30%) did not mention the clinical tools.
MDS-UPDRS was the most used clinical scale (15/46, 33%),
while a conventional goniometer was the most used instrument
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(10/46, 22%) [9,24,35,38,40,41,47,49,59,65]. Some studies
used the MDS-UPDRS and the alternative finger-tapping test
as reference tasks to set up experiment tasks. The effectiveness

and reliability of smartphone-based assessment methods were
validated by comparing the results with those of the
MDS-UPDRS and manual goniometry.

Table 4. Clinical hand assessment tools used.

ReferencesClinical scale or instrument

For task design

[9-11]MDS-UPDRSa

[43]CAPSIT-PDb

[9,50,54,62]AFTc

[9]TTTd

For outcome validation

[28,31,33,36,38,39,43,50,52,53,62,64]MDS-UPDRS

[63]PDDSe

[63]Neuro-QoLf

[64]UHDRSg

[34]Disease Activity Score-28

[36]PDQ-8h

[11]MBRSi

[35]Tang criteria

[9,24,35,38,40,41,47,49,59,65]Conventional goniometer

[43]Mechanical tappers

[61]Accelerometer

[57]Electronic digital caliper

aMDS-UPDRS: Movement Disorder Society of Unified Parkinson’s Disease Rating Scale.
bCAPSIT-PD: Core Assessment Program for Surgical Interventional Therapies in Parkinson’s Disease.
cAFT: alternating finger tapping.
dTTT: time-tapping test.
ePDDS: patient-determined disease step.
fNeuro-QoL: quality of life in neurological disorders.
gUHDRS: Unified Huntington Disease Rating Scale.
hPDQ-8: 8-question Parkinson’s Disease Questionnaire.
iMBRS: Modified Bradykinesia Rating Scale.

RQ 2: How Are Smartphone-Based Hand Assessment
Tools Applied in Clinical Practice?
Smartphone-based hand assessment has been applied in 4
different ways. It has been used for the measurement of function

parameters (ie, wrist and finger ROM and hand strength), the
early detection of disease-related dysfunction, real-time
assessment during rehabilitation, and function assessment and
rating (Table 5).
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Table 5. Functions of smartphone-based hand assessment tools.

ReferencesApplication setting and task scenario

Measurement

[24-27,35,37-41,47,49,59,60]Finger or wrist extension or flexion

[25]Finger implement squeeze and finger forward flexor tendon gliding

[34,45]A grip force–tracking task

[9,43]TTTa

[9]RAMb, tremor tracker, and CITc

[65]Wrist pronation and supination

(Early) detection

[42]Daily activity

[10,51]Extended and rest versions of MDS-UPDRSd

[44,51,52,54,55,62]Finger-tapping test

[6]Daily motor active tests

[48]Flick, drag, pinch, and handwriting gestures

[30]Play a game

[28]Finger-to-nose test, pronation supination test, and arm-circle exercise

[29,57]Photographic capture of the patient’s hands

[52]Reaction time test

Real-time assessment during rehabilitation

[26,37,39]Finger and wrist extension

[25]Wrist flexion, wrist extension, finger implement squeeze, and finger forward flexor tendon gliding

[45]A grip force–tracking task

[39,46]Play a game

[32]Grasping, pinching, and waving

[58]Hand grip and flat

Function-level rating

[28,31,33]Hanging gestures

[33,61,63]Finger-to-nose test

[57]Photographic capture of the patient’s hands

[30]Grip force–tracking task

[29,50,61]Extended and rest versions of MDS-UPDRS

[11,33,36,53,63,64]Finger-tapping test

[61]Hold the phone

aTTT: time-tapping test.
bRAM: rapid alternating movement.
cCIT: Cognitive Interference Test.
dMDS-UPDRS: Movement Disorder Society of Unified Parkinson’s Disease Rating Scale.

Of the 46 studies, 18 (39%) focused on the measurement of
hand function parameters such as wrist ROM
[26,27,37,40,41,47,59,65], finger ROM [24,25,35,37-39,45,49],
hand gesture [49], hand dexterity [9], or hand grip strength [34].
Hand grip strength measurement and hand dexterity
measurement were conducted on smartphones and shown to

have good constancy with traditional measurement tools
[16,23,38].

Furthermore, 15 (33%) out of the 46 papers focused on
dysfunction assessment for early disease detection.
Dysfunctions, such as hand tremor (10/46, 22%), hand
bradykinesia (3/46, 7%), fine hand use decline (5/46, 11%), and
hypokinesia (2/46, 4%), were used as biomarkers for certain
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diseases, such as PD [6,10,29,30,42,44,48,51,52,54,55,57,61,62],
CTS [30], and hand arthritis [57,65]. The detection exhibited
high sensitivity and specificity, supporting personalized
treatment plan adjustments and enabling early disease diagnosis
and optimized management [55].

