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Abstract

Background: To accurately capture an individual’s food intake, dietitians are often required to ask clients about their food
frequencies and portions, and they have to rely on the client’s memory, which can be burdensome. While taking food photos
alongside food records can alleviate user burden and reduce errors in self-reporting, this method still requires trained staff to
translate food photos into dietary intake data. Image-assisted dietary assessment (IADA) is an innovative approach that uses
computer algorithms to mimic human performance in estimating dietary information from food images. This field has seen
continuous improvement through advancements in computer science, particularly in artificial intelligence (AI). However, the
technical nature of this field can make it challenging for those without a technical background to understand it completely.

Objective: This review aims to fill the gap by providing a current overview of AI’s integration into dietary assessment using
food images. The content is organized chronologically and presented in an accessible manner for those unfamiliar with AI
terminology. In addition, we discuss the systems’ strengths and weaknesses and propose enhancements to improve IADA’s
accuracy and adoption in the nutrition community.

Methods: This scoping review used PubMed and Google Scholar databases to identify relevant studies. The review focused on
computational techniques used in IADA, specifically AI models, devices, and sensors, or digital methods for food recognition
and food volume estimation published between 2008 and 2021.

Results: A total of 522 articles were initially identified. On the basis of a rigorous selection process, 84 (16.1%) articles were
ultimately included in this review. The selected articles reveal that early systems, developed before 2015, relied on handcrafted
machine learning algorithms to manage traditional sequential processes, such as segmentation, food identification, portion
estimation, and nutrient calculations. Since 2015, these handcrafted algorithms have been largely replaced by deep learning
algorithms for handling the same tasks. More recently, the traditional sequential process has been superseded by advanced
algorithms, including multitask convolutional neural networks and generative adversarial networks. Most of the systems were
validated for macronutrient and energy estimation, while only a few were capable of estimating micronutrients, such as sodium.
Notably, significant advancements have been made in the field of IADA, with efforts focused on replicating humanlike performance.

Conclusions: This review highlights the progress made by IADA, particularly in the areas of food identification and portion
estimation. Advancements in AI techniques have shown great potential to improve the accuracy and efficiency of this field.
However, it is crucial to involve dietitians and nutritionists in the development of these systems to ensure they meet the requirements
and trust of professionals in the field.
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Introduction

Background
Dietary assessment is a technique for determining an
individual’s intake, eating patterns, and food quality choices,
as well as the nutritional values of consumed food. However,
this technique’s procedures are costly, laborious, and
time-consuming and rely on specially trained personnel (such
as dietitians and nutritionists) to produce reliable results.
Consequently, a strong need exists for novel methods having
improved measurement capabilities that are accurate,
convenient, less burdensome, and cost-effective [1]. Instead of
relying solely on client self-report, taking food photos before
eating has been incorporated into traditional methods, such as
a 3-day food record with food images, to reduce missing food
records, incorrect food identification, and errors in portion size
estimation. However, this technique still requires well-trained
staff to translate food image information into reliable nutritional
values and does not solve labor-intensive and time-consuming
issues.

The application of computer algorithms to translate food images
into representative nutritional values has gained interest in both
the nutrition and computer science communities. This
combination has resulted in a new field called image-assisted
dietary assessment (IADA), and various systems have been
developed to address these limitations, ranging from simple
estimation equations in early systems to more complex artificial
intelligence (AI) models in recent years. By applying IADA
alongside the increasing use of smartphones and devices with
built-in digital cameras, real-time analysis of dietary intake data
from food images has become possible with accurate results,
reduced labor, and greater convenience, thus gaining attention
among nutrition professionals. However, the technical nature
of this field can make it difficult to understand for those without
a background in computer science or engineering, leading to
the low involvement of nutrition professionals in its
development. This gap is the rationale for us to conduct this
review.

Objectives
The objective of this review is to bridge that knowledge gap by
providing an up-to-date overview of the gradual enhancement
of AI integration in dietary assessment based on food images.
The information is presented in chronological order and in a
manner that is understandable and accessible to those who may
not be familiar with the technical jargon and complexity of AI
terminologies. In addition, the advantages and limitations of
these systems are discussed. Finally, we proposed auxiliary
systems to enhance the accuracy of IADA and its potential
adoption within the nutrition community.

Methods

Overview
To conduct this scoping review, we followed the methodology
suggested by Arksey and O’Malley [2] and adhered to the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews)
guidelines [3].

Search Strategy
We searched 2 web-based databases, PubMed and Google
Scholar, between February 2023 and March 2023, using the
following terms: ((“food image”[Title/Abstract]) AND
(classification[Title/Abstract] OR recognition[Title/Abstract]
OR (“computer vision”[Title/Abstract]))) and “artificial
intelligence,” “dietary assessment,” “computer vision,” “food
image” recognition, “portion size,” segmentation, and
classification, respectively.

Eligibility Criteria
This review included studies that focused on AI techniques used
for IADA, specifically AI models, systems, or digital methods
for food recognition and food volume estimation. For mobile
apps or systems, we considered only articles that explain
algorithms beyond mobile apps, prototype testing, or conducting
clinical research. Studies that used noncomputational techniques,
such as using food images as a tool for training human portion
estimation, are excluded. Eligible articles were published in
peer-reviewed journals or conference papers and written in
English.

Selection Process
We used Zotero (Corporation for Digital Scholarship) reference
management software to collect search results using the add
multiple results function. All automatic data retrieval functions
were disabled to prevent data retrieval from exceeding Google
Scholar’s traffic limitation. Zotero’s built-in duplicate merger
was used to identify duplicated records, and unduplicated
records were exported to Excel online (Microsoft Corp). In
Excel, all authors independently screened article types, titles,
and abstracts. The screening process removed all nonrelated
titles or abstracts, review and editorial articles, non-English
articles, or conference abstracts without full text. For thesis
articles, the corresponding published articles were identified
using keywords from the title, first author, or corresponding
author whenever possible. Each article required 2 independent
reviewers’ approval. In cases of conflict, a full-text review was
necessary to resolve disagreements. After the initial screening
process, the full texts of articles were obtained to assess
eligibility. All full-text articles, whether they were excluded or
not, and review articles were thoroughly read to identify
interesting or related articles. These were classified as articles
from other sources.
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Data Extraction
A data extraction table was constructed, including the system
name, classification algorithm, portion size estimation algorithm,
accuracy of classification or portion estimated results, and the
system’s noticeable advantages and drawbacks. Data were
extracted from full texts.

Results

Literature Findings
We retrieved 44 (8.4%) items from PubMed, while Google
Scholar provided 478 (91.6%) results from the search terms,

giving a total of 522 items retrieved. In total, 122 (23.4%)
duplicate items were removed using Zotero’s built-in duplicate
merger. The remaining 400 (76.6%) deduplicated items were
screened based on their titles and abstracts, resulting in 104
(19.9%) records for full-text review. After the full-text review
process, 72 (13.8%) articles were included in this study. In
addition, we manually identified and included 12 (2.3%)
additional articles from other sources. An overview of the
literature identification method and results is shown in Figure
1, and the PRISMA-ScR checklist is available in Multimedia
Appendix 1.

