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Abstract

Background: In recent years, machine learning (ML)–based models have been widely used in clinical domains to predict clinical
risk events. However, in production, the performances of such models heavily rely on changes in the system and data. The dynamic
nature of the system environment, characterized by continuous changes, has significant implications for prediction models, leading
to performance degradation and reduced clinical efficacy. Thus, monitoring model shifts and evaluating their impact on prediction
models are of utmost importance.

Objective: This study aimed to assess the impact of a model shift on ML-based prediction models by evaluating 3 different use
cases—delirium, sepsis, and acute kidney injury (AKI)—from 2 hospitals (M and H) with different patient populations and
investigate potential model deterioration during the COVID-19 pandemic period.

Methods: We trained prediction models using retrospective data from earlier years and examined the presence of a model shift
using data from more recent years. We used the area under the receiver operating characteristic curve (AUROC) to evaluate
model performance and analyzed the calibration curves over time. We also assessed the influence on clinical decisions by
evaluating the alert rate, the rates of over- and underdiagnosis, and the decision curve.

Results: The 2 data sets used in this study contained 189,775 and 180,976 medical cases for hospitals M and H, respectively.
Statistical analyses (Z test) revealed no significant difference (P>.05) between the AUROCs from the different years for all use
cases and hospitals. For example, in hospital M, AKI did not show a significant difference between 2020 (AUROC=0.898) and
2021 (AUROC=0.907, Z=–1.171, P=.242). Similar results were observed in both hospitals and for all use cases (sepsis and
delirium) when comparing all the different years. However, when evaluating the calibration curves at the 2 hospitals, model shifts
were observed for the delirium and sepsis use cases but not for AKI. Additionally, to investigate the clinical utility of our models,
we performed decision curve analysis (DCA) and compared the results across the different years. A pairwise nonparametric
statistical comparison showed no differences in the net benefit at the probability thresholds of interest (P>.05). The comprehensive
evaluations performed in this study ensured robust model performance of all the investigated models across the years. Moreover,
neither performance deteriorations nor alert surges were observed during the COVID-19 pandemic period.
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Conclusions: Clinical risk prediction models were affected by the dynamic and continuous evolution of clinical practices and
workflows. The performance of the models evaluated in this study appeared stable when assessed using AUROCs, showing no
significant variations over the years. Additional model shift investigations suggested that a calibration shift was present for certain
use cases (delirium and sepsis). However, these changes did not have any impact on the clinical utility of the models based on
DCA. Consequently, it is crucial to closely monitor data changes and detect possible model shifts, along with their potential
influence on clinical decision-making.

(J Med Internet Res 2024;26:e51409) doi: 10.2196/51409
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Introduction

In recent years, machine learning (ML) algorithms for clinical
risk predictions have emerged as a promising tool and have
been widely used in health care applications [1-5]. However,
most of such applications have been developed and evaluated
on retrospective data [6,7], and their performance in live clinical
settings remains understudied.

Wu et al [8] highlighted the importance of evaluating artificial
intelligence (AI)–based medical devices with live clinical
settings over different sites to address the shortcomings, such
as overfitting to training data and bias against underrepresented
subgroups. The evaluation of models’ performances in live
clinical settings is drawing more attention and is becoming more
adopted in the field [9,10]. In our previous paper, we
investigated clinical risk prediction models for heterogeneous
patient populations from different hospitals and across different
clinical use cases: delirium, sepsis, and acute kidney injury
(AKI). By evaluating these models in both retrospective [7] and
live clinical settings [11], we demonstrated that the diversity in
patient populations translates into improved generalizability
and a more comprehensive understanding [11]. A cohort study
was also carried out to evaluate the clinical usefulness of our
delirium prediction model [12]. These results led to a later
review to conclude that our approach demonstrates the best
clinical utility and highest performance when evaluated beyond
the development setting [13].

However, even when evaluated in clinical settings, there remains
a critical challenge that poses a significant threat to the reliability
and performance of these models, which is the phenomenon of
model shift [14-16]. Most ML-based prediction models use ML
algorithms that leverage statistical methods to learn from clinical
data. When clinical prediction models are deployed in
nonstationary clinical environments [17], model deteriorations
are observed over time in response to the dynamic nature of
clinical environments [18]. The effectiveness and
generalizability of ML-based clinical risk prediction models
are greatly impacted when in such situations. As an example,
during the COVID-19 pandemic, the alert rate of a sepsis
prediction model was reported as more than double compared
to that preceding the COVID-19 pandemic. As a consequence,
the hospital had to shut down the prediction service [19,20].

