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Abstract

Background: Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI),
which leads to worse short-term outcomes.

Objective: We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to
deploy the models as online apps.

Methods: Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive
Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively.
Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used
for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI
and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning
algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis,
and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku
platform for deploying the best-performing models as web-based apps.

Results: For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient
Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857),
internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699–0.811) cohorts. In
addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878),
internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The
models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration.
In the importance ranking and correlation visualization of the model’s top 10 influencing factors conducted based on the SHAP
value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the
risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate,
while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial
pressure of carbon dioxide (PaCO2).
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Conclusions: We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly
patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and
explained visually, which might provide useful applications for intelligent management and suggestions for future prospective
research.

(J Med Internet Res 2024;26:e51354) doi: 10.2196/51354
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Introduction

Acute kidney injury (AKI), as a common complex
heterogeneous syndrome in critically ill patients, is associated
with an increased risk of death and adverse renal events [1-3].
AKI is more common in elderly patients in the intensive care
unit (ICU), with sustained impaired renal function associated
with a poor prognosis for survival [4,5]. Therefore, in this study,
we focused on AKI in the elderly with renal function impairment
for more than 7 days during hospitalization, that is, acute kidney
disease (AKD). In 2012, Kidney Disease: Improving Global
Outcomes (KDIGO) first proposed the term “AKD,” but at this
time, it was viewed as a period of kidney pathology following
AKI, not as an independent definition [6]. In a comparative
study on the epidemiology of AKD, patients with AKI who
developed AKD had a higher risk of chronic kidney disease
(CKD) and end-stage renal disease (ESRD), suggesting the
potential clinical research value for AKD as a novel term [7].
In 2017, the Acute Disease Quality Initiative (ADQI) 16
Workgroup presented an expert consensus on AKD, defining
AKD as AKI with KDIGO stage 1 or higher within 7-90 days
of the first diagnosis of AKI [8]. There is a distinct disease
course between AKI, AKD, and CKD. AKD highlights the key
intervenable period in the transformation process from AKI to
CKD and lays the foundation for the construction of
management strategies for renal function recovery.

Recently, a multicenter study indicated that more than half of
the hospitalized patients with AKI developed AKD, which
increased the risk of long-term mortality [9]. Nevertheless, an
epidemiological study by Andonovic et al [10] found that
patients with AKD in the ICU have a higher short-term risk of
death but no statistically significant difference in long-term
survival. Moreover, Chen et al [11] reported that patients with
AKD are more likely to require long-term dialysis. Considering
the high incidence and mortality rate of AKD, researchers have
conducted exploratory early warning studies on AKD. Current
predictive research on AKD has focused primarily on patients
with AKI during hospitalization, sepsis-related AKI, coronary
heart disease, and renal cell carcinoma postoperatively [9,12-14].
However, it should be noted that elderly patients with
diminished renal function have received insufficient attention,
and little is known about the AKD risk and prognostic mortality
in the elderly. Further, some studies have explored the use of
artificial intelligence (AI) algorithms to predict the onset and
progression of diseases, but only a few have developed
user-friendly online prediction apps for clinical practice. Zhou
et al [15] established an online calculator using Extreme
Gradient Boosting (XGBoost) to predict AKI in patients with

sepsis-associated acute respiratory distress syndrome.
Regrettably, this risk calculator has not been validated externally
to determine generalization capacity. Thus, it is imperative to
use big data and AI technology to conduct research on the
diagnosis and prognosis prediction of AKD in the elderly, and
transform the AI models into internet-based apps to assist
clinicians in timely intervention to maximize the improvement
in renal function and survival outcomes.

Therefore, this study intended to develop 2 machine learning
prediction models: one was a model for predicting the risk of
AKD in critically ill patients during hospitalization to address
problems regarding renal function recovery and early detection
of AKD; the other was for predicting the in-hospital mortality
in AKD to deal with the adverse outcomes of AKD. In addition,
Shapley additive explanation (SHAP) analysis was used to rank
the importance and visualize the correlation of the features
affecting the occurrence and outcome of AKD [16]. Importantly,
we deployed the models with the most comprehensive
performance as web-based prediction apps to facilitate doctors'
decision-making.