Figure 1. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) flowchart of the
structured literature search, screening, and selection methodology.

Traditional Dietary Assessment Methods
When measuring individual food intake, dietary assessment
methods are typically divided into 2 sequential processes:
methods to obtain dietary intake and methods to estimate the
nutritional values of food. Principally, obtaining an individual’s
intake can be done by recording all consumed foods, beverages,
herbs, or supplements with their portion sizes on a day-to-day
basis or within a specific time frame (eg, a week) based on
variation in the nutrients of interest. These methods were
developed early on and can be performed manually. Due to their

simplicity, some methods are frequently used in nutrition
professionals’ practices.

The 24-hour dietary recall (24HR) method is the simplest way
to measure dietary intake, but accurately obtaining dietary intake
information can be very challenging. The participant or their
caregiver are asked by a trained interviewer to recall the
participant’s food intake within the last 24 hours. This method
relies heavily on the client’s memory and estimation of food
portion size [4]. Unintentional misreporting of food intake is
common, as clients often forget some foods. Underreporting of
portion size is common because clients are not familiar with
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estimating food portion sizes [5,6]. In participants who are
overweight or obese, intentional underreporting is also common
[7]. Although this method is the simplest for determining dietary
intake, it takes approximately 1 hour to complete each interview.
Moreover, a single 24HR result does not satisfactorily define
an individual’s usual intake due to day-to-day variations in
eating habits.

Estimated food records (EFRs) are more reliable but
time-consuming. Clients are asked to record all food and
beverage intake during eating times for a specified period.
Details of food are needed along with the portion sizes estimated
by the client and rounded to household units (eg, half cup of
soymilk with ground sesame and 4 tablespoons of kidney beans
without syrup). To improve accuracy, training in estimating
portion size using standard food models is required. The EFR
places a burden on the clients, as they need to record all eating
times. Moreover, some clients temporarily change their intake
habits during recording to minimize this burden, while others
may intentionally not report certain foods to cover up certain
eating habits. Food portion size estimation errors are sometimes
found, but taking food photographs before and after eating can
lower these errors [8-12].

A standardized weighing scale can be used to avoid errors
caused by human estimation of portion sizes. This technique is
known as weighed food records and is considered the gold
standard for determining personal intake. However, it is
impractical to weigh all eaten food in the long term because it
becomes a burden for the client to measure the weight of food
eaten throughout the day [4]. This technique also only eliminates
portion size estimation errors, while other issues with EFRs
may still persist.

After retrieving dietary intake information from sources, such
as 24HR, EFR, or weighed food records, the next step is to
estimate the representative nutritional value of the food using
a food composition table. If the recorded foods match the food
items and their description in an available food composition
table, the nutritional values can be obtained by multiplying the
consumed food weight directly. However, if the food items are
not found, the food needs to be analyzed and broken down into
its components. The nutritional values of each component can
then be obtained from the food composition table (or its nutrition
label) and multiplied by the actual weight of each consumed
component. When the portion size is recorded instead of its
actual weight, the estimated weight can be obtained using
standardized portion sizes from the food composition table.
Nutrient analysis software can easily accomplish this task.

IADA Methods

Overview
Digital devices are often used for dietary assessment. The first
well-documented attempt to develop such a digital device was
called Wellnavi by Wang et al [8]. Although the device yielded
accurate results, its usability was limited by the technologies

of the time, including short battery life, poor image quality, a
bulky body, and a less sensitive touch screen [10].

Several attempts have been made to use generic devices, such
as Palm (Palm Inc) PDAs [13], compact digital cameras [14],
and smartphones [15], instead of inventing a specific food
recording device. In using these devices, users reported a
decrease in the burden of completing food recording when
compared with traditional methods [16,17]. However, these
devices still rely heavily on dietitians or nutritionists to analyze
the nutritional values of food items.

Recent advancements in mobile phone technologies, including
high-performance processors and high-quality digital cameras,
have created the opportunity to invent a food image analysis
system on smartphones. While the exact origins of applying AI
for IADA research are uncertain, one well-documented attempt
to develop a simple system on smartphones was that of DiaWear
[18]. The system implemented an artificial neural network,
which is a subset of deep learning, a recently advanced technique
in the field of AI. Despite achieving an accuracy rate above
75%, which was considered incredible at that time, the system’s
usefulness was limited because it could identify only 4 types
of foods—hamburgers, fries, chicken nuggets, and apple pie.
In addition, the system could not determine the portion size of
the taken food image; thus, it gave a nutritional value based on
a constant portion size directly.

In this paper, the architecture of IADA is divided into multistage
architectures, which were prevalent in the early stages of IADA
development, and end-to-end architecture, which has emerged
more recently with advancements in AI techniques and food
image datasets. The multistage architectures, as implied by their
name, include 4 individual processes: segmentation, food
identification, portion estimation, and nutrient calculations using
a food composition table. This sequential process is consistent
across all early-stage IADA systems [19-23]. These
subprocesses are trained independently because they require
specific input variables, and optimization can only be done for
each step individually, not for the entire process. By contrast,
the end-to-end approach, which replaces a multistep pipeline
with a single model, can be fine-tuned as a whole process,
making it more advanced and increasingly the focus of
researchers today.

Nowadays, multistage architectures are becoming obsolete and
are often referred to as traditional IADA. They played a
significant role in the IADA timeline before the emergence of
the end-to-end approach. Therefore, we delve into the multistage
architectures, particularly focusing on food identification and
portion estimation algorithms in their subsections, and provide
details about the end-to-end approach in the Going Beyond the
Traditional Approach With Deep Learning section. For better
comparison, Figure 2 illustrates traditional dietary assessment
methods and the substitution processes of IADA, along with
some notable systems that indicate combining certain processes
of the multistage architecture into a single model through deep
learning [18,23-31].
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Figure 2. Comparison of traditional dietary assessment processes and the image-assisted dietary assessment (IADA) substitution processes for the
same tasks, including systems that integrate multistage architecture into a single model using deep learning. Systems referenced include DiaWear from
Shroff et al [18], GoCARB from Anthimopoulos et al [23], FIVR from Puri et al [26], Im2Calories from Myers et al [27], Diabetes60 from Christ et al
[28], Multitask CNN from Ege and Yanai [29], Fang et al [30], and technologies-assisted dietary assessment (TADA) from Zhu et al [24, 25,31]. 24HR:
24-hour dietary recall; CNN: convolutional neural network; EFR: estimated food record; GAN: generative adversarial network; ResNet50: residual
network; SVM: support vector machine; VCG: visual geometry group; WFR: weighed food record.