Among the 46 studies, 14 (30%) concentrated on rating hand
dysfunction severity, mostly in PD- or MS-induced hand tremor
(8/46, 17%) and bradykinesia (4/46, 9%). The findings
demonstrate that smartphones can determine the degree to which
the patient is affected by the disease, rating the severity of both
the disease and hand dysfunction [45,67,68].

Furthermore, 8 (17%) of the 46 studies explored how
smartphones were used for real-time hand function assessment
during hand rehabilitation [25,26,32,37,39,45,46,58].
Smartphones provide an interactive interface with guided
exercises, therapeutic games, and performance feedback [26,45].
The results of real-time assessment during rehabilitation can
help increase patients’ motivation and interest, reduce
discontinuity in the rehabilitation process, and lower treatment
costs [25,26,32,37,39,45,46,58].

RQ 3: How Are Smartphones Used to Assess Hand
Function?
The literature showed that smartphones had been used in 4 ways
for hand function assessment: data collection (38/46, 83%

studies), data display (17/46, 37% studies), data transmission
(15/46, 33% studies), and data processing (6/46, 13% studies).

Data Collection
Data were mainly collected via embedded smartphone sensors
or smartphone apps [42]. Accelerometers (12/46, 26%)
[15,24,26,28,33,36,42,51,54,56,61,64] were the most used
built-in smartphone sensors, followed by smartphone cameras
(11/46, 24%) [11,27,29,31,35,40,41,49,53,57,60], gyroscopes
(5/46, 11%) [6,10,51,59,64], and goniometers (2/46, 4%) [38,47]
(Table 6). Some of the smartphone apps (16/46, 35%)
[30,33,43,50,52,63,64] were developed to work as a digital
tapper to collect the number of trials and position of each tap
during the time-tapping test, and AFT task was used to detect
hand use, hand tremor, bradykinesia, or ROM. Accelerometers
can collect rich information, including angles and the rotational
velocity vector of the finger [24,26]. The sampling rate range
of accelerometers was 20 to 100 Hz. By using a smartphone’s
camera, the patient’s hand picture can be captured to extract
information such as wrist and finger extension and flexion,
allowing the measurement of joint ROM or extension [35,41,60].
The camera resolution range was 1920×1080 pixels to
2400×1080 pixels.
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Table 6. Built-in sensors involving data collection.

ReferencesApp nameSensor and measurement

Accelerometers

[24]Google LLC and EHMROMAll angles of DIPja, PIPjb, and MPjc, including the
right and left, active and passive, and extensor and
flexor positions

[42]HTrembAPPdStill acceleration

[15]DNMeThe acceleration vector and the rotational velocity
vector

[28,33,36,51,54,56,61,64]Roche PD Mobile Application (version;
Roche), PD Dr, Apkinson, GEORGE,
mPower, and mobile accelerometer software

Accelerometer signal

[26]HandRehab appOrientation, velocity, and motion

Smartphone app

[30,33,36,43,50,52,54,55,61-64]SmTf, DNM, mPower, Apkinson, ele-
vateMS, ReHand, GEORGE, and HLTapper

Number, time, velocity, position, consistency, ampli-
tude, and accuracy of each tap

[9]DNM150 test parameters

[63]elevateMSKinetic tremor and dysmetria in movement

[40,65]DNM and Angulus appPronation, supination, flexion, and extension

Camera

[27,31]Did not use an appMovement and tremor

[11,31,53]Did not use an appHand video

[29,35,40,41,49,57,60]DNMHand picture

[49]Did not use an appJoints’ angles and key point’s distance

[35,41,60]Did not use an appExtension or flexion of the joint

[60]Did not use an appMovement of finger

[11,53]Did not use an appTapping frequency, amplitude, speed, or rhythm

Gyroscope

[10]DNMGyroscope data in discrete time

[51,64,66]Roche PD Mobile Application (version 1;
Roche) and GEORGE

Gyroscope signal

[59]GyroscopeHeight, rotation, slope, and acceleration

Goniometer

[38]GoniometerFinger flexion at MCPj, PIPj, and DIPj and flexion
angles of the finger

[47]Compass appWrist flexion, extension, supination, and pronation

ROMg

GPS

[26]HandRehab app and newly created smart-
phone apps

Orientation, velocity, and motion

Microphone

[6]Roche PD Mobile Application (version 1)Voice

Pressure sensor

[48]Custom Android app (the name of the app
was not mentioned)

Pressure-based features

[46]DNMFinger pressure

IMUh
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ReferencesApp nameSensor and measurement

[48]Custom Android app (the name of the app
was not mentioned)

IMU–based features

aDIPj: distal interphalangeal joint.
bPIPj: proximal interphalangeal joint.
cMPj: metacarpophalangeal joint.
dHTrembAPP: Hand Trembling Detector App.
eDNM: did not mention.
fSmT: smartphone tapper.
gROM: range of motion.
hIMU: inertial measurement unit.