Methods

Ethical Considerations
This study was conducted strictly in accordance with the
Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research [17]. The MIMIC-IV
database was approved by the Ethics Review Boards of the MIT
and the Beth Israel Deaconess Medical Center. This study
obtained access and download permission from the MIMIC-IV
database (no. 41817305) and passed the retrospective ethics
review of the Medical Ethics Committee of Xiangya Hospital
Central South University (no. 202105200). Due to the deprivacy
of the data for this retrospective study, it was exempted from
patients’ informed consent.

Study Design
A retrospective cohort study was conducted using electronic
health records (EHRs) from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) data and patients’ data from
Xiangya Hospital Central South University (Hunan, China)
[18]. In June 2022, the Massachusetts Institute of Technology
(MIT) released the revised version of MIMIC-IV 2.0, which
contained in-hospital diagnosis and treatment records, as well
as in- and out-of-hospital death information for about 40,000
patients in ICUs, and achieved data privacy by deleting patient
identification numbers and drifting data through time. The
MIMIC-IV cohorts were used to develop machine learning
predictive models. Further, the Department of Critical Care
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Medicine at Xiangya Hospital Central South University is the
National Key Clinical Specialty. Approximately 2500 critically
ill patients are admitted to the department each year for the
treatment of various diseases. Patients were enrolled in the
Department of Critical Care Medicine from 2017 to 2021 for
external validation of models.

Data on AKI in the Elderly

Inclusion and Exclusion Criteria
Data on AKI in elderly patients in the ICU were collected for
the construction and external verification of an early warning

model for the risk of AKD. According to the Chinese Healthy
Elderly Standard issued by the National Health Commission of
China, those 60 years old and above were defined as the elderly.
The inclusion criteria were (1) age≥60 years, (2) ICU stay of at
least 48 hours, (3) EHRs of patients admitted to the ICU for the
first time, and (4) patients with AKI who met KDIGO criteria.
The exclusion criteria were (1) patients with ESRD and (2)
missing data on the diagnosis of AKI. Figure 1 shows the data
extraction process in detail.

Figure 1. Flowchart for the selection of elderly patients with AKI and AKD. AKD: acute kidney disease; AKI: acute kidney injury; ESRD: end-stage
renal disease; ICU: intensive care unit; LightGBM: Light Gradient Boosting Machine; MIMIC-IV: Medical Information Mart for Intensive Care IV.
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Outcome Definition
The occurrence of AKD during hospitalization was considered
the outcome of the risk prediction study. AKI was diagnosed
and staged in accordance with the AKI guidelines issued by the
KDIGO in 2012 [6]. According to the expert consensus of the
ADQI-16 Workgroup in 2017, AKD was defined as the presence
of at least stage 1 AKI within 7-90 days after the initial diagnosis
of AKI [8]. In this study, patients with AKI who met this
definition during hospitalization were regarded as having AKD
(Multimedia Appendix 1).

Data Extraction
Navicat Premium (version 15.0.13) was used for MIMIC-IV
database management and PostgreSQL (version 9.6; PostgreSQL
Global Development Group) for variable extraction. Patients
with AKI were identified based on their serum creatinine and
urine output levels. Patients with AKI stage higher than or equal
to 1 between 7 days following AKI and discharge were
considered to have AKD during their hospitalization. Finally,
33 variables were determined and extracted from the Xiangya
Hospital data set and the MIMIC-IV database, including age,
gender, and the AKI stage as basic characteristics; sepsis,
hypertension, diabetes, chronic kidney disease (CKD), chronic
pulmonary disease (CPD), and chronic liver disease (CLD) as
comorbidities; mechanical ventilation (MV), renal replacement
therapy (RRT), and vasopressors as interventions; heart rate,
respiratory rate, systolic blood pressure (SBP), diastolic blood
pressure (DBP) as vital signs; and white blood cell (WBC)
count, red blood cell (RBC) count, hemoglobin, hematocrit,
potassium, calcium, anion gap, partial pressure of oxygen
(PaO2), partial pressure of carbon dioxide (PaCO2), pH, glucose,
blood urea nitrogen (BUN), and serum creatinine as laboratory
tests. These examination indicators were measured on day 1 of
AKI diagnosis. We also obtained BUN and serum creatinine
levels on day 3 following AKI diagnosis, as well as
corresponding delta BUN and delta creatinine values on day 3
minus day 1.