Food Identification System
Image recognition systems are one of the milestones in the
computer vision field. The goal is to detect and locate an
interesting object in an image. Several researchers have applied
this technique to food identification tasks that formerly relied
on humans only. The early stages in the development of food
identification systems were from 2009 to 2015. Most of the
existing systems were powered by machine learning algorithms
that required human-designed input information, or technical
terms called features. Hence, all machine learning-based
algorithms are classified as handcrafted algorithms.

The era of handcrafted algorithms began in 2009 with the release
of the Pittsburgh Fast-Food Image Dataset [19], marking a
significant historical landmark in promoting research into food
identification algorithms. This dataset consisted of 4545
fast-food images, including 606 stereo image pairs of 101
different food items. In addition, researchers provided baseline
detection accuracy results of 11% and 24% using only the image
color histogram together with the support vector machines
(SVMs)-based classifier and the bag-of-scale-invariant feature
transform classifier, respectively. Although these classifiers
were commonly used during that time, the results were not
considered sufficient and demonstrated much room for
improvement. Since then, various techniques have been

proposed to improve the accuracy of food classification from
images. In later studies, the same team used pairwise statistics
to detect ingredient relations in food images, achieving an
accuracy range of 19% to 28% on the Pittsburgh Fast-Food
Image Dataset [20]. Taichi and Keiji [21], from the University
of Electro-Communications (UEC) team, used multiple kernel
learning, which integrates different image features such as color,
texture, and scale-invariant feature transform. This method
achieved 61% accuracy on a new dataset of 50 food images and
37.5% accuracy on real-world images captured using a mobile
phone [21]. In 2011, Bosch et al [22] from the Technology
Assisted Dietary Assessment (TADA) team achieved an
accuracy of 86.1% for 39 food classes by using an SVM
classifier. This approach incorporated 6 features derived from
color and texture [22]. These results suggest that including a
larger number of features in the algorithms could potentially
improve detection accuracy.

After active research, the accuracy of handcrafted algorithms
reached a saturation point for improvement during the 2014
period. The optimized bag-of-features model was applied to
food image recognition by Anthimopoulos et al [23]. It achieved
an accuracy level of up to 77.8% for 11 classes of food on a
food image dataset containing nearly 5000 images for the type
1 diabetes project called GoCARB. Pouladzadeh et al [32]
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achieved a 90.41% accuracy for 15 food classes using an SVM
classifier with 4 image features: color, texture, size, and shape.
Kawano and Yanai [33] (UEC) attained a 50.1% accuracy for
a new dataset comprising 256 food classes, using a one-vs-rest
classifier with a Fisher vector and a derived feature from a color
histogram named RootHoG [33]. While handcrafted algorithms
yielded high-accuracy results for their specific test datasets with
fewer food classes, they struggled to effectively handle larger
class sets and real-world images. This difficulty arose due to
factors, such as challenging lighting conditions, image noise,
distorted food shapes, variations in food colors, and the presence
of multiple items within the same image. Handcrafted algorithms
may reach a limitation in their ability to improve further.

In contrast, the novel approach called deep learning, which can
automatically extract features from input data, appears to be
more suitable for complex tasks such as food identification. The
convolutional neural network (CNN), considered to be one of
the approaches in deep learning, was developed for handling
image analysis in 1998 [34]. CNN reads a group of squared
pixels of an input image, referred to as a receptive field, and
then applies a mathematical function to the read data. The
operation is performed repeatedly from the top-left corner until
reaching the bottom-right corner of an input image. This
operation is done in a similar manner to matrix multiplication
or dot product in linear algebra. CNN and deep learning were
applied to the food identification task in 2014 by the UEC team
[35]. This system achieved an accuracy of 72.3% on a dataset
containing 100 classes of real-world Japanese food images,
named UEC FOOD-100, surpassing their previous handcrafted
system in 2012, which achieved 55.8% on the same dataset [36].
This marked the beginning of the era of applying deep learning
techniques for food identification. Later that year, the UEC team
also released an international food image dataset called UEC
FOOD-256 that contained 256 food classes to facilitate further
research [37]. Simultaneously, the FOOD-101 dataset was made
available, comprising nearly 101,000 images of 101 different
food items [38]. They also presented baseline classification
results from the random forest–based algorithm, one of the
handcrafted algorithms, and compared it with CNN. They found
that CNN achieved an accuracy of 56.4%, while random
forest–based algorithm achieved 50.76% accuracy in this dataset.
These food image datasets have become the favored benchmark
for subsequent food identification systems.

Another important technique is transfer learning, which is
well-known for training many deep learning algorithms,
including CNNs. It involves 2 stages: pretraining and
fine-tuning. Initially, the model is trained with a large and

diverse image dataset, and then it is further trained with a
smaller, more specific dataset to enhance detection accuracy.
This approach is similar to how humans are educated, where
broad knowledge is learned in school followed by deeper
knowledge in university. The UEC team applied this training
approach to the food identification task in 2015 and successfully
achieved an accuracy of 78.77% on the UEC FOOD-100 dataset
[39]. It has been reported that pretraining on large-scale datasets
for both food and nonfood images could improve the
classification system’s accuracy beyond 80% [40-45], which is
considered to surpass all handcrafted algorithms and be
sufficient for real-world applications.

Currently, numerous state-of-the-art object detectors or classifier
models, including the pretrain and fine-tune training paradigm,
have been developed and are available, such as AlexNet
(AlexNet is an object detection model that won the ImageNet
Challenge in 2012; it is named after its inventors, Alex
Krizhevsky) [46], region-based CNN (R-CNN; an object
detection model that significantly improved object detection
performance by combining region proposals with CNNs) [47],
residual network (ResNet; a deep learning model that won the
ImageNet Challenge in 2015, known for its innovative use of
residual learning to train very deep networks) [48], You Only
Look Once (YOLO; it is an object detection model that
introduced a novel approach by framing object detection as a
single regression problem, predicting bounding boxes and class
probabilities directly from full images in one step evaluation)
[49], Visual Geometry Group (VGG) [50], and Inception (this
is an object detection model that won the ImageNet Challenge
in 2014, recognized for its use of a novel architecture that
efficiently leverages computing resources inside the network)
[51]. These object detectors have been designed to automatically
extract features from input images and learn distinct
characteristics of each class during the training process. Deep
learning-based object detection models have shown great
promise in image recognition tasks, especially in complex tasks
such as food identification. These models and their derivatives
are commonly found in many of the food identification systems
developed later. The use of these state-of-the-art models presents
an exciting opportunity for nutrition researchers who may not
have a background in computer engineering or data science.
They can now create high-performance food identification
systems for specific tasks by curating a food image dataset and
training the model accordingly. With the various algorithms
available, it is crucial to carefully consider their unique
characteristics to select the most suitable one for a given
application. The notable food identification systems are listed
in Table 1.
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Table 1. Overview of notable food identification systems, classifier algorithms, selected features, number of classes, name of food dataset (if specified

or noted as their own dataset if absent), and accuracy resultsa.

