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Abstract

Background: Given the additional risk of suicide-related behaviors in adolescents with allergic rhinitis (AR), it is important to
use the growing field of machine learning (ML) to evaluate this risk.

Objective: This study aims to evaluate the validity and usefulness of an ML model for predicting suicide risk in patients with
AR.

Methods: We used data from 2 independent survey studies, Korea Youth Risk Behavior Web-based Survey (KYRBS; n=299,468)
for the original data set and Korea National Health and Nutrition Examination Survey (KNHANES; n=833) for the external
validation data set, to predict suicide risks of AR in adolescents aged 13 to 18 years, with 3.45% (10,341/299,468) and 1.4%
(12/833) of the patients attempting suicide in the KYRBS and KNHANES studies, respectively. The outcome of interest was the
suicide attempt risks. We selected various ML-based models with hyperparameter tuning in the discovery and performed an area
under the receiver operating characteristic curve (AUROC) analysis in the train, test, and external validation data.

Results: The study data set included 299,468 (KYRBS; original data set) and 833 (KNHANES; external validation data set)
patients with AR recruited between 2005 and 2022. The best-performing ML model was the random forest model with a mean
AUROC of 84.12% (95% CI 83.98%-84.27%) in the original data set. Applying this result to the external validation data set
revealed the best performance among the models, with an AUROC of 89.87% (sensitivity 83.33%, specificity 82.58%, accuracy
82.59%, and balanced accuracy 82.96%). While looking at feature importance, the 5 most important features in predicting suicide
attempts in adolescent patients with AR are depression, stress status, academic achievement, age, and alcohol consumption.

Conclusions: This study emphasizes the potential of ML models in predicting suicide risks in patients with AR, encouraging
further application of these models in other conditions to enhance adolescent health and decrease suicide rates.

(J Med Internet Res 2024;26:e51473) doi: 10.2196/51473
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Introduction

Background
Allergic rhinitis (AR) is a common atopic disorder that affects
approximately 14% of the global population [1-3]. AR is called
allergic rhinoconjunctivitis when the eyes are involved and is
an inflammatory condition characterized by at least one of the
following symptoms: nasal congestion, rhinorrhea, itching, and
sneezing [4,5]. In addition, it has been found to affect quality
of life measures such as sleep, physical and social functioning,
and learning and memory [6]. Furthermore, AR has been found
to be associated with depressive symptoms, including suicidal
ideation and suicide attempts [7-13]. Suicide rates in adolescents
continue to increase, and suicide is the leading cause of
adolescent death in Korea [14]. Adolescents are by nature
susceptible to mental health problems owing to the many
transitions involved in this period of their life, including changes
in school, living situations, pressures of fitting into peer groups,
and building their own identity. This can invoke helplessness,
insecurity, stress, and a loss of control, possibly accelerating
suicide rates in adolescents, a leading cause of adolescent death
in South Korea [14]. Owing to this substantially burden in
adolescents, it is important to further understand and investigate
potential methods of mitigating the risk that AR adds to an
already pressing issue. There is a possibility that the suicide
rate increased because of the decrease in the quality of life
among adolescents with AR [15]. Therefore, we will predict
the suicidal attempts among those with AR using machine
learning (ML) models.

Suicide prediction is elusive and thus adds to the challenges of
suicide prevention worldwide. No practical methods for
anticipating individual suicides or stratifying individuals
according to risk have been well established [16,17]; however,
ML-based models is a potential method for more accurately
identifying adolescents at risk of suicide. A systematic review
on the prediction of self-injurious thoughts and behaviors with
ML determined that despite its limited application, ML has

made a significant advancement in suicide prediction [18].
Another review found that ML has the potential to improve
suicide predictions compared with traditional suicide prediction
models [18]. Such studies illustrate the rapidly growing potential
of ML.

Objectives
Given the additional risk of suicide-related behaviors in
adolescents with AR, it would be relevant to use the growing
field of ML to better evaluate this risk. Using nationwide
population data, this study aimed to develop an ML-based model
to predict suicide attempts among patients with AR using 2
independent nationwide cohorts in South Korea. We expect that
this ML model produced from these data will have a high
balanced accuracy and area under the receiver operating
characteristic curve (AUROC) and consequently assist in better
understanding suicide risk in adolescents with AR.