Data on AKD in the Elderly

Inclusion and Exclusion Criteria
Following the aforementioned study on AKI in the elderly,
further extracted the data concerning critically ill patients with
AKD to construct and verify a model that predicted poor
prognostic mortality during hospitalization. The inclusion
criteria of elderly patients with AKD were as follows: (1) age≥60
years, (2) length of stay in the ICU for more than 48 hours, (3)
patients admitted to the ICU for the first time, and (4) patients
with AKD who met the ADQI consensus of 2017. The exclusion
criteria were (1) patients who had ESRD and (2) missing data
related to AKD diagnosis. A detailed description of the data
extraction can be seen in Figure 1.

Outcome Definition and Data Extraction
In-hospital death was the outcome of the prognostic prediction
study of AKD in the elderly.

This study on prognostic mortality prediction and the
aforementioned study on risk prediction of AKD in the elderly

were similar in terms of the content and timing for extracting
33 variables.

Construction and Validation of Models
Several supervised learning algorithms were selected to solve
classification prediction problems in this study: logistic
regression model (LRM), XGBoost, Light Gradient Boosting
Machine (LightGBM), multilayer perceptron (MLP), random
forest (RF), and the K-nearest neighbor (KNN) algorithm. Two
models were developed using the MIMIC-IV cohort: one for
predicting AKD occurrence among the elderly and the other for
predicting the prognostic mortality in AKD. To prevent
overfitting and improve generalization, a 10-fold
cross-validation method was applied to assess the models, and
the final models were constructed based on repeated iterations.
Multimedia Appendix 2 shows the optimal hyperparameters of
the AKD risk and AKD mortality models. Through the
GridSearchCV module, we conducted a grid search that
traversed all parameter values and returned the parameter
combination that provided the best overall performance. The
models constructed from the MIMIC-IV database were internally
validated by bootstrap resampling with replacement to evaluate
performance. The established training model was externally
validated with the Xiangya Hospital cohort.

Evaluation and Deployment of Models
The classification prediction effect of the models was evaluated
using the area under the receiver operating characteristic curve
(AUROC), sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) under the optimal
cutoff value. Moreover, a calibration curve was developed to
determine the models’predictive accuracy, and clinical decision
curve analysis (DCA) was performed to assess their clinical
utility. To enhance the interpretability of machine learning
black-box models, we performed SHAP analysis by visualizing
each feature’s marginal contribution to the models’ prediction
in importance-ranking plots and showing how each feature
impacts the outcome in partial dependence plots. Lastly, we
selected machine learning algorithm models with the best
comprehensive performance from the training and validation
cohorts and deployed them to the online server for the
convenience of clinical workers or patients. The web-based
apps were managed by Heroku.

Statistical Analysis
Data were analyzed using Python (version 3.9.7) and R (version
4.2.0; R Foundation for Statistical Computing). Variables with
a missing ratio higher than 35% were deleted, and the mice
package (version 3.14.0) in R was used to fill in the missing
values using the multiple imputation method. In data
preprocessing, the Z-score method was used to scale the
continuous variables with the StandardScaler function.
Categorical variables were represented as numbers (percentages)
and compared between groups using the chi-square test.
Depending on whether the continuous variables were normally
distributed, the mean (SD) or median (IQR) was expressed and
compared using the 2-tailed t test or the Mann-Whitney U test.
By analyzing the Youden index, the optimal cutoff value of the
receiver operating characteristic (ROC) curve was calculated,
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as well as the sensitivity, specificity, PPV, and NPV of the
models. Statistical significance was set at P<.05.