Accuracy results
percentages

Class (dataset)FeatureClassifierProjects or teamStudy, year

Shroff et al [18], 2008 • ~75• 4• Color, size,
shape, and tex-

• Neural network• DiaWear

ture

Chen et al [19], 2009 • ~11• 61 (PFID)• Color• SVMc• PFIDb

• ~24• BoSIFTd

Taichi and Keiji [21],
2009

• 61.34• 50• Color, texture,

and SIFTg
• MKLf• UECe

Hoashi et al [52],
2010

• 62.53• 85• BoFh, Gabori,

color, HOGj,

• MKL• UEC

and texture

Yang et al [20], 2010 • 78.00• 61 (PFID)• Pairwise local
features

• SVM• PFID

Zhu et al [31], 2010 • 97.20• 19• Color and tex-
ture

• SVM with Gaus-
sian radial basis

• TADAk

kernel

Kong and Tan [53],
2011

• 84.00• 61 (PFID)• Nearest neigh-
bor Gaussian
region detector,

• Multiclass SVM• DietCam

and SIFT

Bosch et al [22], 2011 • 86.10• 39• Color, entropy,
Gabor, Tamu-

• SVM• TADA

ral, SIFT, Haar

waveletm,

steerablen, and

DAISYo

Matsuda et al [36],
2012

• 55.80• 100 (UEC-Food100)• HOG, SIFT,
Gabor, color,
and texture

• MKL-SVM• UEC

Anthimopoulos et al
[23], 2014

• 78.00• 11• HSVp-SIFT,
optimized BoF,

• SVM• GoCARB

and color mo-
ment invariant

He et al [54], 2014 • 65.4• 42• DCDq, SIFT,

MDSIFTr, and

• k-nearest neigh-
bors

• TADA

SCDs

—tPouladzadeh et al
[32], 2014

• 90.41• 15• Color, texture,
size, and shape

• SVM

—Kawano and Yanai
[35], 2014

• 72.3• 100 (UEC-Food100)•• Pretrained CNNuUEC

—Yanai and Kawano
[39], 2015

• 78.77• 100 (UEC-Food-100)•• Deep CNNUEC

—Christodoulidis et al
[40], 2015

• 84.90• 7•• Patch-wise CNNGoCARB

—Myers et al [27], 2015 • 79.00• 101•• GoogLeNetGoogle
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Accuracy results
percentages

Class (dataset)FeatureClassifierProjects or teamStudy, year

• 77.40
• 54.70

• Food-101
• UEC-256

—• DeepFood—Liu et al [41], 2016

• 83.60• 11—• GoogLeNet—Singla et al [42], 2016

• 88.28
• 81.45
• 76.17

• 101 (Food-101)
• 100 (UEC-Food100)
• 256 (UEC-Food256)

—• InceptionV3v—Hassannejad et al
[43], 2016

• 78.30• 73 (UNIMINB2016)—• VGGw—Ciocca et al [44],
2017

• 86.72• 73 (UNIMINB2016)—• NutriNet (Modi-

fied AlexNetx)

—Mezgec and Koroušić
Seljak [45], 2017

• 72.10• 101 (Food-101)—• Ensemble net—Pandey et al [55],
2017

• 88.72
• 79.76
• 86.71

• 101 (Food-101)
• 100 (UEC-Food100)
• 256 (UEC-Food256)

—• WISeRy—Martinel et al [56],
2018

• ~90.47
• 90.61
• 81.94

• 101 (Food-101)
• 172 (VireoFood-172)
• 208 (ChineseFoodNet)

—• MSMVFAz—Jiang et al [57], 2020

• 65.80
• 61.50
• 57.10

• 298 Generic food
• Subgroups
• Fine-grained
• (MADiMAaa)

—• Modified Incep-
tionV3

• GoCARBLu et al [58], 2020

• 96.30• 22 styles of Bento sets—• Modified AlexNet—Wu et al [59], 2021

aNote that convolutional neural network–based classifiers do not require the number of features to be shown as they extract features autonomously.
bPFID: Pittsburgh Fast-Food Image Dataset.
cSVM: support vector machine.
dBoSIFT: bag-of-scale-invariant feature transform.
eUEC: University of Electro-Communications.
fMKL: multiple kernel learning. This is a machine-learning technique that combines multiple kernels or similarity functions, to improve the performance
and flexibility of kernel-based models such as support vector machines.
gSIFT: scale-invariant feature transform.
hBoF: bag-of-features.
iGabor is a texture feature extraction invented by Dennis Gabor.
jHOG: histogram of orientated gradients—a feature descriptor based on color.
kTADA: Technology Assisted Dietary Assessment.
lTamura is a 6-texture feature extraction invented by Hideyuki Tamura.
mHaar wavelet is a mathematical analysis for wavelet sequence named after Alfréd Haar.
nSteerable filter is an image filter introduced by Freeman and Adelson.
oDAISY is a local image descriptor introduced by E Tola et al [60], but they did not describe a true acronym of DAISY.
pHSV is the name of a red-green-blue color model based on hue, saturation, and value.
qDCD: dominant color descriptor.
rMDSIFT: multiscale dense scale-invariant feature transform.
sSCD: scalable color descriptor.
tNot available.
uCNN: convolutional neural network.
vInception is an object detection model that won the ImageNet Challenge in 2014, recognized for its use of a novel architecture that efficiently leverages
computing resources inside the network.
wVGG: visual geometry group—an object detection model named after a research group from the University of Oxford.
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xAlexNet is an object detection model that won the ImageNet Large-Scale Visual Recognition Challenge (also known as the ImageNet challenge) in
2012; it is named after its inventors, Alex Krizhevsky.
yWISeR: wide-slice residual.
zMSMVFA: multi-scale multi-view feature aggregation.
aaMADiMA: Multimedia Assisted Dietary Management.

Food Portion Size Estimation System

Overview

Food portion size estimation is a challenging task for researchers
as it requires more accurate information on the amount of food,
ingredients, or cooking methods that cannot be obtained from
only a captured image without additional input, which makes
it harder to create a food image dataset with portion size
annotation. Furthermore, quantifying an object’s size from a
single 2D image is faced with common image perspective
distortion problems [61,62], as shown in Figure 3. First, the size
of the object in the image can change due to the distance
between the object (food) and the capturing device (smartphone
or camera). The size of the white rice in Figure 3A is smaller
compared with Figure 3B because the white rice in Figure 3B
is closer to the camera. Second, the angle at which the photo is
taken also alters the perceived object size. For example, flattened
objects such as rice, that are spread out on a 23-cm (9-inch)

circular plate appear in their full size in a bird’s-eye shot (90°),
in Figure 3C, but they appear smaller when taken from
approximately 30° from the tabletop as in Figure 3D. Thirdly,
there is a loss of depth in a bird’s-eye view in Figures 3E and
3F, making it difficult to compare between food B and food C.
The weights of foods A, B, C, and D are 48, 49, 62, and 149
grams, respectively. We use these images for teaching
image-based portion estimation for dietetics students.