This study intended to evaluate the model shift in ML-based
clinical risk prediction models. Following the work of our
previous study [7,11], we aimed to generalize our findings by

applying the investigation to the delirium, sepsis, and AKI use
cases at 1 community hospital and 1 specialized hospital. In
this study, we used retrospective data to train different prediction
models on clinical data from earlier years and then evaluated
the model shift, as well as its impact on clinical
decision-making, on data from later years, thus mimicking the
situation of deploying prediction models in the real world. The
evaluation covered periods preceding and during the COVID-19
pandemic, which allowed us to evaluate the impact of
COVID-19. We investigated the impact of a model shift on
model performance, model calibration, and clinical decisions.
To the best of our knowledge, this is the first report that
evaluated the impact of a model shift on such a scale.

Methods

Ethical Considerations
In accordance with Article 15.1 of the Professional Code for
Healthcare Professionals of Germany, ethical approval is only
required if human body materials are used or if the used data
can be traced to a particular individual [21]. As no personal data
were collected for this project and all used data were
anonymized in compliance with the ethical and data protection
obligations established by the European Commission [22],
consultation or evaluation by an ethics committee was not
required.

Study Design
We used a scalable method development approach to generate
clinical risk prediction models for various conditions at 2
German hospitals, the Medius Klinik Nürtingen and the Herz-
und Diabeteszentrum Nordrhein-Westfalen Bad Oeynhausen,
referred to as hospitals M and H, respectively. Our previous
investigations showed that our models’ performance from live
clinical workflows did not deteriorate compared to retrospective
data. For instance, when comparing the area under the receiver
operating characteristic curve (AUROC) on average across the
3 use cases and hospitals from live clinical workflows to that
from retrospective data, the AUROC decreased slightly by 0.6
percentage points (from 94.8% to 94.2% at discharge) [7,11].
This study incorporated patient data from 2009 to 2021, which
included demographic information, such as age and sex; clinical
information, such as laboratory results; clinical notes, such as
admission letters or nursing notes; vital signs; historical records;
and medication. Tables S1 and S2 in Multimedia Appendix 1
provide an overview of data characteristics over the years for
the 2 hospitals, respectively. We focused on 3 clinical use cases:
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delirium, sepsis, and AKI. Table 1 displays the incidence of each condition at each hospital.

Table 1. Incidence for each use case in both hospitals.

Sepsis incidence (%)Delirium incidence (%)AKIa incidence (%)Hospital

1.502.2216.41M

2.131.1523.35H

aAKI: acute kidney injury.

Analysis and Evaluation
We performed analyses and evaluations from different
perspectives to systematically assess the model shift and its
impact. Figure 1 provides an overview of these steps: First, we
conducted a comprehensive analysis of the source data to detect

any changes in them over time. Second, we evaluated the
performance of the prediction model to determine whether there
was any deterioration. Third, we examined any potential shift
in the calibration curves. Lastly, we performed a decision
analysis to determine whether there was a decline in clinical
decision-making.

Figure 1. Overview of the investigation methodology.

Data Source
As clinical prediction models may be negatively impacted by
changes in clinical settings over time [18], one of the first steps
in avoiding a model shift is to analyze the source data and look
for changes in them. First, we looked at the number of samples
per year, as this could drastically change. Second, it was
important to track the incidence of the condition over the years
as it could have been altered due to modifications in the coding
system, the hospital protocol, or the appearance of new risk
factors that cause an increase in incidence—for example,
SARS-Cov2 as a risk factor for sepsis [23]. Third, it was
necessary to closely examine data set characteristics. Among
the key points were gender distribution over time, the
availability of features throughout the years, and the length of
observations and patient stay over the years.

Model Development
The prediction model design, data preparation, and training
were implemented in an automated pipeline that provided a
standardized method to install, configure, and execute the data
preparation process, model training, and evaluation on a
deployment-specific system. The automated pipeline started
with source data analysis to detect abnormalities in the source
data. It also automatically adapted the hyperparameters for the
model training process. Risk prediction models were then
generated based on the hospital data with such an automated
pipeline and, therefore, calibrated with the electronic health
record (EHR) data of the hospital. The generated models were
automatically evaluated, and acceptance criteria were verified
throughout the evaluation procedure.