Methods

Study Design and Participants
This study aimed to develop an ML model to predict suicidality
in Korean adolescents aged 13 to 18 years using clinical features
extracted from 2 large independent data sets: the Korea Youth
Risk Behavior Web-based Survey (KYRBS) and the Korea
National Health and Nutrition Examination Survey (KNHANES)
[19,20]. Figure 1 shows the workflow diagrams of the KYRBS
and KNHANES data sets, which both offer nationally
representative samples and estimates of the total adolescent
population in South Korea. The original sample size for KYRBS
was 1,067,169. However, after excluding patients without
totaling 767,701, the final study population in the KYRBS data
set was reduced to 299,468. Similarly, the KNHANES data set
initially comprised 152,791 participants. However, after
excluding 140,724 individuals either aged <13 or >19 years,
869 individuals with missing values on school performance,
and 10,365 individuals without AR, the final study population
in the KNHANES data set was 833.
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Figure 1. Study workflow. AR: allergic rhinitis; KNHANES: Korea National Health and Nutrition Examination Survey; KYRBS: Korea Youth Risk
Behavior Web-based Survey.

We included Korean adolescents aged between 13 and 18 years
who completed the survey between 2005 and 2021 in KYRBS
and between 1998 and 2021 in KNHANES. The outcome of
suicidality was defined for people who attempted suicide more
than once within 1 year [12], and covariates included age, sex,

BMI (kg/m2), residential area, household income, parents’ level
of education, academic achievement, smoking status, stress
status, and feelings of sadness and despair.

We trained, validated, and externally tested the ML model’s
predictive accuracy and potential clinical efficacy in identifying
the presence of mental health conditions using data from
adolescents who met the same inclusion and exclusion criteria
as those in the KYRBS data set. This study followed the
guidelines outlined in the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis statement (Table S1 in Multimedia Appendix 1).

Ethical Considerations
The study protocol was approved by the institutional review
board of the Korean Centers for Disease Control and Prevention
Agency and Kyung Hee University (2022-06-042), and all
participants provided written informed consent.

Variables and Algorithm Selection
To solve the imbalance issue of our data set, we used the
synthetic minority oversampling technique to balance the
training data set. The synthetic minority oversampling technique

synthesizes new data from existing data using k-nearest
neighbors and inserts them into the original data set [21]. The
data set was randomly divided into 4:1 at a base training set
(462,203/577,854, 79.98%) and a base test set (115,651/577,854,
20.01%) with equal distribution of different classes of patient
data. This study aimed to develop a predictive model with a
small number of variables and good performance; a model
trained with the basic training set is needed to compare with a
model with fewer variables than the basic training set. In
addition, a corresponding test set was required to evaluate each
training set, including the basic training set. Continuous
variables were compared using the 2-tailed t test or
Mann-Whitney U test, and categorical variables were compared
using the chi-square test [22]. The odds ratios of the variables
were determined by logistic regression (method: enter). Data
set variables were analyzed using SAS software (version 9.3;
SAS Institute Inc).

ML Model
In this study, as depicted in Figure 2, we analyzed the original
KYRBS data set. The data set was divided into training and test
data sets using a 4:1 ratio, with the training data set being used
for model development and the test data set being used for model
evaluation. We applied various ML algorithms to the training
data set and assessed their performance based on the AUROC
scores on the test data set. Models that exhibited high
performance were selected for further investigation.

J Med Internet Res 2024 | vol. 26 | e51473 | p. 3https://www.jmir.org/2024/1/e51473
(page number not for citation purposes)

Lee et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Model architecture. The original Korea Youth Risk Behavior Web-based Survey (KYRBS) data set was partitioned into training and test sets
in a 4:1 ratio. The training set was used for model development, with performance assessed using area under the receiver operating characteristic curve
(AUROC) scores on the test set. Selected high-performing models were further validated using an external Korea National Health and Nutrition
Examination Survey (KNHANES) data set. The train data results were derived from the training data set, the test results were derived from the test data
set, and the external results were derived from the additional KNHANES data set. CV: cross validation.

For external validation, we used an additional data set from the
KNHANES, which contained the same columns as the original
KYRBS data set. To enhance our understanding of the model’s
performance and its variability, we applied bootstrapping
techniques. Bootstrapping was repeated 10,000 times to evaluate
the model’s performance on the external data set [23]. This
process involved creating numerous resamples from the data
set, with each sample being used to calculate the model’s
performance metrics. We calculated the mean and SE of these
performance metrics across all the bootstrap samples. This
technical approach provided a robust measure of the model’s
performance, accounting for variability and uncertainty in the
external data set. The performance of the selected models on
this external data set was evaluated, and their performance
metrics were compared with those obtained from the training
and test data sets. In summary, the train results were derived
from the training data set, the test results were derived from the
test data set, and the external results were derived from the
external validation data set provided by KNHANES.