While pretrain and fine-tune training for CNNs is a silver bullet
for food image identification, currently there is no equivalent
solution for portion estimation. Many researchers are actively
finding ways to calibrate the object size within an image to
mediate such an error, and several approaches have been
discussed here. Basically, portion estimation can be broadly
classified, based on complexity, into four progressive categories:
(1) pixel density, (2) geometric modeling, (3) 3D reconstruction,
and (4) depth camera. Table 2 provides an overview of notable
systems for volume estimation.

Figure 3. There are common image perspective distortion problems. Firstly, position distortion: the size of the white rice in (A) is smaller compared
to (B) because the white rice in (B) is closer to the camera. Secondly, angle distortion: the white rice in (C) is fully visible at 90 degrees, while it appears
smaller when taken from 30 degrees, as in (D). Thirdly, there is a loss of depth information in the bird’s-eye view in (E) and (F), making it difficult to
compare food B and food C.
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Table 2. A comprehensive overview of notable publications for 4 volume estimation approaches, arranged chronologically.

Reported errorItemReference objectProjects or teamApproach and study, year

Pixel density approach

—aMartin et al [13], 2009 • N/A• N/Ab• Physical card

Jia et al [63], 2012 • <27.60• —• Circular plate• University of
Pittsburgh • <54.10• Circular LED light

—Pouladzadeh et al [32],
2014

• <10• 5• User’s thumb

Okamoto and Yanai [64],
2016

• Mean calorie error• 3• Wallet• UECc

• Beef rice bowl –242 (SD
55.1)

• Croquette –47.08 (SD
52.5)

• Salad 4.86 (SD 11.9)

—Akpa et al [65], 2017 • <6.65• 15• Chopstick

—Liang and Li [66], 2017 • 15 items <20%• 19 fruits• 1-yuan coin

Yanai et al [67], 2019
and Ege et al [67], 2019

• <10%• 3• Rice grain size• UEC

Geometric modeling approach

Zhu et al [24], 2010 and
Zhu et al [25], 2008

• Spherical 5.65%• 7• Checkerboard• TADAd

• Prismatic 28.85%

Chae et al [69], 2011 • Cylinders 11.1%• 26• Checkerboard• TADA
• Flattop solid 11.7%

Chen et al [70], 2013 • 3.69%• 17• Circular plate• University of
Pittsburgh

Jia et al [71], 2014 • <30% from 85/100 of test
items

• 100• Circular plate• University of
Pittsburgh • Other container

Tanno et al [72], 2018 • Mean calorie error• 3• Apple ARKit• UEC

• Beef rice bowl –67.14 (SD
18.8)

• Croquette–127.0 (SD 9.0)
• Salad –0.95 (SD 0.16)

Yang et al [73], 2019 • Large objects 16.65%• 15• Augmented reality• University of
Pittsburgh • Small objects 47.60%

—Smith et al [74], 2022 • Single food items 32.4%-
56.1%

• 26• Checkerboard

• Multiple food items 23.7%-
32.6%

3D reconstruction approach

—Puri et al [26], 2009 • 2%-9.5%• 26• 3 images
• Checkerboard

—Kong and tan [75], 2012 • Volume estimation error 20%• 7• 3 images
• Checkerboard

Rahman et al [76], 2012 • 7.70%• 6• 2 images• TADA
• Checkerboard
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Reported errorItemReference objectProjects or teamApproach and study, year

• 10%• 4• Using food silhouettes to
reconstruct a 3D object

• TADAChang et al [77], 2013

• Volume estimation error 9.4%N/A• 2 images physical card
Physical card

• GoCARBAnthimopoulos et al [78],
2015

• 8.2%-9.8%• 45 dishes
• 14 meals

• 2 images
• Physical card

• GoCARBDehais et al [79], 2017

• 11.69%-19.20% for static
measurement

• 16.32%-27.9% for continuous
measurement

• 3• SLAMe-based with Ru-
bik cube

—Gao et al [80], 2018

• Calorie estimation error
• Sweet and sour pork <1%
• Fried chicken <1%
• Croquette <15%

• 3• Multiple cameras on
iPhone X for depth esti-
mation

• UECAndo et al [81], 2019

• MAREg 19%, while their earli-
er system, GoCarb (2017),
achieved 22.6% on the same
task [79].

• 234 items from

MADiMAf
• 2 images
• Physical card and gravity

information

• GoCARBLu et al [58], 2020

Depth camera approach

• No performance report—• Specific food recording
device

—Shang et al [82], 2011

• No performance report—• Depth camera—Chen et al [83], 2012

• Depth method overestimates
volume than geometric model

• 10• Camera from this study
[85]

• TADAFang et al [84], 2016

• Carbohydrate estimation error
<10 g

• 200• iPhone and Android de-
vices

—Alfonsi et al [86], 2020

• Relative error of weight estima-
tion 14.0%

• 128• iPhone XHerzig et al [87], 2020

aNot available.
bN/A: not applicable.
cUEC: University of Electro-Communications.
dTADA: Technology Assisted Dietary Assessment.
eSLAM: simultaneous localization and mapping.
fMADiMA: Multimedia Assisted Dietary Management.
gMARE: mean absolute relative error.

Revisiting the Classic Pixel Density Approach

Pixel density is the simplest approach for providing good and
effective estimation. After a food image is segmented, the
number of pixels in each segmented section is determined.
Mathematical equations or other transformations are then used
to calculate the portion size of each section that is presented in
the image.

However, this approach suffers from image distortion problems,
and several approaches have been implemented to combat this
drawback. The simplest method is the use of a physical reference
object or fiducial marker for calibrating the size of objects in
an image. When the real size of the reference object is known,

the real size of an object can be determined relative to the
reference object. This method was chosen for food volume
estimation during its early development stage [13,88,89].
Various physical objects have been used as reference objects
in the literature, including a special patterned card [13,89], a
known-size circular plate [63] or bowl [90], chopsticks [65], a
1-yuan coin [66], a wallet [64], a user’s thumb [40,91], or even
rice grain size [67].

Geometric Modeling Approach

Assuming that the food has a cylindrical shape, such as
compressed steamed rice (Figure 4A), its volume can be

calculated using the conventional formula 2πr2 × h. The radius
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r and height h can be determined by counting the pixels in the
image. While this approach is effective for geometric shapes,
it is less reliable for irregular shapes that lack a specific
equation. The demonstration of this approach is shown in Figure
4B, where the user selects a predefined shape and then manually
fits (or registers) the geometric model with the image.