Data Display
Data display (17/46, 37%) included the display of raw data
(12/46, 26%) [24,26,28,32,34,37,42,45,51,55,58,61], visual
instructions (10/46, 22%) [25,26,28,30,37,39,46,55,63,64], and
information notification [10,61] (2/46, 4%). Data were
frequently displayed in the text form [28,32,34,42,45,51,55,61]
and graphic form [24,26,37,58]. Test details, such as date and
patient information [26,42,45], were usually displayed.
Assessment feedback was also displayed in the form of results
or scores [25,45]. The real-time feedback displayed included
hand motion data [28,45], virtual 3D representation of finger
posture [26], and interactive game interfaces [39].

Data Transmission
Data transmission describes how data are transmitted between
smartphones and external devices (Table 7). Due to limited data

processing capacity, smartphones generally send data to other
resources through Bluetooth, USB dongles, and Wi-Fi for data
processing and storage [6,39,43]. Of the 46 studies, 12 (26%)
transmitted the data to a cloud server through a unidirectional
transfer, meaning data only flowed in 1 direction. Among these
12 studies, 7 (58%) developed a smartphone app to receive the
built-in sensor data [6,10,26,28,32,43,61], and the other 5 (42%)
designed a smartphone app to receive the training data from
external devices (ie, gloves) [25,39,46,58,62]. A total of 3 (%)
of the 46 papers reported that smartphones transmitted data with
an external device via bidirectional communication [32,45,58],
indicating smartphones can send and receive data in both
directions. Furthermore, 2 (%) of the 46 papers discussed data
privacy and security and referred to Health Insurance Portability
and Accountability Act regulations [32].

Table 7. The objects involved in data transmission.

ReferencesReceiver

Remote server

[10,56]Computer

[43]Google Drive

[6]Cloud storage facility

[28,47]Cloud computing

[32,61,62]Remote server

[6,25,26,46]Physician

External device

[32,39,46,58]Glove

[39,45]HandMATE device

Data Processing
Data processing involves the use of smartphones as terminals
to analyze, manipulate, and transform raw data into useful
information or machine-readable content [39]. Among the 46
studies, 6 (13%) used a smartphone app to process data
[24-26,32,39,42], and 1 (2%) reported the smartphone’s
processing power [24]. The smartphone processed motion data
collected from built-in sensors and external devices. Data
collected from built-in sensors, such as ulnar and radius
deviations, were converted into ROM and total active motion
[24,39,42]. Data from external devices’ sensors, such as

flex-sensor signals and electromyography, were transformed
into flexion and extension angles (in degrees) [26,32]. One of
the studies extracted the features from electromyography sensors
and then fed them to an ML algorithm for further gesture
recognition on smartphone apps [25].

Use of Smartphones for Multiple Functions
A total of 21 (46%) of the 46 studies designed smartphones
integrating more than one of the functions mentioned earlier.
The most frequent combination was using a smartphone for
data transmission and data display [25,26,28,32,39,45,46,58,61]
(Table 8). A total of 8 (17%) studies combined ≥3 functions
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[24-26,28,32,39,42,61]. For example, in the study by Bercht et
al [25], the smartphone was designed to integrate processing
capabilities, enabling the real-time reception of game

information from the glove’s flex sensor and then display of
the information on the smartphone screen after local data
processing.

Table 8. Use of smartphones for multiple purposes.

Data displayData transmissionData processingData collectionStudy, year

✓✓✓✓Matera et al [26], 2016

✓✓✓Miyake et al [24], 2020

✓✓✓García-Magariño et al [42], 2016

✓✓✓Bercht et al [25], 2012

✓✓✓Janarthanan et al [39], 2020

✓✓✓Pan et al [28], 2015

✓✓✓Orozco-Arroyave et al [61], 2020

✓✓✓Sarwat et al, 2021 [32]

✓✓Kostikis et al [10], 2015

✓✓Lee et al [43], 2016

✓✓Lipsmeier et al [6], 2018

✓✓Sandison et al [45], 2020

✓✓Halic et al [46], 2014

✓✓Koyama et al [30], 2021

✓✓Chén et al [51], 2020

✓✓Arroyo-Gallego et al [62], 2017

✓✓Pratap et al [63], 2020

✓✓Waddell et al [64], 2021

✓✓Mousavi et al [56], 2020

✓✓Lee et al [55], 2016

✓✓Hidayat et al [58], 2015

RQ 4: What Statistics or ML Algorithms Are Used for
Hand Function Assessment?

Overview
Among the 46 studies, 39 (85%) used statistical methods to
process the hand motion data, including parameters such as
tapping speed, error, and speed during smartphone screen
interaction; 20 (43%) applied ML to analyze the raw data or

statistical features; and 17 (37%) used both statistical and ML
methods. By contrast, 4 (9%) studies used neither statistics nor
ML for data analysis [37,39,47,59].

Statistical Methods
Overall, 21 types of statistical methods were used to process 6
types of hand motion raw data (Table 9). The most used method
was summary statistics (23/46, 50%), followed by normalization
(7/46, 15%) and Fourier transform (6/46, 13%).
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Table 9. Studies classified by statistical methods.