Results

Model 1: Predicting the risk of AKD in the Elderly

Baseline Characteristics
In the study on the risk prediction of AKD in critically ill elderly
patients during hospitalization, a total of 3542 elderly patients
with AKI from the MIMIC-IV database and 280 from Xiangya
Hospital were retrospectively included after screening by the
inclusion and exclusion criteria as the training and external
validation cohorts, respectively. AKD incidence was 75.1%
(2661/3542) in the training cohort and 66.4% (186/280) in the
external validation cohort. A comparison of baseline
characteristics and stratification of the 2 cohorts according to
the presence or absence of AKD is shown in Multimedia
Appendix 3. In the MIMIC-IV cohort, patients with AKD had
a higher proportion of comorbidities (sepsis, diabetes, CKD,
and CPD) and a lower proportion of hypertension (P<.05); a
higher proportion of interventions (MV, RRT, and vasopressor
use; P<.05); a higher heart rate and lower SBP and DBP in
terms of vital signs (P<.05); and higher potassium, anion gap,
BUN on day 1 (following AKI diagnosis), serum creatinine on
day 1, BUN on day 3 (following AKI diagnosis), and serum
creatinine on day 3 and lower PaO2 in terms of laboratory tests
(P<.05). Furthermore, more patients with AKD in the Xiangya
Hospital cohort were males and had stage 3 AKI (P<.05). The
features of the Xiangya Hospital cohort with a similar trend to
the MIMIC-IV cohort were as follows: diabetes, CKD, RRT,
vasopressor use, potassium, anion gap, PaO2, BUN on day 1,
serum creatinine on day 1, BUN on day 3, and serum creatinine
on day 3, while hypertension and SBP had opposite trends and
statistical results (P<.05).

Model Comparison
We included all the variables shown in Multimedia Appendix
3 in the model construction since these indicators are common

and easily obtainable in clinical practice. Table 1 shows the
performance comparison of the 6 machine learning models for
predicting AKD risk in the training, internal validation, and
external cohorts. In the training cohort, the algorithm with the
greatest performance was LightGBM, with AUROC=0.844
(95% CI 0.831-0.857), sensitivity=0.788 (95% CI 0.759-0.814),
specificity=0.761 (95% CI 0.745-0.777), PPV=0.522 (95% CI
0.495-0.549), and NPV=0.915 (95% CI 0.903-0.927). In the
external validation cohort, the best-predicting model was the
LRM, which had AUROC=0.763 (95% CI 0.707-0.818),
sensitivity=0.830 (95% CI 0.738-0.899), specificity=0.586 (95%
CI 0.512-0.658), PPV=0.503 (95% CI 0.422-0.584), and
NPV=0.872 (95% CI 0.800-0.925). LightGBM also
demonstrated the ability to distinguish patients at a higher risk
of AKD during hospitalization in the validation cohort:
AUROC=0.853 (95% CI 0.841-0.865), sensitivity=0.817 (95%
CI 0.791-0.842), specificity=0.759 (95% CI 0.742-0.775),
PPV=0.534 (95% CI 0.507-0.560), and NPV=0.925 (95% CI
0.913-0.936) in the internal validation cohort and
AUROC=0.755 (95% CI 0.699-0.811), sensitivity=0.851 (95%
CI 0.763-0.916), specificity=0.597 (95% CI 0.523-0.668),
PPV=0.516 (95% CI 0.435-0.597), and NPV=0.888 (95% CI
0.819-0.937) in the external cohort. Figures 2A and 2B provide
the ROC curves of the prediction models in the training and
external cohorts, among which LightGBM showed the best
overall performance. Multimedia Appendix 4 exhibits the ROC
curves for the internal validation cohort. We selected the 3
algorithms (LightGBM, RF, XGBoost) with better performance
in the validation cohort to conduct DCA; Figure 2C shows that
when the threshold probability of AKD reached 60%, the net
benefit ratio of taking intervention measures was 0.5, showing
good clinical applicability of LightGBM. Further, the calibration
curves for the 3 algorithms are presented in Figure 2D displaying
the relative consistency between predictions and actual values.
However, according to Figure 2D, when the threshold
probability was low, the prediction probability of the model
was high with overfitting, which was consistent with Figure
2C: when the threshold probability was low, the net benefit of
the model hardly increased.
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Figure 2. ROC curves, DCA , and calibration curves of AKD risk prediction models. AKD: acute kidney disease; AUROC: area under the receiver
operating characteristic curve; DCA: decision curve analysis; KNN: K-nearest neighbor; LightGBM: Light Gradient Boosting Machine; LRM: logistic
regression model; MLP: multilayer perceptron; RF: random forest; ROC: receiver operating characteristic; XGBoost: Extreme Gradient Boosting.
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Table 1. Performance of the AKDa risk prediction models for elderly patients.