As shown in Figure 1, in the data preprocessing phase of this
study, we took several steps to clean and prepare the data for
efficient analysis. We used SAS software for data processing,
which included categorizing and handling the missing values
from the data set from the survey. Moreover, to address variables
present in KYRBS but absent in KNHANES, we filled the
missing values in KNHANES with the median values from
KYRBS. These steps included handling missing values,
categorizing categorical variables, and scaling numerical features
using SAS software. The preprocessing steps aimed to ensure
that the data were in a suitable format for the subsequent
application of various ML algorithms. It is crucial to preprocess
the data effectively, as this can substantially impact the
performance and generalizability of the models being developed.
Moreover, we used a 10-fold cross-validation approach to assess
the performance of the ML models more reliably. This method
involves partitioning the original data set into 10 equal-sized
subsets, with each subset being used as a test data set once,

whereas the remaining subsets serve as the training data set.
The process was repeated 10 times, and the performance metrics,
such as the AUROC score, sensitivity, specificity, accuracy,
balanced accuracy score, precision, and F1-score, were averaged
over these iterations.

To estimate the uncertainty and variability of our results, we
calculated the 95% CIs for each performance metric, including
the AUROC score, sensitivity, specificity, accuracy, balanced
accuracy score, precision, and F1-score during the 10-fold
cross-validation process to the train and test data sets. The 95%
CI provides a range of plausible values for the performance
metrics and is a useful tool for determining the stability and
generalizability of the models. Data processing was performed
using SAS software, and ML analysis was performed using
Python (version 3.9.16), TensorFlow-gpu (version 2.6.0), Keras
(version 2.6.0), NumPy (version 1.23.5), pandas (version 1.5.3),
scikit-learn (version 1.2.2), Matplotlib (version 3.7.1), and shap
(version 0.42.1). The ML models that were used were tree-based
models, which are random forest, XGBoost, AdaBoost, and
light gradient boost. We used GridSearch to fine-tune the
hyperparameters of the models with the objective of maximizing
the AUROC scores. The model hyperparameters were tuned
using GridSearch, which uses many combinations of different
hyperparameters to obtain the best AUROC score. GridSearch
is an exhaustive search method that systematically explores a
range of hyperparameter combinations, evaluating the
performance of each combination on the given data set. By
selecting the optimal set of hyperparameters from multiple
variables using GridSearch, we selected from a range of
hyperparameters for the random forest model. Finally, we chose
number estimators at 100, maximum depth at 6, and maximum
features as sqrt. This approach aimed to improve the
performance and generalizability of our models, ultimately
leading to more accurate and reliable predictions.

Subsequently, we focused on a detailed analysis of feature
impact within the model. Feature importance was assessed using
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the mean decrease in impurity within the random forest model,
indicating how each feature contributes to more uniform node
splits. In addition, the Seaborn library was used for visualizing
this importance, enhancing the interpretability of the results,
and aiding in the identification of the most impactful features
for the model’s predictive accuracy. This approach provides
effective feature selection and model optimization.

To interpret and gain insights into the model’s predictions, we
calculated the Shapley Additive Explanations (SHAP) values
from the random forest model. SHAP is a popular
model-agnostic, local explanation approach designed to explain
any given classifier. Lundberg and Lee [24] proposed the SHAP
value as a united approach to explain the output of any ML
model. We used the force plot and waterfall plot of the random
forest model. This visualizes the contribution of each feature
to the model’s prediction for a specific instance, showing how
each feature pushes the model’s output from the base value. In
contrast, the waterfall plot provides a detailed, step-by-step
breakdown of how each feature contributes to moving the
model’s output from the expected value to the actual prediction.

Software and Libraries
All computations, model training, and evaluations were executed
using Python (version 3.9.16), TensorFlow-gpu (version 2.6.0),
Keras (version 2.6.0), NumPy (version 1.23.5), pandas (version
1.5.3), scikit-learn (version 1.2.2), and Matplotlib (version
3.7.12) for ML tasks and data wrangling. Visualization was
facilitated using Matplotlib (version 3.7.2), Seaborn (version
0.12.2), and shap (version 0.42.1).