ReferencesData processed and statistical method

Data collected during the smartphone screen interaction (ie, tapping speed, error, speed, path, pressure, and distance)

[43]Pythagorean theorem

[33,48,54,61,62,64]Normalization

[9]Bootstrap multiple regression

[11,30,36,43,50,52,53,55,62]Summary statistics (range, mean, median, and SD)

[9]Akaike information criterion

[11,33,53]Fourier transform

Accelerometer values and rotational velocity vector

[42]ObtainDirection

[42]ObtainAlpha

[10,64]Band-pass filter

[10]Spectral analysis

[10,28]Fourier transform

[34]Summary statistics (range, mean, median, and SD)

[51]Mass univariate

[51]Feature-wise correlation test

[51]Regularization

[33]Butterworth high-pass filter

[56]EMDa

Smartphone video or picture

[31]Fourier transform

[57]Normalization

[60]Summary statistics (minimum, maximum, mean, median, and SD)

[29]One-hot encoding categorical and scaling numerical responses

[11]Savitzky-Golay filter

Initiating, terminating flexion, extension, and ROMb

[27,32,35,40,45]RMSc error

FSRd, IMUe, or pressure sensor signals

[41]Ōtsu’s 11 binarization

[45]RMS error

[32,37]Summary statistics (range, mean, median, and SD)

[58]SMAf filtering

Variables for model prediction (ie, age, sex, and occupation)

[59]Linear mixed models

[9]Multiple linear regression

aEMD: empirical mode decomposition.
bROM: range of motion.
cRMS: root mean square.
dFSR: force sensing resistor.
eIMU: inertial measurement unit.
fSMA: simple moving average.

J Med Internet Res 2024 | vol. 26 | e51564 | p. 15https://www.jmir.org/2024/1/e51564
(page number not for citation purposes)

Fu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ML Methods
In total, 16 types of ML methods were identified (Table 10).
They were applied for 4 purposes: disease detection, disease
severity evaluation, disease prediction, and feature aggregation.
Support vector machines (SVMs) were the most used ML
method [10,28,48,49,53,56,62]. The input features of SVMs
were preprocessed acceleration signals, such as the sums of
squared magnitudes [10] and path- or time-based features [48].
Tian et al [60] reported SVMs as a reliable ML method for early
PD detection and multivariate classification with 0.89 sensitivity
and 0.88 specificity. Gu et al [49] reported the highest gesture
classification accuracy of 1, with a sensitivity of 1 and
specificity of 1.

Among the 46 studies, 5 (11%) applied logistic regression for
disease severity classification and prediction and hand gesture
discrimination [32,51,53,54,62]. The spatiotemporal features
from the pixel coordinate data during finger tapping and
accelerometer waveforms were the input for this ML method.
Logistic regression showed an average accuracy of 88.5% (SD
8.03%; grasp), 83% (SD 10.9%; pinch), and 86.5% (SD 12.57%;

wave) [32] and an accuracy of 0.61 and area under the curve
(AUC) of 0.59 in PD prediction [53].

Of the 46 studies, 3 (7%) [29,44,54] exploited convolutional
neural networks to distinguish patients with PD from healthy
controls based on hold time, flight time, and pressure sequences
[44]. Convolutional neural networks exploited the finger-tapping
rate data for PD severity identification with an AUC of 0.64
and accuracy of 0.62 [54]. They also worked as the base layer
for training 2 image preprocessing models and for discriminating
PD tremors from other types of tremors with 95% agreement
with the accelerometer [29].

Among the 46 studies, 7 (15%) [10,32,48,49,51,53,62] compared
the classification performance of different ML algorithms. For
example, Kostikis et al [10] applied decision tree (DT), Naive
Bayes, C4.5 DT, and a bagged ensemble of DTs for
distinguishing patients with PD from healthy participants based
on PD hand tremor features. Bagged ensemble of DTs performed
better than other classifiers, with an accuracy of 0.90 for the
healthy group and 0.82 for the PD group and an AUC of 0.94.
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Table 10. Studies classified by MLa algorithms.

ReferencesValidity and accuracyML and feature

SVMb

[10]Distinguishing patients with PDg from healthy participants:
sensitivity=0.56 and specificity=1

Magαc, magωd, sdαe, and mAmpωf

[48]In healthy controls: sensitivity=0.89 and specificity=0.88Path-based, time-based, pressure-based, and IMUh-based
features and additional features for handwriting gestures and
pinch gestures

[28]PD hand resting tremor detection: sensitivity=0.77 and ac-
curacy=0.82

The total, peak and fraction power and average acceleration
of the motion data

[49]Highest gesture classification: accuracy=1, sensitivity=1,
and specificity=1

Angles of the MCPji, PIPjj, DIPjk, and CMCjl of fingers;
webspace; etc

[56]Tremor activity identified with the highest accuracy of
0.91, specificity of 0.90, and sensitivity of 0.90