Before data preparation, we applied the following inclusion
criteria: (1) patients should be 18 years or older and must have
a birth year available; (2) medical cases should contain
information about the gender, the department, and the reason

for admission; and (3) stay in the hospital should be for a
maximum of 90 days. Next, input features were generated using
a common data preparation pipeline, which used all the available
data generated during the patient’s stay. The features came from
structured data, such as laboratory results, vital signs, and
historical records, along with unstructured data, such as clinical
notes. Details about the number of features used by the model
for both hospitals are provided in Table S3 in Multimedia
Appendix 1.

For preparing unstructured features, we developed a natural
language processing (NLP) pipeline in 2 steps. The initial step
involved using a trained TinyBERT model to perform named
entity recognition (NER) on clinical text data, identifying
disorders and clinical findings. The extracted entities were then
passed as an input to a named entity normalization (NEN) model
[24]. The NEN model maps the extracted entities to the German
Modification of the International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision
(ICD-10-GM) codes. This 2-step process enhances the precision
of information extraction and ensures a consistent representation
of clinical concepts. (For more details, see the NLP Models
section in Multimedia Appendix 2). The labels for sepsis and
delirium were assigned according to the ICD-10-GM codes at
discharge. The AKI labels were assigned based on the Kidney
Disease Improving Global Outcomes (KDIGO) criteria [25].

To ensure the reliability of the study, the data sets were strictly
split into training and evaluation sets at the patient level.
Additionally, approximately 10% of the training set was
exclusively reserved for validation, calibration, and threshold
selection. The training set for hospital H included data from
2017 to 2018, while that for hospital M comprised data from
2009 to 2017. Consequently, the evaluation set contained the
most recent years, spanning from 2019 for hospital H and from
2018 for hospital M. The choice of these specific years was due
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to differences in incidence across the years because of
mislabeling (for more details, see data source analysis in the
Results section).

All the available information belonging to the same hospital
stay was first aggregated to obtain a complete training record.
Additionally, to mitigate the situation where the model was
requested to generate predictions with limited information
available, we applied data augmentation in the training set to
generate a partial record. The partial data were constructed based
on subsets of features of the original record and, combined with
the complete record, enhanced the robustness of the clinical risk
prediction model. Nevertheless, it is important to note that this
approach was applied only to the training data, while the test
set remained unmodified to reflect the real-life distribution of
the population. The impact of this data augmentation was
evaluated in our previous work [7], where the performance 24
hours/1 day/the next day after admission showed an
improvement of around 4% in the AUROC. Furthermore, to
avoid potential biases due to high class imbalance, the controls
were downsampled to a 1:5 case:control ratio before training.
More detailed information about the model development
approach can be found in our previous paper [7].

Next, a clinical risk prediction model was trained separately for
each condition (sepsis, delirium, and AKI) and each hospital
(M and H), applying a standard model training methodology
using/on transformer models [26]. As a result, we obtained 6
independent models. For the model training process, the
previously mentioned features were used as inputs and the labels
as targets of the model. However, it is important to note that
certain features exhibited unreasonably strong correlations with
the condition. Consequently, these features, identified as leaking
features, were removed from the training data. Roughly, 2
categories of leaking features were considered: reverse causal
correlations, which correspond to features that typically occur
after onset (or clinical suspicion), and strong cofounders, such
as the presence of specific but unrelated lab tests only taken in
a high-risk population. The list of these features, defined by
in-house clinical professionals, can be found in Table S4 in
Multimedia Appendix 1.

Model Performance
A common pitfall of clinical prediction models is that their
performance can deteriorate over time. Therefore, a key aspect
to explore is the ability of the model to discriminate and sustain
its performance over time. There are different metrics that can
be used (eg, accuracy, sensitivity, specificity, precision) to
evaluate a model’s performance. In this study, we applied 2
methods to investigate the performance of a model: first, the
AUROC, as it is an assessment metric that remains unaffected
by incidence or threshold selection, and second, the calibration
shift, which is the disagreement between the predicted
probability and the observed number of events.