The TADA team reported the use of several predefined shapes
of foods, including cylindrical, flattop solid, spherical, and
prismatic models [24,25,68,69]. Prismatic models were
specifically used to estimate portion sizes of irregularly shaped
foods. This approach allowed a more accurate estimation of
portion sizes by considering the unique characteristics of each
food item. The research team at the University of Pittsburgh
proposed a similar technique known as wireframe modeling.

This technique involves creating a skeletal representation of an
object using lines and curves to define its structure to accurately
capture the shape and dimensions of food items [70,71].
However, this approach is also affected by common image
distortion problems. Initially, a physical reference object was
used for calibration.

Geometric modeling shares a fundamental principle with
augmented reality (AR), a technology that transforms 2D
environmental images into 3D coordinates in a computer system.
As AR has become more widely available on smartphones,
many researchers have explored the feasibility of using AR as
a calibration method instead of using physical reference objects
[72,73]. AR-based object length measurement is demonstrated
in Figure 5.

Figure 4. This figure demonstrates the various approaches to estimating food volume. (A) A cylindrical shape of 75 grams of brown rice taken from
a 60° angle. (B) Geometric modeling with a predefined cylindrical shape, where the user needs to adjust each point manually to fit the object. (C) A
predicted depth map from state-of-the-art dense prediction transformation. (D) A 3D reconstructed object using depth information from (C). These
images have been adjusted in size for visual comparison purposes.

Figure 5. Measuring the size of the same banana can be done using different techniques, as shown in the figure. (A) A standard ruler is used as a ground
truth measurement, (B) Samsung augmented reality Zone app, and (C) Apple iPhone Measure app. These apps use the gyroscope or accelerometer
sensors in the mobile phone to accurately track the movement of the phone as the measurement line is drawn.
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3D Reconstruction

This technique involves using ≥2 images taken from different
angles to create virtual 3D objects in 3D coordinates in a
computer system. It shares the same principle as both AR and
geometric modeling, where reconstructed objects are represented
similarly to prismatic models in geometric modeling.
Furthermore, this technique allows for the inclusion of shapes
beyond traditional geometric shapes.

While several researchers have explored the use of 3D
reconstruction [26,75,76], 1 notable example is the GoCARB
system [78]. This system requires 2 images taken from different
angles to construct a 3D model of the food, achieving an
accuracy within 20 grams for carbohydrate content estimation.
This level of accuracy is comparable to estimates made by
dietitians when the food is completely visible on a single dish
with an elliptical plate and flat base [92].

Figures 4C and 4D demonstrate a similar 3D reconstruction
approach but implemented using state-of-the-art dense prediction
transformation models to predict depth maps from a single
image (Figure 4A), followed by the reconstruction of the 3D
object using the predicted depth map.

Depth Camera Approach

This method operates on the same principle as geometric
modeling and 3D reconstruction, but it requires a special
time-of-flight (ToF) sensor (also known as a depth camera) to

measure an object’s size in 3D coordinates in a computer system.
Initially, the application of depth cameras in food volume
estimation was limited, primarily due to their high cost and
limited availability [82]. However, with the introduction of
consumer-grade depth cameras, such as Kinect (Microsoft Corp),
Intel RealSense, and smartphones equipped with depth sensors,
their accessibility increased, leading to wider use in food volume
estimation applications [81,83,84,86,87].

Nevertheless, the availability of depth sensors remains a
significant challenge in implementing this system. Currently,
only a limited number of mobile phone models are equipped
with such sensors. In addition, some manufacturers integrate
the sensor with the front camera for authentication purposes,
such as Apple’s FaceID, making it impractical for capturing
object photos. Moreover, certain mobile device manufacturers
have omitted the ToF sensor in their recent models [93], further
reducing the availability of depth sensors and posing
implementation challenges for the depth camera approach.

An example of depth information captured by the Intel Realsense
d435i depth camera displayed in RGB (red-green-blue; color
model based on additive color primaries) with depth (RGB with
depth; RGBD) format is shown in Figure 6B. Rendered objects
from a captured polygon file are demonstrated as freely rotatable
3D objects in Figures 6C and 6D, with a regular RGB image
shown for comparison in Figure 6A.

Figure 6. (A) A typical red-green-blue image showing 3 Burmese grapes, each weighing approximately 20 grams. (B) A red-green-blue image with
depth captured by Intel RealSense d435i from a bird’s-eye view. (C) and (D) 3D reconstructed objects from the polygon file, illustrating the height of
each fruit from different angles.

Going Beyond the Traditional Approach With Deep
Learning
Advancements in deep learning are opening more possibilities
to improve the IADA system by merging some steps (or even
all steps) of the multistep pipeline into a single model, which
can be fine-tuned as a whole process. Due to the rise in IADA

research with the emergence of advanced algorithms, we can
only highlight a few reports that demonstrate the gradual
enhancements in IADA in this paper.

In 2015, Myers et al [27] from Google proposed the Im2Calories
system, using deep learning for all stages of IADA. The
classifiers are based on the GoogLeNet architecture, and the
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classification results are used to improve the semantic
segmentation handled by the DeepLab network. For volume
estimation, a new CNN architecture, trained with an RGBD
dataset, estimates the depth map from a single RBG image and
then converts the depth map to volume in the final step.
Although the absolute error for some test foods could exceed
300 ml, the overall volume estimation results were deemed
acceptable. The system still requires a food composition
database to determine the nutritional values of the food in the
final step.

The idea of using deep learning to estimate food volume is
gaining popularity, and several systems are transitioning to
using deep learning algorithms to estimate food volume without
the need for an actual ToF sensor. In 2017, carbohydrate
counting algorithms named Diabetes60 were proposed by Christ
et al [28]. The system reported food-specific portions called
“bread units,” which are defined to contain 12 to 15 grams of
carbohydrates. This definition closely resembles the “carb unit”
widely used in the diabetes field or the “exchange unit” in
dietetic practice. The system was based on ResNet50 and trained
using an RGBD image dataset that contained human-annotated
bread unit information. It achieved a root mean square error of
1.53 (approximately 18.4-23 g of carbohydrate), while humans
could achieve a root mean square error of 0.89 (approximately
10.7-13.4 g of carbohydrate) when compared with the ground
truth. The modified ResNet was also used for fruit volume
estimation, achieving an error of 2.04% to 14.3% for 5 types
of fruit and 1 fruit model [94]. Furthermore, Jiang et al [95]
introduced a system to classify liquid levels in bottles into 4
categories: 25%, 50%, 75%, and 100%. Using their own
designed CNN architecture, they achieved a 92.4% classification
accuracy when the system was trained with 3 methods of data
augmentation. Furthermore, the system could achieve 100%
classification accuracy when the bottle images had labels
removed.