NPVd (95% CI)PPVc (95% CI)
Specificity (95%
CI)

Sensitivity (95%
CI)Cutoff

AUROCb (95%
CI)Cohort and models

Training cohort

0.853 (0.836-0.869)0.353 (0.331-0.376)0.575 (0.556-
0.594)

0.701 (0.670-
0.732)

0.7490.679 (0.660-
0.698)

LRMe

0.895 (0.880-0.909)0.397 (0.374-0.421)0.605 (0.586-
0.624)

0.787 (0.758-
0.813)

0.7510.756 (0.740-
0.773)

XGBoostf

0.915 (0.903-0.927)0.522 (0.495-0.549)0.761 (0.745-
0.777)

0.788 (0.759-
0.814)

0.7240.844 (0.831-
0.857)

LightGBMg

0.894 (0.877-0.908)0.367 (0.345-0.389)0.539 (0.520-
0.558)

0.806 (0.778-
0.832)

0.7740.734 (0.717-
0.751)

MLPh

0.914 (0.901-0.927)0.449 (0.425-0.474)0.671 (0.653-
0.689)

0.810 (0.783-
0.836)

0.7480.814 (0.800-
0.828)

RFi

0.867 (0.850-0.883)0.357 (0.335-0.380)0.558 (0.539-
0.577)

0.742 (0.712-
0.771)

0.7890.712 (0.694-
0.730)

KNNj

Internal validation cohort

0.853 (0.835-0.869)0.356 (0.333-0.378)0.566 (0.547-
0.585)

0.710 (0.679-
0.740)

0.6770.669 (0.650-
0.688)

LRM

0.836 (0.820-0.852)0.381 (0.356-0.407)0.663 (0.645-
0.681)

0.614 (0.582-
0.647)

0.6570.684 (0.665-
0.703)

XGBoost

0.925 (0.913-0.936)0.534 (0.507-0.560)0.759 (0.742-
0.775)

0.817 (0.791-
0.842)

0.7220.853 (0.841-
0.865)

LightGBM

0.875 (0.859-0.890)0.380 (0.357-0.403)0.587 (0.568-
0.606)

0.751 (0.722-
0.779)

0.7390.719 (0.701-
0.737)

MLP

0.926 (0.913-0.937)0.450 (0.426-0.475)0.653 (0.634-
0.671)

0.844 (0.819-
0.868)

0.7450.823 (0.809-
0.837)

RF

0.859 (0.841-0.875)0.355 (0.333-0.377)0.552 (0.532-
0.571)

0.731 (0.701-
0.760)

0.7890.692 (0.674-
0.711)

KNN

External validation cohort

0.872 (0.800-0.925)0.503 (0.422-0.584)0.586 (0.512-
0.658)

0.830 (0.738-
0.899)

0.7870.763 (0.707-
0.818)

LRM

0.864 (0.793-0.917)0.514 (0.430-0.596)0.613 (0.539-
0.683)

0.809 (0.714-
0.882)

0.8250.736 (0.678-
0.794)