To detect a calibration shift, a well-calibrated model that makes
probabilistic predictions that match real-world probabilities is
required. There are several methodologies for calibrating a
model, such as Platt scaling [27], isotonic regression [28], and
temperature scaling (which is a single-parameter variant of Platt
scaling) [29], among others. In this study, we used Platt scaling,

which is more suitable for small data sets (like our sepsis and
delirium data sets). Additionally, for plotting the calibration
graph, we used a quantile binning approach, where each bin has
the same number of samples, which reduces the noise in the
curve by preventing different bins from having an unbalanced
number of samples. There is no 1 unique way to measure the
calibration of predictive models. Although some methods are
frequently used and have specific strengths, all have limitations
[30]. In this analysis, we focused on 2 metrics: expected
calibration error (ECE) and maximum calibration error (MCE).
The ECE measures the weighted mean absolute difference
between confidence and accuracy, while the MCE measures the
maximum difference between average confidence and accuracy
across bins. In both metrics, larger values indicate greater
miscalibration.

We generated calibration curves for each year within the test
set , which allowed us to more easily detect a calibration shift
by identifying deviations between the different curves. We
observed calibration shifts for sepsis and delirium but not for
AKI. Consequently, we expanded our experiments to assess
whether the shift was related to the intrinsic nature of different
conditions and also whether it was related to other factors, such
as data size or incidence. Although other factors can contribute
to the presence or absence of a shift, we investigated how the
former 2 impacted the results in AKI, as no evidence of a shift
was observed for this condition. Furthermore, the AKI use case
exhibited a larger sample size and a higher incidence rate
compared to the other 2 use cases. This provided us with an
opportunity to conduct the following experiments: First, we
randomly downsampled the AKI data set to assess the shift on
different data scales. Second, we artificially reduced the
incidence rate of AKI in the testing and calibration data sets to
match the delirium incidence rate. These experiments aimed to
assess the influence of both data size and incidence rate on the
outcomes and whether the observed shift in sepsis and delirium
is a consequence of a lower data size or incidence.

Decision Evaluation
The system calculated predictions throughout the hospitalization,
and when a threshold was reached, an alert was shown. An alert
may appear as soon as the patient is registered in the system if
their past medical history is predictive enough. We conceptually
created 5 categories (instead of the typical 4):

• True negative (TN; control): an alert is not shown correctly.
• False positive (FP; control): an alert is incorrectly shown

at some point during the stay.
• False negative (FN; case): an alert is incorrectly not shown

at all, although the patient has developed the condition at
some point during the stay.

• True positive (TP; case): an alert is correctly shown before
onset.

• Arguably FN/TP (case): an alert is correctly shown but not
strictly before onset. The risk prediction is then diagnostic
rather than strictly predictive, similar to other risk scores,
such as the Confusion Assessment Method for the Intensive
Care Unit (CAM-ICU) or Delirium Observation Scaling
(DOS).
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A severe limitation of ICD codes is that they convey no
information about the time of onset of a condition. We were,
therefore, unable to distinguish between the last 2 groups, so
we evaluated the occurrence of an alert at any time from
admission until discharge (as opposed to no alert at all) and
compared this alert rate to the finally assigned diagnosis.

Model performance evaluation normally focuses on
discrimination metrics; however, it does not assess whether the
risk model enhances clinical decision-making. Accordingly, we
undertook an investigation to determine the potential impact on
decision-making over time by analyzing alert rates and over-
and underdiagnosis rates and performing decision curve analysis
(DCA). First, we investigated whether there was any increase
or decrease in alert rates across the years. Second, we examined
the changes in over- and underdiagnosis rates. Overdiagnosis
refers to overtreatment without any discernible benefit to the
patient, which typically occurs in sensitive models, and is
defined as the false-positive rate (FPR). Underdiagnosis, in
contrast, refers to a failure to correctly diagnose a condition and
is defined as the false-negative rate (FNR) [31,32]. The FPR
and FNR are affected by threshold selection. Thus, in the pursuit
of achieving an equilibrium between these 2 metrics, our
threshold selection approach consisted of selecting a threshold
that minimized the difference between under- and overdiagnosis
rates. This threshold selection was performed in an independent
set (10% of the training set) and after calibrating the model.
Lastly, we performed DCA, where we assessed whether the
benefit of using our model to make a clinical decision decreased
over time. DCA allows us to evaluate and compare the clinical
utility of predictive models using nonparametric statistical
methods [33,34]. This method illustrates the net benefit related
to a specific decision strategy across a spectrum of probabilities.
Its application ensures that clinical decisions are not solely
reliant on discriminative metrics but also consider the potential
harms and benefits associated with such decisions. The net
benefit is calculated according to the following formula:

where N is the total number of predictions and is the threshold
probability.