One challenge in converting a single 2D image into a 3D object
is the difficulty in capturing the back side of an object in
single-view images due to factors such as view angle or
occlusion. Therefore, the food volume may be underestimated.
Point2Volume was introduced in 2020 by Lo et al [96] to
address the limitations. The system builds upon 2 of their
previous works: a deep learning view synthesis [97] and a point
completion network [98]. When a single-depth image is
captured, a Mark region-based CNN—a combination of object
detection and instance segmentation network—performs
classification and segmentation, obtaining only partial point
clouds due to occlusion. It then reconstructs the complete shapes
and finally estimates the food volumes. This system
demonstrated a volume estimation error of 7.7% for synthetic
foods and 15.3% for real foods.

While the estimation of exact food volume has improved
recently, dietitians and nutritionists often use a different
approach. They compare unknown food amounts with known
reference volumes, such as a thumb, matchbox, tennis ball, deck
of cards, or a series of known portion-size images. Yang et al
[99] introduced a system that mimics this mental estimation
approach in 2021. The system classifies the unknown portion
object to match the system’s set of reference volumes and then

fine-tunes the predicted volume using the selected set. The
system achieved a mean relative volumetric error of around
11.6% to 20.1% for their own real food image dataset.
Interestingly, they noted that even when the system chose the
wrong set of reference volumes—due to top-1 accuracy being
<50% in most cases—the mean relative volumetric error still
remained acceptable, implying that fewer reference volume sets
might be sufficient.

Another crucial question is how many food classes should be
included in the system to achieve usability in day-to-day
situations. The goFood system [58], successor to the previous
carbohydrate estimation system GoCARB, takes a different
approach to expand the coverage beyond their included food
classes. Using a modified Inception V3 architecture to classify
food into a 3-level hierarchical structure: 18 types of generic
food (eg, meat, bread, and dairy), 40 types of subgroups (eg,
white bread and red meat), and 319 types of specific foods. This
strategy mirrors the concept of a food exchange list, allowing
the handling of a large number of foods without the need for
an extensive number of fine-grained classifications. This lowers
the number of unidentified food objects and results in achieving
at least a 3% higher accuracy for food identification than the
single-level Inception V3 classifier. Their newer 3D
reconstruction algorithm, incorporating gravity data from the
smartphone’s inertial measurement unit (eg, accelerometer or
gyroscope), achieved a mean absolute relative error of 19%,
surpassing the algorithm in GoCARB, which had 22.6% error.

Furthermore, CNN and deep learning could potentially estimate
nutrients directly without relying on food composition tables,
enabling an end-to-end approach for IADA. The originality of
this method is unclear, but to the best of our knowledge, the
first well-documented system was introduced by Miyazaki et
al [100] in 2011. This system extracts 4 features from food
images and estimates calories from these features instead of
relying on food identification, portion estimation, and food
composition tables as in multistage IADA. The system achieved
a relative error of approximately 20% for 35% of items and
40% for 79% of items, which is relatively high. This idea
inspired subsequent works by Ege and Yanai [29] from UEC
in 2017. They applied a multitask CNN, a technique where a
model is trained to perform multiple tasks simultaneously, using
visual geometry group-16 for feature extraction and a
calorie-annotated image dataset for training. The CNN system
achieved an estimation error of 20% for 50% of items and 40%
for 80% of items in their Japanese food image dataset. However,
the system assumed that each food image contained only 1 food
item; this limitation was addressed in their later works [101,102].
Multitask CNNs can be fine-tuned for the entire algorithm rather
than for each stage as in a multistage architecture. This gives
them the potential to surpass multistage architectures, similar
to how deep learning and CNNs have outperformed handcrafted
food identification algorithms. Therefore, they have gained
significant attention from researchers [103-107].

Not only multitask CNNs but also generative adversarial
networks, which are the backbone of image generation AI, such
as Dall-E (OpenAI), can be used to learn the energy distribution
map and estimate food energy directly from a single RGB image.
Fang et al [30] from the TADA team applied this approach and
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achieved a mean energy estimation error of 209 kcal. Their
subsequent work, which included adding food localization
networks, improved accuracy by approximately 3.6% [108].
While most system predictions focus on food portions (volume
or weight), calories, or macronutrients such as carbohydrates,
in 2019, Situju et al [109] used a multitask CNN to predict the
salt content of 14 types of food. This was achieved by training
the multitask CNN with a dataset annotated for both calories
and salt. The relative estimation error was 31.2% (89.6 kcal)
for calories and 36.1% (0.74 g) for salt. These works provide
evidence that advanced deep learning techniques yield promising
results and offer room for improvement in IADA, garnering
increasing attention from researchers today.

Advancements and Challenges From the Dietitian’s
Perspective

Overview
According to recently published information, both image
classification and volume estimation techniques are comparable
in accuracy to those of untrained humans or even trained
professionals in some situations [92,110]. Some limitations
exist, however, in relying on traditional methods, which
indicates that another auxiliary system might be necessary to
improve the overall accuracy and usefulness of a future
developed system.

Using Recipe-Specific Nutritional Values
Currently, most existing systems rely on standard food
composition tables to calculate the representative nutritional
values of foods. While the United States Department of
Agriculture National Nutrient Database is considered
comprehensive, in practical dietetics, it is important to use
recipe-specific nutritional values when available. For example,
differentiating between a Subway sandwich (Subway IP LLC)
and a Starbucks sandwich (Starbucks Corporation) using a food
identification system may be feasible with a large image dataset
of these specific sandwiches. However, it could be more
straightforward to use location data to determine the brand of
the sandwich.

Furthermore, when a food product has a nutrition facts label, it
is essential to obtain the representative values directly from the
label instead of relying solely on food composition tables. This
can be accomplished either through a system equipped with
optical character recognition or by accessing a vast nutrition
facts label database, such as Open Food Facts [111]. By
incorporating these recipe-specific and label-based nutritional
values, the accuracy and relevance of food nutrient assessment
systems can be significantly improved.

Challenges With Density Determination
The conversion of volume to weight in volume estimation
approaches relies on food-specific density values, which can
pose technical difficulties [112]. Furthermore, food-specific
density is not provided in all food compositions; therefore, it
must be obtained through calculation. Most food composition
tables provide nutrient content per 100 grams of edible food,
as it is derived from direct chemical analysis procedures. By

contrast, food portion sizes are often measured in household
units, such as teaspoons, tablespoons, or measuring cups.

The portion-specific weight must be divided by the standard
volume of the household unit to calculate density. For example,
according to the Thai food composition table, cooked mung
bean sprouts weigh 78 and 34 grams for 1 serving (240 mL)
and 1/3 serving (80 mL), respectively. This results in
food-specific densities of 0.325 and 0.425 g/mL. However,
relying on a single representative density value may not be
appropriate, as it can contribute to overall system errors beyond
just volume estimation. To address this challenge, a calibration
curve-like method should be used instead of relying on a single
density value. The accuracy and reliability of volume estimation
systems can be improved, thus ensuring more precise and
consistent results.