XGBoost

0.888 (0.819-0.937)0.516 (0.435-0.597)0.597 (0.523-
0.668)

0.851 (0.763-
0.916)

0.8990.755 (0.699-
0.811)

LightGBM

0.819 (0.750-0.876)0.528 (0.437-0.618)0.683 (0.611-
0.749)

0.702 (0.599-
0.792)

0.7640.724 (0.665-
0.784)

MLP

0.863 (0.795-0.916)0.532 (0.446-0.616)0.645 (0.572-
0.714)

0.798 (0.702-
0.874)

0.7780.749 (0.692-
0.806)

RF

0.760 (0.677-0.831)0.417 (0.338-0.500)0.527 (0.453-
0.600)

0.670 (0.566-
0.764)

0.7890.632 (0.566-
0.699)

KNN

aAKD: acute kidney disease.
bAUROC: area under the receiver operating characteristic curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
eLRM: logistic regression model.
fXGBoost: Extreme Gradient Boosting.
gLightGBM: Light Gradient Boosting Machine.
hMLP: multilayer perceptron.
iRF: random forest.
jKNN: K-nearest neighbor.
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Model Interpretability
To better explain the clinical significance of certain features,
this study quantified the features’ importance as SHAP values.
As shown in Figure 3A, variables were given a ranking based
on their contribution to the risk prediction of AKD, with
creatinine on day 3, sepsis, delta BUN, DBP, heart rate, delta
creatinine, creatinine on day 1, respiratory rate, pH, and diabetes
as the top 10 predictors of developing AKD during
hospitalization in the elderly. Figure 3B shows a detailed
relationship between each feature and AKD risk, indicating that
the positively related features were as follows: creatinine on
day 3, sepsis, delta BUN, heart rate, delta creatinine, creatinine
on day 1, pH, and diabetes (the higher the value of these features
or the presence of complications, the higher the probability of
developing AKD in elderly patients with AKI). Further, the
protective effect was associated with a higher DBP. However,

the relationship between respiratory rate and AKD during
hospitalization was not clearly demonstrated. Furthermore,
partial dependence plots were drawn in Figure 4 for the first 4
continuous variables in Figure 3A. The partial dependence plots
visually displayed the global relationship between feature and
risk distribution. According to Figure 4A, the change curve
between creatinine on day 3 (abscissa) and AKD risk (ordinate)
indicated a cutoff value of 110 for this feature, meaning that
when the creatinine level on day 3 exceeded 110 umol/L, the
risk of AKD during hospitalization also increased. Similarly,
Figures 4B, 4C, and 4D demonstrate that 0 was the cutoff for
delta BUN (positive correlation), 80 mmHg for the DBP
(negative correlation), and 110 beats/minute for the heart rate
(positive correlation). Thus, targeted feature management may
assist in reducing the risk of AKD in elderly patients with AKI
during hospitalization based on the cutoff values in partial
dependency plots.

Figure 3. Feature-ranking plots (A) and summary plots (B) of LightGBM for predicting AKD risk. AKD: acute kidney disease; BUN: blood urea
nitrogen; DBP: diastolic blood pressure; LightGBM: Light Gradient Boosting Machine; SHAP: Shapley additive explanation.

Model Application
We deployed the LightGBM algorithm as an online app because
the LightGBM AKD risk model had a relatively high AUROC
in the training, internal validation, and external cohorts. After
the 10-fold cross-validation grid search, the LightGBM
hyperparameters were finally tuned as follows: “num_leaves”:
10, “max_depth”: 5, “max_bin”: 135, “min_data_in_leaf”: 11,
“feature_fraction”: 1.0, “bagging_fraction”: 1.0, “bagging_freq”:
45, “lambda_l1”: 0.0, “lambda_l2”: 0.001, “min_split_gain”:
0.4. Further, a web-based app for predicting AKD risk in the
elderly was designed, which could be accessed online at any
time by medical staff or patients (Multimedia Appendix 5) [19].