SFSm to select the best feature from the mean, SD, skewness,
etc, from accelerometer signals

[62]The typing feature aggregated with an AUCn of 0.88 (lin-
ear-SVM)

Touchscreen typing features: covariance, skewness, and kur-
tosis analysis of the timing information

[53]PD diagnosis predicted with an accuracy of 0.63 and AUC
of 0.60 (linear-SVM)

Tapping frequency, amplitude, energy spectral density, and
peak-to-peak variability

[53]PD diagnosis predicted with an accuracy of 0.69 and AUC

of 0.68 (SVM-RBFo)

Tapping frequency, amplitude, energy spectral density, and
peak-to-peak variability

Logistic regression

[32]Patient performance assessed with average accuracy of
88.5% (SD 8.03%; grasp), 83% (SD 10.9%; pinch), and
86.5% (SD 12.57%; wave)

The mean, RMSp, SMAq, and SD for each axis of the ac-
celerometer and gyroscope

[62]The typing feature aggregated with an AUC of 0.87Touchscreen typing features: covariance, skewness, and kur-
tosis analysis of the timing information

[53]PD diagnosis predicted with an accuracy of 0.61 and AUC
of 0.59

Tapping frequency, amplitude, energy spectral density, and
peak-to-peak variability

[54]PD severity classified with an AUC of 63.1 (SD 2.11) ac-
curacy of 59.5 (SD 0.96)

13 spatiotemporal features from the pixel coordinate data
about speed, rhythm, accuracy, and fatigue and 28 features
from 3 accelerometer waveforms, frequency, and temporal
domains

[51]Patients with PD distinguished from healthy participants
with an accuracy of 0.94, sensitivity of 0.95, and specificity
of 0.94 (multivariate logistic regression)

Features selected according to formulas and parameters

CNNr

[44]Classification of patients with PD and healthy controls: in
the clinic, mean performance=0.89, sensitivity=0.79, and

4 statistical features from HTs, FTt, and pressure sequences

specificity=0.79; in the wild, mean performance=0.79,
sensitivity=0.74, and specificity=0.78

[29]Discriminant PD tremor with 95% agreement with ac-
celerometer

12 features, such as sex, age, and the duration of symptom

[54]PD severity identified with an AUC of 63.5 (SD 1.56) and
accuracy of 62.1 (SD 0.95)

Raw data of finger tapping

RFu

[49]Highest gesture classification: accuracy=1, sensitivity=1,
and specificity=1

Angle of fingers’ MCPj, PIPj, DIPj, and CMCj; webspace;
etc

[52]In discriminating participants with PD from controls, sen-
sitivity=0.96 (SD 0.2) and specificity=0.97

Mean, SD, and median acceleration

[54]PD severity identified with an AUC of 64.1 (SD 1.08) and
accuracy of 60.2 (SD 1.56)

13 spatiotemporal features from the pixel coordinate data
about speed, rhythm, accuracy, and fatigue and 28 features
from 3 accelerometer waveforms, frequency, and temporal
domains
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ReferencesValidity and accuracyML and feature

Linear regression

[10]Patients with PD distinguished from healthy participants
with a sensitivity of 0.74 and specificity of 1

Magα, magω, sdα, and mAmpω

[49]Highest gesture classification: accuracy=1, sensitivity=1,
and specificity=1

Angle of fingers’ MCPj, PIPj, DIPj, and CMCj; webspace;
etc

AdaBoost

[34]Patients with PD distinguished from healthy participants
with a sensitivity of 0.83 and specificity of 0.85

Magα, magω, sdα, and mAmpω

[62]The typing feature aggregated with an AUC of 0.82Touchscreen typing features: covariance, skewness, and kur-
tosis analysis of the data timing information

KNNv

[25]Validated with self-defined hand gesture performance
classification standards with an accuracy of >95%

Time domain: the signal length, mean value, RMS value,
number of vertices, and number of baseline crosses; frequency
domain: fundamental frequency, region length, and Fourier
variance

NBw

[10]Patients with PD distinguished from healthy participants
with a sensitivity of 0.56% and specificity of 1

Magα, magω, sdα, and mAmpω

[53]PD diagnosis predicted with an accuracy of 0.69 and AUC
of 0.70

Tapping frequency, amplitude, energy spectral density, and
peak-to-peak variability

XGBoostx

[51]Patients with PD distinguished from healthy participants
with an accuracy of 0.81, a sensitivity of 0.83, and a
specificity of 0.9

Features selected according to formulas and parameters

[32]Patient performance assessed with average accuracy of
88% (SD 9.88%; grasp), 83.5% (SD 7.74%; pinch), and
82% (SD 14.71%; wave)

The mean, RMS, SMA, and SD for each axis of the accelerom-
eter and gyroscope

C4.5 DTy

[10]Patients with PD distinguished from healthy participants
with a sensitivity of 0.83 and specificity of 0.75

Magα, magω, sdα, and mAmpω

BagDTz

[10]Patients with PD distinguished from healthy participants
with a sensitivity of 0.82 and specificity of 0.90