Results

Data Source Analysis
The data sets used in this study contained 189,775 and 180,976
medical cases for hospitals M and H, respectively. The
distribution and characteristics of the data sets for both hospitals
are shown in Tables S1 and S2 in Multimedia Appendix 1.

Hospital M is a community hospital, while hospital H is a
specialized center for diabetes and heart disease, with a high
volume of cardiac surgery and invasive, transcatheter procedures
and intensive care. The 2 data sets exhibit common
characteristics with respect to an increasing trend in the length
of stay, resulting in a greater number of features and longer
observations, and consistency in the proportion of women and
men throughout the years (Tables S1 and S2 in Multimedia
Appendix 1). However, it is important to note that there are
some differences between the 2 data sets or different use cases.
For instance, medication was not available as a feature until
2016 in hospital M and until 2018 in hospital H. Moreover, the
incidence of sepsis and delirium in earlier years was lower than
in later years, with a more notable disparity observed in delirium
at hospital H. The increase in the delirium incidence rate is
coincident with extensive efforts to improve the recognition
and treatment of delirium. Based on these findings, we decided
to use only data from the most recent years, specifically from
2017 for hospital H. This decision was made to mitigate the
potential influence of mislabeling arising from the data source.
Medical cases whose admission date was earlier than 2017 were
removed. The real-life incidence for the validation and
evaluation test was therefore not affected. As aforementioned,
the case:control balance for the training data set was set to 1:5.

Model Performance
The performance of the clinical risk prediction model was
evaluated at the end of the patient’s hospital stay due to the lack
of the time of onset and to avoid inconsistencies when the
predictions were evaluated.

Performance Evaluation
Model evaluation results are presented in Tables 2 and 3 by
showing AUROC and area under the precision recall curve
(AUPRC) values. The AUPRC is a relevant metric when dealing
with imbalanced data and detecting positive samples are of
greater interest and concern. However, as the AUPRC is highly
influenced by incidence, the model was evaluated based on the
AUROC, which, in contrast to other metrics, such as sensitivity,
specificity, precision, and the AUPRC, is independent of the
threshold and incidence. Thus, it allowed us to compare model
performance across different years. Table 2 shows that AUROC
values remained stable for the 2 use cases at hospital M, with
mean 90.37% (SD 0.32%), mean 96.95% (SD 0.50%), and mean
95.92% (SD 0.41%) for AKI, delirium, and sepsis, respectively.
Similarly, Table 3 presents the values for hospital H, and the
values for AKI, delirium, and sepsis were mean 91.25% (SD
0.29%), mean 94.24% (SD 0.44%), and mean 97.95% (SD
0.41%), respectively.
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Table 2. Model performance and incidence in the test set of hospital M.

YearsUse case and metrics

2021202020192018

AKIa

17.6414.9514.8114.57Incidence (%)

26.5623.4822.6222.36Alert rate (%)

90.6989.8490.4090.54AUROCb (%)

71.0164.9965.8765.48AUPRCc (%)

Delirium

2.633.171.922.18Incidence (%)

15.3713.4411.6110.75Alert rate (%)

96.1897.2196.8697.55AUROC (%)

40.8951.2634.9442.93AUPRC (%)

Sepsis

1.661.241.491.67Incidence (%)

17.1714.6513.1211.86Alert rate (%)

95.5595.4596.3796.29AUROC (%)

39.8134.1432.8540.98AUPRC (%)

aAKI: acute kidney injury.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision recall curve.

Table 3. Model performance and incidence in the test set of hospital H.

YearsUse case and metrics

202120202019

AKIa

25.5825.9825.22Incidence (%)

32.7634.3632.70Alert rate (%)

91.4091.5190.83AUROCb (%)

81.7182.5980.58AUPRCc (%)

Delirium

2.863.263.25Incidence (%)

20.4621.2520.56Alert rate (%)

93.6494.3994.70AUROC (%)

30.9134.4337.32AUPRC (%)

Sepsis

3.893.863.70Incidence (%)

12.7912.4712.82Alert rate (%)

98.3598.1297.37AUROC (%)

77.7877.0473.63AUPRC (%)

aAKI: acute kidney injury.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision recall curve.
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These findings indicate low variations in the performance
metrics; moreover, statistical tests were conducted to discern
whether the variations in performance metrics over the years
were statistically significant. First, we computed the SEs of the
AUROCs using Hanley and McNeil’s method [35]. Next, we
performed a Z test to assess whether there were significant
differences between different AUROCs. We did not observe
any significant differences between the AUROCs across the
different years for all use cases and all hospitals (P>.05).
Detailed results are presented in Tables S5 and S6 in Multimedia
Appendix 1. These results demonstrate that the model’s
performance did not exhibit persistent deterioration over time
at either hospital.