Results

Demographic Characteristics
This study was conducted using nationwide population data
from 2 independent cohorts in South Korea to develop and
investigate an ML-based model for predicting suicide attempts
in patients with AR. The demographic characteristics of the
study population were as follows: both cohorts consisted of
patients with AR, with the KYRBS cohort including 299,468
patients and the KNHANES cohort comprising 833 adolescents
aged 13 to 18 years. Table 1 shows the baseline characteristics
of the KYRBS and KNHANES. In the original KYRBS cohort,
the sex distribution revealed that among 299,468 patients,
152,789 (51.02%) were male patients and 146,679 (48.98%)
were female patients. In the extravalidated KNHANES cohort,
comprising 833 patients, 492 (59.06%) were male patients and
341 (40.94%) were female patients. The patient samples in both
cohorts encompassed diverse socioeconomic backgrounds,
including varying levels of education, income, and occupation.
Overall, the study included a total of 300,301 patients with AR
from diverse demographic backgrounds, ensuring a
representative sample for the development and evaluation of
the ML model. By considering these demographic
characteristics, this study aimed to provide valuable insights
into the risk of suicide attempts among individuals with AR,
with a particular focus on the adolescent population.
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Table 1. Demographic characteristics of Korea Youth Risk Behavior Web-based Survey (KYRBS) data (2005-2022) and Korea National Health and
Nutrition Examination Survey (KNHANES) data cohorts (1998-2022) among excluded and included participants.

KNHANESKYRBSCharacteristics

Non-ARARTotalNon-ARARaTotal

54738336306767,701299,4681,067,169Total, n

15.29 (1.65)15.12 (1.65)15.26 (1.65)15.35 (1.69)15.55 (1.69)15.41 (1.69)Age (years), mean (SD)

Sex, n (%)

2846 (52.00)492 (59.06)3338 (52.93)396,134 (51.60)152,789 (51.02)548,952 (51.44)Male

2627 (48.00)341 (40.94)2968 (47.07)371,567 (48.40)146,679 (48.98)518,217 (48.56)Female

Region, n (%)

4456 (81.42)716 (85.95)5172 (82.02)354,418 (46.17)141,229 (47.16)495,593 (46.44)Urban

1017 (18.58)117 (14.05)1134 (17.98)413,283 (53.84)158,239 (52.84)571,576 (53.56)Rural

BMI (kg/m2), n (%)b

1226 (22.40)166 (19.93)1392 (22.07)196,148 (25.55)69,716 (23.28)265,832 (24.91)Underweight (<18.5)

2803 (51.22)396 (47.54)3199 (50.73)406,036 (52.89)159,736 (53.34)565,813 (53.02)Normal (18.5-23.0)

643 (11.75)112 (13.45)755 (11.97)84,908 (11.06)35,368 (11.81)120,270 (11.27)Overweight (23.0-25.0)

801 (14.64)159 (19.09)960 (15.22)80,609 (10.50)34,678 (11.58)115,254 (10.80)Obese (≥25.0)

Smoking status, n (%)

5151 (94.12)794 (95.32)5945 (94.28)605,870 (78.92)244,576 (81.67)850,534 (79.70)Nonsmoker

322 (5.88)39 (4.68)361 (5.72)161,831 (21.08)54,892 (18.33)216,635 (20.30)Smoker

Alcohol consumption, n (%)

4287 (78.33)678 (81.39)4965 (78.73)621,376 (80.94)247,540 (82.66)868,996 (81.43)Nondrinker

883 (16.13)126 (15.13)1009 (16.00)84,294 (10.98)30,995 (10.35)115,361 (10.81)1-2 days

216 (3.95)23 (2.76)239 (3.79)26,716 (3.48)9643 (3.22)36,284 (3.40)3-5 days

51 (0.93)6 (0.72)57 (0.90)16,506 (2.15)5301 (1.77)21,770 (2.04)6-9 days

36 (0.66)0 (0.00)36 (0.57)18,809 (2.45)5989 (2.00)24,758 (2.32)≥10 days

Parents’ highest educational level, n (%)

N/AN/AN/Ac324,841 (42.32)160,545 (53.61)485,455 (45.49)University graduate or high-
er

N/AN/AN/A215,467 (28.07)67,919 (22.68)283,440 (26.56)High school graduate

N/AN/AN/A16,275 (2.12)2995 (1.00)19,209 (1.80)Middle school graduate or
below

N/AN/AN/A211,118 (27.50)68,009 (22.71)279,065 (26.15)Unknown

Academic achievement (percentile), n (%)