Magα, magω, sdα, and mAmpω

DT

[10]Patients with PD (accuracy rate 82%) distinguished from
healthy people (accuracy rate 90%)

Magα, magω, sdα, and mAmpω

HARaa

[6]Unlabeled PD activity test data: PD balance activity test:
99.5%; gait activity test: 96.9%; and distinguishing between
resting and gait activities: 98%

Sustained phonation: MFCC2ab; rest tremor: skewness; postu-
ral tremor: total power; finger tapping; balance: mean velocity;
and gait: turn speed

Anomaly detection and an autoencoder

[30]Participants with and participants without CTSac classified
with a sensitivity of 0.94, a specificity of 0.67, and an AUC
of 0.86

The position, time, or velocity of the thumb movement

Elastic net

[51]Patients with PD distinguished from healthy participants
with an accuracy of 1, a sensitivity of 0.95, and a specificity
of 1

Features selected according to formulas and parameters

DNNad
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ReferencesValidity and accuracyML and feature

[54]PD severity classified with an AUC of 65.7 (SD 1.05) and
accuracy of 61.2 (SD 1.07)

13 spatiotemporal features from the pixel coordinate data, in-
cluding speed, rhythm, accuracy, and fatigue, and 28 features
from 3 accelerometer waveforms, frequency, and temporal
domains

aML: machine learning.
bSVM: support vector machine.
cmagα: the sums of squared magnitudes of the acceleration.
dmagω: the sums of squared magnitudes of the rotation rate vector.
esdα: the sums of absolute differences in the acceleration vector.
fmAmpω: the maximum sums of the 3 axial components of the rotation vector ω calculated by Fourier transform.
gPD: Parkinson disease.
hIMU: inertial measurement unit.
iMCPj: metacarpophalangeal joint.
jPIPj: proximal interphalangeal joint.
kDIPj: distal interphalangeal joint.
lCMCj: carpometacarpal joint.
mSFS: feature selection algorithm.
nAUC: area under the curve.
oRBF: radial basis function.
pRMS: root mean square.
qSMA: simple moving average.
rCNN: convolutional neural network.
sHT: hold time.
tFT: flight time.
uRF: random forest.
vKNN: K-nearest neighbor.
wNB: naive Bayes.
xXGBoost: extreme gradient boosting.
yDT: decision tree.
zBagDT: bagged ensemble of decision trees.
aaHAR: human activity recognition.
abMFCC2: mel-frequency cepstral coefficient2.
acCTS: carpal tunnel syndrome.
adDNN: deep neural network.

Discussion

To the best of our knowledge, this is the first systematic review
on the primary design ideas and development of
smartphone-based technologies for hand function assessment.

RQ 1: What Types of Hand Dysfunctions Are Studied,
and What Assessment Inventory Tools Are Used?
In the literature, smartphones only assessed 6 types of hand
dysfunctions, namely abnormal ROM, tremor, bradykinesia,
fine motor skill decline, hypokinesia, and hand arthritis–related
hand dysfunction. The reason might be that smartphones are
limited in capturing the complexity and variety of hand
movements to measure all aspects of clinically relevant hand
functions [73]. Other types of hand dysfunctions such as
decreased grip strength, altered sensation, and impaired
coordination are important biomarkers clinically, requiring the
future development of smartphones to collect related parameters
[74].

ROM is a critical and objective measurement that can reflect
various diseases, such as arthritis, trauma, and stroke [75].
Abnormal ROM was the most studied smartphone-based hand
function assessment [24-27,32,37-41,45-47,49,51,59,60,65],
indicating the advantages of smartphones in obtaining ROM
parameters. Therefore, the further development of smartphones
to achieve better accuracy and reliability in capturing ROM is
warranted. With the advancement of built-in accelerometers
and gyroscopes in smartphones, capturing and analyzing hand
ROM data have become more accessible [75,76]. Furthermore,
smartphones can accurately measure both dynamic ROM and
static ROM, providing good potential for long-term monitoring
even without the presence of professionals [27].

PD is the most studied disease that causes hand dysfunction.
PD can cause multiple hand dysfunctions, such as tremors
[6,9,10,42,48], bradykinesia [6,9,43,48], abnormal ROM
[37,39,45], and fine hand use decline [44]. It provides evidence
that smartphones have the potential to provide a comprehensive
assessment platform for multiple hand dysfunctions [9,42-44].
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In addition, chronic neurodegenerative diseases, such as PD,
exhibit progressive symptoms that require continuous
monitoring [7]. However, existing clinical assessment tools,
such as MDS-UPDRS, tend to be subjective, time constrained,
and time consuming [77]. Smartphone apps could exploit the
multiple built-in sensors in smartphones to detect changes
indicative of the disease progression or treatment response
[78-82], indicating that smartphones can be prosperous tools
for managing chronic hand dysfunction in the long run.