Calibration Curve Analysis
In addition to the evaluation of the AUROC, which reflects
model performance, we also investigated whether there was any
potential shift in model calibration. Figure 2 shows the
calibration curves, as well as their corresponding ECE and MCE
values. Figure 2a displays the calibration curves of the 2 use
cases at hospitals M and H, respectively. The curves before
calibration indicated that the averaged predicted risks were
higher than the observed event rate, which means our models
overestimated the risk. Consequently, we calibrated our models
by applying the Platt scaling method [27]. The curves after
calibration showed that the predicted risks better matched the
observed positive ratio.

Figure 2. Calibration curves and corresponding ECE and MCE values: (a) calibration curves for each use case and year before and after calibration,
with 95% CIs; (b) ECE values across the years for each use case; and (c) MCE values over the years for the 3 use cases. AKI: acute kidney injury; ECE:
expected calibration error; MCE: maximum calibration error.
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To better quantify the quality of the calibration curves,
corresponding ECE (Figure 2b) and MCE (Figure 2c) values
were generated for each calibrated curve. The error graphs did
not show a clear increase in the shift across the evaluated years
for any of the use cases at both hospitals, although small
fluctuations were observed in the ECE and MCE curves in the
delirium use case at hospital M. Furthermore, Figure 2a
demonstrates that unlike the AKI use case, the sepsis and
delirium use cases exhibited a calibration shift at hospital M,
with the curves deviating from the diagonal line for higher
probabilities. At hospital H, there was no evident calibration
shift for both AKI and delirium use cases, although a slight shift
was observed in its sepsis model.

Given the observed calibration shifts in sepsis and delirium, in
contrast to the stability in AKI, we extended our investigations
to examine whether the observed shift was intricately associated
with inherent characteristics of the distinct conditions or whether
it was influenced by other factors, such as variation in data size
or incidence rates. Our results demonstrated that reducing the
data size or incidence rates did not result in a calibration shift,
and therefore, the observed calibration shift in sepsis and
delirium could be use case specific or influenced by other factors
(see Multimedia Appendix 2 for more details).

Decision Evaluation
The last evaluation focused on decision-making analysis. We
first assessed the alert rates, that is, the number of alerts
triggered when the predicted probability exceeds the predefined
threshold. We observed a slight increase over the years for all
3 use cases, even though the AUROC and the incidence
remained similar at hospital M (see Table 2). However, we did
not observe a similar increase at hospital H (see Table 3), where
both incidence and alert rates remained stable.

The over- and underdiagnosis rates were further evaluated based
on the correctness of an alert. The thresholds selected from the
threshold selection set (10% of the training set) at hospital M
were 19.97, 2.40, and 2.67 for AKI, delirium, and sepsis,
respectively, and at hospital H were 23.13, 2.79, and 2.93,
respectively. Figure 3 shows the under- and overdiagnosis rates
for the test sets from the 3 use cases on a yearly basis at both
hospital M and hospital H. At hospital M, we also observed that
although the underdiagnosis rate remained stable over the years,
there were clear trends of an increase in the overdiagnosis rate
in all 3 use cases. Such an increase in overdiagnosis is in line
with the increase in the alert rate and is likely associated with
the increased number of observations in patient records (Tables
S1 and S2 in Multimedia Appendix 1), as observed in the data
analysis. The maximum deviation of the under- and
overdiagnosis curves was around 5% in overdiagnosis on sepsis
observed at hospital M, which aligns with the fact that the alert
rate also increased. Such an increase is partially in line with the
report that the alert rate of sepsis prediction models increased
during the COVID-19 pandemic [19,20]. However, in this

investigation, the trend of such an increase started before the
pandemic.