N/AN/AN/A75,081 (9.78)24,586 (8.21)99,674 (9.34)Low (0-19)

N/AN/AN/A183,511 (23.91)64,535 (21.55)248,117 (23.25)Lower middle (20-39)

N/AN/AN/A226,442 (29.50)83,822 (27.99)310,226 (29.07)Middle (40-59)

N/AN/AN/A193,307 (25.18)83,162 (27.77)276,397 (25.90)Upper middle (60-79)

N/AN/AN/A89,360 (11.64)43,363 (14.48)132,755 (12.44)High (80-100)

Household income, n (%)

734 (13.41)71 (8.52)805 (12.77)119,301 (15.54)43,962 (14.68)163,277 (15.30)Low (0-39)

1375 (25.12)198 (23.77)1573 (24.94)380,012 (49.50)143,745 (48.00)523,767 (49.08)Middle (40-59)

1752 (32.01)282 (33.85)2034 (32.26)206,281 (26.87)85,977 (28.71)292,298 (27.39)Upper middle (60-79)

1612 (29.45)282 (33.85)1894 (30.03)62,107 (8.09)25,784 (8.61)87,828 (8.23)High (80-100)
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KNHANESKYRBSCharacteristics

Non-ARARTotalNon-ARARaTotal

Asthma, n (%)

5332 (97.42)763 (91.60)6095 (96.65)73,4383 (95.66)255,596 (85.35)990,013 (92.77)No

141 (2.58)70 (8.40)211 (3.35)33,318 (4.34)43,872 (14.65)77,156 (7.23)Yes

Dermatitis, n (%)

5027 (91.85)639 (76.71)5666 (89.85)652,316 (84.97)203,758 (68.04)856,083 (80.22)No

446 (8.15)194 (23.29)640 (10.15)115,385 (15.03)95,710 (31.96)211,086 (19.78)Yes

Stress status, n (%)d

851 (15.55)105 (12.61)956 (15.16)142,562 (18.57)47,166 (15.75)189,743 (17.78)Mild

3171 (57.94)458 (54.98)3629 (57.55)325,862 (42.44)123,860 (41.36)449,705 (42.14)Moderate

1228 (22.44)237 (28.45)1465 (23.23)219,743 (28.62)92,745 (30.97)312,467 (29.28)High

223 (4.07)33 (3.96)256 (4.06)79,534 (10.36)35,697 (11.92)115,254 (10.80)Severe

Sadness and despair in the past year, n (%)

5097 (93.13)764 (91.72)5861 (92.94)537,775 (70.05)202,830 (67.73)740,615 (69.40)No

376 (6.87)69 (8.28)445 (7.06)229,926 (29.95)96,638 (32.27)326,554 (30.60)Yes

Suicidal thoughts in the past year, n (%)

4721 (86.26)788 (94.60)5509 (87.36)647,709 (84.37)250,265 (83.57)898,023 (84.15)No

752 (13.74)45 (5.40)797 (12.64)119,992 (15.63)49,203 (16.43)169,146 (15.85)Yes

Suicide attempt in the past year, n (%)

5420 (99.03)821 (98.56)6241 (98.97)741,599 (96.60)289,136 (96.55)1,030,779
(96.59)

No

53 (0.97)12 (1.44)65 (1.03)26,102 (3.40)10,332 (3.45)36,390 (3.41)Yes

aAR: allergic rhinitis.
bAccording to Asia-Pacific guidelines, BMI is divided into 4 groups: underweight (<18.5 kg/m2), normal (18.5-22.9 kg/m2), overweight (23.0-24.9

kg/m2), and obese (≥25.0 kg/m2).
cN/A: not applicable.
dStress was defined by receipt of mental health counseling owing to stress.

ML Model Results
As shown in Figure 3 and Figure S1 in Multimedia Appendix
1, upon conducting extensive model evaluations, it was found
that the random forest model was the best model in predicting
suicide attempts in patients with AR. The train data results

revealed that the random forest model achieved a sensitivity of
76.83 (95% CI 76.31-77.35), a specificity of 75.62 (95% CI
75.04-76.20), an accuracy of 76.22 (95% CI 76.07-76.38), a
balanced accuracy of 76.22 (95% CI 76.07-76.38), a precision
of 75.91 (95% CI 75.57-76.25), an F1-score of 76.37 (95% CI
76.19-76.54), and an AUROC of 84.12 (95% CI 83.98-84.27).
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Figure 3. The area under the receiver operating characteristic curve (AUROC) of 4 different machine learning algorithms in the train, test, and external
validation data set. KNHANES: Korea National Health and Nutrition Examination Survey; KYRBS: Korea Youth Risk Behavior Web-based Survey;
ROC: receiver operating characteristic.