Above all, for a reliable clinical application of hand dysfunction
assessment, the following should be achieved:

1. Gold standards should be established and validated, specific
to the smartphone as an assessment platform.

2. Smartphone assessment should be customizable according
to an individual’s condition and rehabilitation expectations
[83].

3. Smartphone assessment procedures and tasks should adhere
to the operational specifications of the clinical assessment
criteria [2,84].

4. An individualized rehabilitation plan should be generated
from the assessment and evaluated in real-time pace to
monitor the individual’s rehabilitation progress.

RQ 2: How Are Smartphone-Based Hand Assessment
Tools Applied in Clinical Practice?
Real-time assessment during hand rehabilitation is beneficial
in clinical practice because it allows the modification of the
rehabilitation tasks and goals according to an individual’s
specific needs and ongoing recovery progress [85]. In our
review, studies on real-time smartphone-based assessment were
primarily conducted between 2016 and 2022, indicating an
emerging trend focusing on real-time hand assessment. A
potential technical challenge may lie in identifying the best
sensor configuration and feature extraction method for hand
function assessment [6,84].

The early detection of a degenerative disease through hand
assessment is important because it can help slow down further
disease progression [86]. The reviewed literature discussed
conditions such as PD and CTS [34,36,37]. Future work could
use smartphones for biomarker acquisition to monitor
disease-relevant physiological and behavioral symptoms and
provide personalized rehabilitation guidance [87-89]. The use
of smartphones for biomarker acquisition offers advantages,
including portability, accessibility, affordability,
noninvasiveness, and continuous monitoring, benefiting both
patients and clinicians [90]. However, challenges exist in terms
of data quality, reliability, and privacy concerns [91].

RQ 3: How Are Smartphones Used to Assess Hand
Function?
Smartphones were mostly used for data collection. With more
sensors embedded in smartphones, richer and more dimensional

data can be collected for function measurement. For example,
the resolution of smartphones’ built-in camera is between
1920×1080 and 2400×1080 pixels, which is higher than the
commonly used camera resolution in clinical settings, which
typically ranges from 1280×720 to 1920×1080 pixels [8].
Compared to smartwatches and ring-shaped sensors,
smartphones are more indispensable in people’s daily lives,
making them an easily available assessment tool and requiring
no extra investment like others [92]. While webcams provide
high resolution and frame rates, they rely on a stable internet
connection and can potentially raise privacy and security
concerns [93]. In comparison, smartphones can collect data
offline and protect the patient’s privacy by encrypting data,
anonymizing personal information and storing data locally [40].
This also shows that smartphones, as general-purpose devices,
do not require excessive hardware requirements, are available
at a low cost, and are easy to access. Smartwatches and
wearables usually feature multiple sensors similar to those found
in smartphones, allowing for the collection of hand motion and
physiological data with real-time feedback. However, their
functionality is confined by a fixed position of the body,
resulting in the limited scope of data collection [14]. In contrast,
smartphones, being portable devices, are not constrained by
fixed positions, granting convenience and flexibility for hand
dysfunction assessment. Ring-shaped sensors offer high
precision and accuracy and provide real-time data. However,
their use may be limited due to comfort and portability
constraints [16]. Smartphones are equipped with data processing
modules, which can analyze and process data in real time,
providing better accuracy at the same cost [94]. In terms of user
experience, as a more familiar product, smartphones reduce the
users’ learning cost and provide a more convenient,
personalized, and friendly hand dysfunction evaluation
experience, which helps improve user participation and
satisfaction [19]. However, one of the weaknesses of using a
smartphone for data collection may be data errors or biases due
to the smartphone user’s lack of training, supervision, and
quality control [95].

Using smartphones for data processing was the least mentioned
in the studies [24-26,32,39,42]. The benefits of smartphone data
processing are manifold, including mobility, real-time
processing, and interactive nature [96]. This empowers users
to access and process data at any time, receive real-time
feedback, and seamlessly interact with their smartphones,
regardless of location [97]. Despite the advantages, there are
also obstacles to overcome, including short battery life, limited
storage capacity, and weak processing power [98]. Therefore,
most of our reviewed studies focused on the wireless
transmission of data to computers or the cloud for subsequent
data processing [6,10,39,46]. This approach would allow for
efficient data management and processing without consuming
the limited storage space available in smartphones (Figure 2)
[10].

J Med Internet Res 2024 | vol. 26 | e51564 | p. 20https://www.jmir.org/2024/1/e51564
(page number not for citation purposes)

Fu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The primary design ideas for the development of smartphone-based hand function assessment technology. AI: artificial intelligence; FSR:
force sensing resistor; IMU: inertial measurement unit; ML: machine learning.