At hospital H, there were more fluctuations in the
underdiagnosis rate. The 3 use cases behaved differently,
hindering generalization. Although the number of observations
in patient records also increased yearly at hospital H, in contrast
to hospital M, its overdiagnosis rates remained stable for all 3
use cases. Furthermore, the underdiagnosis rate of sepsis
decreased during the COVID-19 pandemic, while its
overdiagnosis rate remained stable. This indicates that the
performance of the sepsis prediction model at hospital H
improved during the COVID-19 pandemic, which contradicts
the findings of hospital M, as well as other reports [19,20].

In summary, the 2 hospitals behave differently in terms of over-
and underdiagnosis rates. Therefore, site-specific monitoring
schemes are required to detect such changes. Consequently,
given the difficulty in determining whether a model shift
occurred based solely on the under- and overdiagnosis rates,
we additionally performed DCA to test for any changes in the
clinical utility of the models.

To examine the potential impact of the model on
decision-making over time, DCA was performed for each
distinct year and use case. The net benefit was calculated across
the full range of probability thresholds. However, the lower
range of the probability thresholds is more relevant to clinicians
as, arguably, most clinicians would agree that the medical and
financial consequences of delirium, sepsis, and AKI outweigh
the nuisance to the user and the cost and inconvenience of
preventive measures and closer monitoring. It is necessary to
find the optimal threshold that has a good balance between FPs
and FNs to prevent the excessive generation of unnecessary
alerts, which can lead to user desensitization and decreased
responsiveness. Additionally, it is important to highlight that
the initial position of the decision curves (threshold=0) is notably
affected by the incidence rate of the particular use case.
Therefore, to ensure that the differences between the curves did
not stem from different incidence rates, we standardized the
incidence rate across the years by augmenting the incidence of
the years that had lower rates until a uniform incidence was
achieved across all years.

Figure S1 in Multimedia Appendix 2 and Figure 4 show the
decision curves for hospitals M and H, respectively, for each
year across the 2 use cases. To test whether there was a
significant difference in the decision-making between the years,
we performed a pairwise nonparametric statistical comparison
between the decision curves from 2 individual years for all
possible year pairs [33,34]. For all the use cases and hospitals,
we did not find any significant difference between any of the
years (all P>.05) at the thresholds of interest. These results
demonstrated that the model did not experience a degradation
in clinical utility across the years.
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Figure 3. Under- and overdiagnosis rates across years in hospitals M and H. AKI: acute kidney injury.

Figure 4. Decision curves for hospital M. Colored dotted lines show the net benefit of alerting all patients, gray lines represent the benefit of not alerting
any patient, and colored solid lines show the net benefit of using the model on each of the years in the test. AKI: acute kidney injury.
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Discussion

Principal Findings
This paper evaluated the impact of a model shift on ML-based
clinical risk prediction models. There was no significant model
shift in the period under this investigation. The models’
performances remained stable for all the 3 use cases, and there
were no significant differences in the AUROCs between the
years. Nevertheless, analysis of the calibration curves revealed
a calibration shift in some use cases. The calibration curves of
AKI were more stable compared to those for the delirium and
sepsis prediction models at both hospitals in this study. No
calibration shift was observed for AKI, even when the size of
the sample and the rate of incidence were downscaled. These
results suggest an intrinsic difference among the different use
cases. Lastly, with respect to the interpretation of the predictions,
the rate of alerts and overdiagnosis behaved differently across
different hospitals: they consistently increased in the 3 use cases
at hospital M and remained stable at hospital H. Furthermore,
the examination of DCA results revealed a consistent pattern
where the models exhibited no deterioration over time, affirming
the stability of their clinical utility and decision-making.

These findings suggest that relying solely on AUROCs, the
commonly used metric for assessing the performance of clinical
risk prediction models, is inadequate in capturing the impact of
a model shift. It is, therefore, essential to use comprehensive
evaluations, such as calibration curve analysis, alert rate
monitoring, and DCA, to promptly detect any kind of model
shift. Additionally, recalibrating the model when the calibration
curve significantly deviates from the diagonal may offer a viable
solution without necessitating complete model retraining. This
approach is effective because the chosen probability calibration
approach does not affect the evaluation metrics as AUROCs or
AUPRCs. However, in other situations where the performance
or clinical usefulness of the model has deteriorated, retraining
the model would be necessary. Furthermore, this study revealed
that the potential impact of a model shift cannot be easily
generalized, as the evaluations exhibited diverse behaviors
across different use cases and hospitals. Therefore, implementing
proper model calibration is crucial to avoid undesirable
consequences, such as a significant increase in the alert rate
[19,20].