In contrast, the AdaBoost model yielded slightly different results
with a sensitivity of 78.29 (95% CI 78.11-78.46), a specificity
of 75.02 (95% CI 74.82-75.22), an accuracy of 76.65 (95% CI
76.56-76.75), a precision of 75.81 (95% CI 75.68-75.94), an
F1-score of 77.03 (95% CI 76.93-77.12), and an AUROC of
84.42 (95% CI 84.34-84.50).

However, when these models were evaluated on a separate test
set, their performance varied. The random forest model obtained
a sensitivity of 77.61 (95% CI 77.43-77.79), a specificity of
75.03 (95% CI 74.83-75.23), an accuracy of 76.32 (95% CI
76.16-76.49), a balanced accuracy of 76.32 (95% CI
76.16-76.49), a precision of 75.66 (95% CI 75.49-75.83), an
F1-score of 76.62 (95% CI 76.46-76.78), and an AUROC of
84.18 (95% CI 84.07-84.28). Conversely, the AdaBoost model
showed a sensitivity of 78.14 (95% CI 77.95-78.33), a specificity

of 75.18 (95% CI 74.78-75.58), an accuracy of 76.66 (95% CI
76.40-76.92), a balanced accuracy of 76.66 (95% CI
76.40-76.92), a precision of 75.89 (95% CI 75.57-76.21), an
F1-score of 77.00 (95% CI 76.77-77.23), and an AUROC of
84.27 (95% CI 84.06-84.48).

For external validation, an independent data set, KNHANES,
was used. The random forest model achieved a sensitivity of
91.72 (95% CI 91.55-91.88), a specificity of 77.36 (95% CI
77.33-77.39), an accuracy of 77.57 (95% CI 77.54-77.60), a
balanced accuracy of 84.54 (95% CI 84.46-84.62), and an
AUROC of 89.84 (95% CI 89.78-89.90). Meanwhile, the
AdaBoost model’s external validation results revealed a
sensitivity of 75.09 (95% CI 74.84-75.34), a specificity of 82.09
(95% CI 82.06-82.11), an accuracy of 81.99 (95% CI
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81.96-82.01), a balanced accuracy of 78.59 (95% CI
78.46-78.72), and an AUROC of 89.12 (95% CI 89.06-89.18).

On the basis of the comprehensive results, the random forest
model demonstrated superior performance compared with the
AdaBoost model when evaluated on both internal and external
data sets. In addition, the area under the precision-recall curve
for the random forest model, a measure of model performance
under conditions of class imbalance, was 81.98 (95% CI
79.88-84.08), as shown in Figure S1 in Multimedia Appendix
1. This indicates the model’s robust ability to maintain precision
across various levels of recall.

Feature Importance
Table 2 shows that the random forest model identified sadness
and despair (53.1%) as the most influential feature in predicting
suicide attempts in patients with AR, followed by stress status
(28.35%), academic achievement (5.18%), age (4.08%), alcohol
consumption (2.96%), household income (1.65%), sex (1.56%),

smoking status (1.33%), BMI (kg/m2; 0.69%), region (0.47%),
parents’ highest educational level (0.27%), atopic dermatitis
(0.23%), and asthma (0.14%) in descending order of importance.

Table 2. Feature importance of the random forest model.

Importance, %Feature

53.1Sadness and despair

28.35Stress status

5.18Academic achievement

4.08Age

2.96Alcohol consumption

1.65Household income

1.56Sex

1.33Smoking status

0.69BMI (kg/m2)a

0.47Region

0.27Parents' highest educational level

0.23Atopic dermatitis

0.14Asthma

aAccording to Asia-Pacific guidelines, BMI is divided into 4 groups: underweight (<18.5 kg/m2), normal (18.5-22.9 kg/m2), overweight (23.0-24.9

kg/m2), and obese (≥25.0 kg/m2).