In this review, among the 46 studies, 7 (15%) exclusively
involved healthy participants, while 23 (50%) recruited both
patients and healthy participants. Consequently, 65% (30/46)
of the studies included healthy participants, marking a
noteworthy finding. In smartphone-based hand dysfunction
assessment, incorporating baseline data from healthy participants
is important for several reasons [37-41,59,60]. First, a standard
reference range is typically derived from data collected from

healthy participants, which could enable a more precise
evaluation of a patient’s hand dysfunction. By comparing the
hand function of patients to that of healthy participants, potential
abnormalities can be identified more effectively, assisting in
the accurate diagnosis of issues and facilitating the
implementation of appropriate treatments
[6,10,11,29,42-55,61-65]. Second, during the rehabilitation
process, the patient’s recovery progress and improvement can
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be quantified by comparing against data from health people
[45,46]. The effectiveness of the treatment can be more
accurately assessed, and rehabilitation protocols could be
adjusted for better outcomes. Third, it’s necessary to establish
a normal reference range from healthy participants, including
different ages, sex, and demographic characteristics. A broader
set of data is available, ensuring that assessments are not limited
to a specific group and can cover a broader population, resulting
in a complete and more comprehensive understanding of hand
function assessment [99]. In summary, remote assessment
platforms have been developed for a wide range of users,
including professionals, caregivers, and patients [2,10].
However, certain aspects need to be considered when using
smartphones for hand assessment. They are as follows
[28,100-102]:

1. Establishing standardized data formats is of utmost
importance to ensure compatibility and consistency in data
analysis. Inconsistent data formats can pose challenges in
data analysis, making it difficult to compare and analyze
data obtained from various smartphones.

2. It is necessary to ensure the robustness of smartphone
processors or network connections. The effectiveness of
the smartphone processor and network can impact the
frequency of data updates, which may result in delays when
acquiring and displaying real-time data.

3. It is necessary to consider privacy and security. It is
important to prioritize data security and privacy by
implementing app-appropriate encryption measures during
data transmission to mitigate potential ethical and legal
issues and ensure compliance with relevant data-protection
regulations.

RQ 4: What Statistics or ML Algorithms Are Used for
Hand Function Assessment?
Statistical methods (39/46, 85%) were more commonly used
than ML methods (20/46, 43%). The most commonly used
statistical method was summary statistics such as mean and SD.
Summary statistics offer concise insights into data, facilitating
comparisons and simplifying analysis [103]. However, they can
be subjective, relying on expert experience, and may distort
information [104]. In addition, due to the multiple independent
variables present in hand function assessment [83], it is
important to consider statistical methods that are capable of
analyzing a multifactor model, such as multiple linear regression
[105].

ML methods have been increasingly used in various health care
apps [106]. In the studies in our review, ML methods were
mainly used for detecting and classifying patient hand posture,
analyzing and classifying behavior patterns (ie, tremor,
bradykinesia, and ROM), and identifying disease severity and
prediction. Our review found SVMs to be the most commonly
used ML algorithm, particularly for disease classification. This

may be attributed to the fact that SVMs are capable of
effectively addressing multi-dimensional data with small sample
sizes while providing a good generalization performance and
the ability to work with the primary processing stage data [107].
The main limitation of the SVM algorithm is its inability to
handle multiclass classification problems without additional
modifications or extensions [108].

Strengths and Limitations of the Study
The strengths of this review are as follows: (1) the relevant
database searches were conducted in a comprehensive and
reproducible manner; (2) this was the first review that aimed to
comprehensively discuss the role of smartphones and their
functionalities in hand assessment from a holistic perspective;
and (3) this review provides an analytical demonstration of the
technical feasibility and advantages of using smartphones for
hand function assessment across various domains, including
sensor support, clinical practice, and application scenarios. It
recommends potential directions for future studies in this field,
such as multisensor fusion, gold-standard establishment,
real-time assessment, and ML algorithms for data analysis
exploration. This review also has some limitations. First, given
that smartphone-based hand function assessment is at its nascent
stage, the number of relevant studies is limited. This may
contribute to a lack of sufficient evidence, completeness, and
comprehensiveness in research materials, posing challenges in
supporting viewpoints, drawing conclusions, and gaining a
comprehensive understanding of the field. Second, this review
encompassed only studies in the English language. Third, due
to the exploratory and developmental nature of this topic, the
literature quality varied, with potential limitations, such as
inconsistency and a lack of high-quality reference studies and
as well as meta-analyses.

Conclusions and Future Research
This systematic review focused on how smartphones are used
for hand function assessment. It covered the evaluation and
measurement of hand dysfunction caused by various diseases,
different embedded smartphone sensors, and statistical and
artificial intelligence methods for hand function assessment.
The evidence demonstrated that smartphones could facilitate a
convenient, inexpensive, and reliable hand-functional assessment
[9,10,44]. Future research could (1) explore how to develop a
gold standard for smartphone-based hand function assessment;
(2) take advantage of smartphones’ integrated systems with
multiple sensors to collect patients’ data in various dimensions
to assess hand function holistically; and (3) develop ML methods
that are more suitable for processing data collected by
smartphones. On the basis of the growing capabilities of
smartphones for data collection and analysis, digital technology
holds promise for bringing revolutionary changes to hand
function assessment.
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