Comparison With Prior Works
Previous research that investigated model shifts in the clinical
domain often worked with a single use case at a single site. For
instance, Davis et al [14] examined data shift scenarios in AKI
risk prediction with 1 data set. Similarly, Minne et al [15] used
a single data set to evaluate the effect of temporal changes on
mortality prediction performance. Therefore, later studies have
argued that the focus on developing new models in the clinical
domain should introduce more heterogeneity in model
development and model evaluation [16]. The study presented
in this paper leveraged 2 large data sets from different hospitals
and investigated 3 distinct use cases, thereby enhancing the
generalizability of the findings. Furthermore, although previous
studies [14,15] have focused on analyzing model drift in terms
of performance, this study extended the evaluation to a broader

set of metrics, assessing the evolution of clinical utility of the
model over time. This approach significantly enhances the
heterogeneity and robustness of the evaluation.

Motivations
ML-based prediction models are often closely tied to the system
environment in which the models undergo training. After the
models are deployed as real-world applications, their
performance may deteriorate over time when the system
experiences changes in its environment. The consequences of
such changes largely impact the reliability of ML-based
prediction models. Although the dynamic nature of the system
is inevitable, timely detection of its impact is, therefore, of
utmost importance to prevent model deterioration when it is
used in clinical settings. This study aimed to investigate various
approaches for monitoring the implications of model shifts by
examining diverse use cases across different types of hospitals.

Strengths
This study performed comprehensive evaluations of model
behaviors over a 4-year period. The evaluation was not limited
to model performance, also assessing the consequence of the
model shift on clinical decision-making. Such detailed
evaluations were performed on 3 different use cases at both a
specialized hospital and a generalized hospital so as to better
generalize the findings of our study. To the best of our
knowledge, this study is the first report to investigate the
consequences of a model shift on such a comprehensive level
and scale.

Limitations
This study has some limitations. First, the study was performed
on retrospective data to simulate how prediction models would
behave over time after they were trained. Evaluating model
behavior in real-world clinical settings would provide more
valuable insights. Second, the cause of the calibration shift
observed on the delirium and sepsis use cases was not
thoroughly analyzed in this study. We hypothesized that such
a difference may be related to the different labeling strategies:
the delirium and sepsis use cases were labeled with discharge
ICD codes, while the AKI use case was labeled with the KDIGO
algorithm. The use of ICD codes is imperfect owing to inevitable
variations and inconsistencies in coding practice. However,
lacking standard criteria for diagnosis, the use of such codes is
an established method for retrospective identification [36].
Discharge ICD codes are likely more vulnerable to changes in
coding policies, while diagnostic algorithms, such as KDIGO,
that rely on lab values are less likely to change over time.

Future Directions
This study evaluated the impact of a model shift on ML-based
clinical risk prediction models. As a future step, we plan to
conduct the discussed evaluations on our prediction models
after they are deployed in live EHR systems. In addition, we
will further investigate the different behaviors of calibration
curves between the AKI use case and the other 2 use cases.
Specifically, we aim to explore the influence of various labeling
policies on these behaviors.
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Including retrospective data from earlier years may help build
a more reliable model with more training samples; however, it
may also increase the risk of data shift. We will further
investigate how to make a good trade-off when selecting training
data, thus significantly influencing the development of a good
prediction model, while minimizing the model shift.

Conclusion
This study performed evaluations across different hospitals to
investigate the impact of model shifts on various ML-based risk
prediction models. Although the metrics of AUROCs remained
stable for the evaluated use cases over the years, the analysis
of calibration curves varied across certain use cases (ie, delirium

and sepsis) at different hospitals. However, upon conducting
more in-depth investigations using DCA, it was confirmed that
these variations did not have any impact on the clinical utility
of the models, as there was no evident degradation in their
decision-making capabilities. Moreover, the COVID-19
pandemic has the potential to alter clinical diagnosis and
treatment patterns over the long term. So, to obtain a more
complete understanding of this impact in prediction models, a
future study incorporating additional years of data would be
highly valuable. As a summary, these findings suggest the need
for appropriate monitoring schemes and timely model
calibrations following the deployment of prediction models.
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