SHAP Value
We addressed a deeper visual interpretation of the SHAP values
within our ML model. Figure S2 in Multimedia Appendix 1
shows a waterfall plot, distinctively showcasing the cumulative
contribution of each feature to a single prediction. We
interpreted individual predictions by starting from the initial
estimate and sequentially incorporating the influence of each
feature to reach the final prediction. E[f(x)] refers to the average
predicted output of the model across the entire data set,
providing insights into the model’s overall prediction tendency.
The starting point of the illustration, denoted as E[f(X)]=0.50,
represents the model’s average prediction for the given data set.
Among the variables, sadness and despair stood out, boosting
the prediction by 0.16 and ranking as the most influential factor.
Conversely, stress status, school performance, and sex reduced
the prediction by 0.1, 0.02, and 0.01, respectively. This
visualization offers a clear insight into the profound influence
each feature wields in predicting adolescent suicidal thinking.
Our ML model notably underscores substantial reliance on
sadness and despair and stress status features. Moreover, in the
force plot, features pushing the prediction higher are usually
shown in one red color, whereas those pushing the prediction

lower are shown in blue, clearly displaying the push and pull
effect of each feature on the model’s prediction. This type of
visualization will allow us to see the balance of each effect at
each individual prediction level, further clarifying the roles of
sadness despair, stress status, and other features in assessing
the risk of adolescent suicide attempts.

Code Availability
On the basis of the results of the ML model, we established a
web-based application for policy makers or health system
managers to support their decision-making process for cases
involving suicidal attempts in adolescents with AR [25]. An
example of a web interface and the results is shown in Figure
S3 in Multimedia Appendix 1. Custom code for the website is
available on the internet [26].

Discussion

Principal Findings
The study results showed that ML models can predict suicide
attempts in patients with AR with relatively high accuracy. The
random forest model is the best ML model to predict suicide
attempts among Korean adolescents with AR, with an AUROC

J Med Internet Res 2024 | vol. 26 | e51473 | p. 9https://www.jmir.org/2024/1/e51473
(page number not for citation purposes)

Lee et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of 84.12% (original data set) and 89.87% (external validation
data set). While looking at feature importance, the 5 most
important features in predicting suicide attempts in adolescent
patients with AR are depression, stress status, academic
achievement, age, and alcohol consumption.

To our knowledge, this is the first study to use an ML model in
the context of patients with AR and suicidality, especially at
this population level. These results reinforce the importance for
clinicians to pay close attention to atopic conditions such as AR
when screening for suicide risk as well as to help identify the
most important risk factors in such patients.

Comparison With Previous Studies
In concordance with our findings, studies on suicide-related
behavior prediction using ML have shown great promise. A
study found that ML for suicide risk prediction in children and
adolescents with electronic health records was able to detect
53% to 62% of suicide-positive participants with 90% specificity
[27], and a case-control study of first-time suicide attempts with
a cohort of >45,000 patients demonstrated accurate and robust
first-time suicide attempt prediction [28], with the best
predicting model achieving an AUROC of 0.932. A study that
used the Korea Welfare Panel Study to develop an ML algorithm
determined that >80% of individuals at risk of suicide-related
behaviors could be predicted by various mental and
socioeconomic characteristics of the respondents [29]. In
addition, ML together with in-person screening has been found
to result in the best suicide risk prediction [30], illustrating its
potential to be used by clinicians in the medical field. These
studies, as well as our study, support the continued need to build
and improve ML models for predicting suicide risk, especially
for at-risk patients.

As discussed, adolescents remain at a high risk for
suicide-related behaviors because of their unique social situation.
A study identified that significant risk factors for suicide in
youth include a history of mental disorders, previous suicide
attempts, impulsivity, family structure or environment,
interpersonal strain, school problems and academic stress status,
etc [31]. This is reflected in the findings of this study that
showed adolescent’s age, academic achievement, BMI group,
and household income as some of the most important
contributors to suicide attempt prediction in adolescents with
AR. In addition, it has been observed that atopic dermatitis and
asthma, although less common than the other risk factors,
contribute to this already high burden of risk.

Plausible Mechanism
This study shows the importance of understanding what puts
adolescents at risk for suicide, especially in the context of AR.
There is a proposed pathogenic mechanism that connects atopy
and its associated risk of increased suicidality. Allergic
inflammatory mediators, interleukin (IL)-4, IL-5, and IL-13,
are released and perpetuated by “allergic” helper T subtype 2
(TH2) cells [32,33]. Along with atopic dermatitis and asthma,
AR is associated with systemic increases in such cytokines [34].
Early life overexposure to IL-4, which can occur because of
TH2 sensitization from allergic disease, has been reported to
reduce myelination and lead to cognitive impairment and

developmental delays [35], and these effects have been found
to be inhibited with IL-4 neutralization [36]. Allergy-mediated
cytokines can also lead to aberrations in rapid eye movement
(REM) sleep, increased REM latency, increased arousal, and
decreased REM duration [37], thereby reducing sleep quality,
quality of life, and overall happiness. In addition, TH2
sensitization has been shown to possibly lead to negative effects
on the developing brain, leading to increased
attention-deficit/hyperactivity disorder, depression, anxiety,
and suicidal ideation [38]. These mechanisms of action point
toward a functional correlation between atopy and psychological
disorders, including depression. This study helps to elucidate
which other risk factors further contribute to such patients’
already increased risk.