Guessing Missing Information
When assessing food intake, dietitians and nutritionists often
encounter situations where certain food items are not readily
available in food composition tables or nutrition databases. In
such cases, a comprehensive analysis of the food needs to be
conducted, breaking it down into its individual components.
Using plain fried rice with egg as an example, the 2 cups of
fried rice should be divided into at least 2 components: steamed
white rice and chicken egg, which are visible in the image.
However, additional components, such as seasonings and
cooking oil, must be estimated. Seasonings, such as salt, soy
sauce, and sugar, are typically added to enhance flavor, while
cooking oil is often used to prevent food from sticking to the
pan and to aid in the cooking process. Furthermore, the amount
of seasoning and cooking oil may vary based on the personal
experience or preference of the nutritionist who analyzes the
food. Consequently, in nutrition research, it is recommended
to have at least 2 or 3 analysts to reduce individual bias [113].
Using algorithms, which are based on standardized criteria, the
variation caused by personal experience and subjectivity can
be reduced.

Explainable System and Trust Issues
Using AI in health care has attracted close attention from health
care communities worldwide, raising concerns about how to
trust unexplained systems [114-116]. This concern is also shared
by nutrition professionals. The black-box nature of deep learning
algorithms makes it difficult for users to identify incorrect
outputs.

When dietitians and nutritionists review a participant’s food
photo and the estimated calorie intake is lower than expected,
it could be due to underreporting or misreporting by the
participant, selection of an inappropriate food item, forgetting
to include certain amounts of oil in recipe analysis, or
underestimating portion sizes. Dietitians and nutritionists can
easily identify these errors. However, if the system only provides
calorie outputs without additional information, it fails to
establish trust with the users. Consequently, involving nutrition
professionals in the development and evaluation of these systems
is crucial to build trust and ensure that the technology meets
their requirements.
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Discussion

Principal Findings
In this study, we investigated the AI techniques used for IADA
and analyzed the available literature to identify the principal
findings in this field. Our scoping review encompassed 522
articles, and after careful evaluation, we included 84 (16.1%)
articles for analysis, spanning from 2008 to 2021. After 2015,
the increase in the number of published articles in this field can
be attributed to various factors, including the growing
availability of large datasets, advancements in AI development
frameworks, and improved accessibility of hardware resources
for AI-related tasks.

The principal findings were categorized into 2 main areas: food
identification and food volume estimation. The chronological
presentation of the articles allowed a better understanding of
the algorithms’ complexity and the improvements achieved in
accuracy. The transition from handcrafted food identification
algorithms to deep learning-based algorithms occurred within
a relatively short span of 5 years. This shift demonstrated the
transformative power of deep learning in enhancing the accuracy
and efficiency of food identification in image-based dietary
assessment. Regarding food volume estimation, 4 different
approaches were identified. However, all of these approaches
share the common goal of translating 2D object views into 3D
representations within a computer system and then converting
these to weight to estimate representative nutritional values
from a food composition table. While these approaches each
have their strengths and limitations, the use of depth cameras
is straightforward for measuring volume with fewer assumptions
and might result in the lowest error rates compared with other
methods. Nonetheless, the limited availability of depth cameras
in some smartphones poses a significant challenge for
implementing this approach. However, recent advancements in
deep learning techniques offer promising alternatives to
overcome the need for specific hardware to estimate volume
and even directly estimate nutritional values without using a
food composition table.

Comparison With Prior Work
During our search for relevant studies, we encountered several
review articles published before ours. Gemming et al [117]
organized notable studies from the early stages of IADA
development. Doulah et al [118] primarily focused on
computational methods for determining energy intake, including
IADA techniques and wearable devices aimed at replacing
traditional dietary assessment methods. Lo et al [119] provided
detailed explanations of techniques for both food recognition
and volume estimation used in IADA studies. The survey from
Subhi et al [120] and the systematic review from Dalakleidi et
al [121] offer comprehensive comparisons of IADA systems,
organized based on the subtasks of multistage architecture. Tay
et al [122] provided an exclusive report on computational food

volume estimation. While these review articles provide extensive
information, they may be difficult to comprehend for
nontechnical individuals, such as dietitians and nutritionists.
This review is tailored to serve as a starting point for those who
may not be familiar with the technical terminology and
complexity associated with this field, presenting information
in clear chronological order for easy following and comparison.

Strengths and Limitations
While technology has advanced rapidly over the past 2 decades,
it is important to acknowledge that some of the studies included
in our review may have become outdated in terms of algorithm
complexity, measurement techniques, and the accuracy of
predicted results. Nonetheless, the findings from these earlier
studies remain crucial from a dietitian’s perspective and provide
valuable insights for future research and solution development.
Although our search strategy was comprehensive and systematic,
it is important to acknowledge that there may be studies that
we were unable to identify or include in this study. Despite this
limitation, our analysis provides a comprehensive overview of
the principal findings in the field of IADA, shedding light on
the potential and challenges of incorporating AI techniques into
this domain.

Conclusions
The application of AI has demonstrated promising results in
enhancing the accuracy and efficiency of IADA. Advanced
technologies, such as deep learning, CNNs, multitask CNNs,
and generative adversarial networks, have significantly improved
digitization of dietary intake. However, despite their potential,
there are still challenges to overcome when implementing these
technologies in real-world settings. To achieve broader coverage
and increased reliability, integrating various inputs, such as
food barcodes, direct label readers through optical character
recognition, and location-specific recipes, could enhance the
capabilities of IADA systems.

Additional research and development efforts are needed to
address persistent issues, such as the limited availability of depth
cameras, interassessor variation, missing information, and
density estimation. While AI-based approaches offer valuable
insights into dietary intake, it is essential to recognize that they
were not designed to capture long-term usual intake entirely,
which could be determined by aggregating self-reported and
objective measures of dietary intake.

Furthermore, combining usual intake with additional aspects
of health, such as physical activity, sleep patterns, and body
composition, is required for a comprehensive understanding of
the relationship between lifestyle, health, and disease. By
overcoming these challenges, AI-based approaches have the
potential to revolutionize dietary assessment and contribute to
a better understanding of an individual’s intake, eating patterns,
and overall nutritional health.
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AI: artificial intelligence
AR: augmented reality
CNN: convolutional neural network
EFR: estimated food record
IADA: image-assisted dietary assessment
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews
ResNet: residual network
RGB: red-green-blue (color model based on additive color primaries)
RGBD: red-green-blue with depth
SVM: support vector machine
TADA: Technology Assisted Dietary Assessment
ToF: time-of-flight
UEC: University of Electro-Communications
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