Strengths and Limitations
This study had several limitations. As the data sets only
contained Korean adolescents, this model may not extend to
the global adolescent population. South Korea’s unique cultural
and environmental setting may particularly affect the
generalizability of the study. In the validation data set,
participants aged <13 and >19 years were treated as missing
data, and only patients with AR were analyzed, resulting in a
low figure of 1%. This is because the KNHANES data set targets
all ages, and not just adolescents; hence, it lacks the specificity
for adolescents compared with the KYRBS data set. However,
this data set represents South Korea and is used in studies as an
external validation for the KYRBS data set [39-41]. In addition,
the risk calculator that we produced was purely created for
academic purposes, and its application should be limited to that
scope. It is to be used as an example of what could be developed
in the future with further refinement of ML models and our
understanding of AR and suicide risk. The observed results are
not intended to guide clinical management at this stage. As for
the strengths of our study, to the best of our knowledge, this is
the first study to create an ML model to predict suicide attempts
in adolescents with AR. It is important to continue to investigate
the role of atopic conditions in exacerbating suicide risk and to
further understand how such patients may be affected by their
disease process in the context of depression and suicide-related
behaviors. Our model has the potential to make a significant
impact on improving suicide risk assessment, early
identification, and effective interventions for patients with AR,
and it is important to further investigate the usefulness of ML
and suicidality in patients with atopic diseases.

Clinical and Policy Implications
The findings of this study have various implications for
clinicians and policy makers. It reveals the importance of
screening adolescent patients with allergic diseases such as AR
for suicidality. It can be assumed that as symptoms of atopy
worsen, the risk for suicide also increases, and thus, it is
important to encourage physicians to treat and pay close
attention to their patients with allergies. These findings may
also encourage psychiatrists to begin screening for allergies in
their patients with depression or who are at risk of suicide
attempts. Moreover, this ML-derived algorithm can be used by
clinicians to independently screen their patients for the risk of
suicide attempts. This can be done quickly and efficiently in
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the outpatient setting and can be incorporated as a tool to
improve health outcomes for patients with atopic diseases. The
relatively high accuracy of this model encourages further
research into developing similar ML models for other atopic
diseases, including atopic dermatitis and asthma. For policy
makers, these findings illustrate the importance of raising
awareness of the contribution of allergic diseases, especially
untreated ones, to increased rates of suicide. As part of this
awareness, it is critical to highlight the potential benefits of
interventions such as anti-inflammatory diets and fasting on
mental health [42,43]. If the general population understands the
risks, they can become more diligent in bringing adolescent
patients to their clinicians to be screened and treated for their
allergies. They will then be able to use an ML model such as
this study to uniquely understand each patient’s individualized
suicide risk based on their various risk factors, including
academic achievement and stress status. From this perspective,
this ML algorithm holds great potential for improving the lives
of adolescents affected by AR and its consequences.

Conclusions
ML models are a new and innovative field of study that show
great potential in predicting suicide, a task that has proven
difficult for clinicians thus far. This study confirms this potential
and demonstrates its accuracy in the context of AR. Being able
to identify patients with a specific risk factor and understand
their unique risks for suicide is incredibly important and relevant
for clinicians of all different specialties. This encourages the
development of ML models not only in other atopic conditions
such as asthma and atopic dermatitis but also in conditions
outside of atopy. Further research should be conducted to
investigate the utility of these ML models in the clinical field
with the goal of decreasing suicide rates in the already
vulnerable group that is adolescents. Although much research
remains to be done, this new and exciting field of ML holds
promise for improving the health of patients with atopic
diseases.
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Abbreviations
AR: allergic rhinitis
AUROC: area under the receiver operating characteristic curve
IL: interleukin
KNHANES: Korea National Health and Nutrition Examination Survey
KYRBS: Korea Youth Risk Behavior Web-based Survey
ML: machine learning
REM: rapid eye movement
SHAP: Shapley Additive Explanations
TH2: helper T subtype 2
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