For an elderly patient with AKI being diagnosed for the first
time in the ICU, physicians collected and input all variables’
values correctly in Multimedia Appendix 5 and then clicked
the Predict button to obtain the predicted result (AKD or
non-AKD) during hospitalization. Moreover, users could enter
variables’ values and the author’s email address and click the
Feedback button, enabling new data to be sent to the author to
facilitate model iteration. When the result showed that the
patient was at high risk of AKD, early intervention could be
implemented based on the partial dependence plots in Figure 4
and interventionable indicators might be controlled as close to
the cutoff value as possible to prevent the progression of AKI
and reduce the risk of AKD.
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Figure 4. Partial dependence plots of LightGBM model for predicting AKD risk. AKD: acute kidney disease; BUN: blood urea nitrogen; DBP: diastolic
blood pressure; LightGBM: Light Gradient Boosting Machine.

Model 2 : Predicting Prognostic Mortality in Elderly
Patients With AKD

Baseline Characteristics
In this study on predicting the prognostic mortality in elderly
patients with AKD, a total of 2661 elderly patients with AKD
from the MIMIC-IV database (training cohort) and 186 from
Xiangya Hospital (external validation cohort) were screened
out and enrolled. The in-hospital mortality of elderly patients
with AKD was 29.6% (788/2661) in the training cohort and
41.3% (77/186) in the external validation cohort. Multimedia
Appendix 6 provides the differences in baseline characteristics
between the 2 cohorts stratified by in-hospital death. In the
MIMIC-IV cohort, compared with survivors, patients who died
in the hospital were more likely to be older (P<.05), with a
higher proportion of comorbidities (sepsis, CKD, and CLDl
P<.05); a higher proportion of interventions (RRT and
vasopressor use; P<.05); a higher heart rate and lower SBP in
terms of vital signs (P<.05); and higher WBC count, potassium,
anion gap, glucose, BUN on day 1, creatinine on day 1, BUN
on day 3, creatinine on day 3, delta BUN, and delta creatinine
and lower RBC count, hemoglobin, hematocrit, and PaCO2 in
terms of laboratory tests (P<.05). Additionally, in the Xiangya
Hospital cohort, sepsis, RRT, vasopressor use, heart rate, anion

gap, and BUN on day 1 had similar statistical trends to those
in the MIMIC-IV cohort (P<.05).

Model Comparison
The performance of the in-hospital death prediction model for
AKD in elderly patients in the training and external cohorts is
presented in Table 2. In the training cohort, the best-performing
algorithm was XGBoost, with AUROC=0.870 (95% CI
0.853-0.886), sensitivity=0.772 (95% CI 0.752-0.791),
specificity=0.793 (95% CI 0.763-0.821), PPV=0.594 (95% CI
0.564-0.624), and NPV=0.899 (95% CI 0.883-0.913). In the
external validation cohort, the LRM provided the best prediction,
with AUROC=0.772 (95% CI 0.701-0.843), sensitivity=0.706
(95% CI 0.612-0.790), specificity=0.740 (95% CI 0.628-0.834),
PPV=0.640 (95% CI 0.532-0.739), and NPV=0.794 (95% CI
0.700-0.869). However, comprehensively comparing the
prediction performance of the training cohort and the
generalization of the validation cohort, the LightGBM algorithm
showed good overall performance, as demonstrated by an
AUROC of 0.861 (95% CI 0.843-0.878) in the training cohort,
0.868 (95% CI 0.851-0.885) in the internal validation cohort,
and 0.746 (95% CI 0.673-0.820) in the external cohort, in
accordance with the ROC curves in Figure 5A, Multimedia
Appendix 7, and Figure 5B. Figure 5C indicates that in DCA,
when the probability of death during hospitalization reached
10%, the net benefit of intervention measures was 0.2,
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suggesting good efficacy of LightGBM. Moreover, the
calibration curve in Figure 5D shows that the predicted curve

of the model surrounded the actual probability line, indicating
relative accuracy.

Table 2. Performance of the AKDa prognostic mortality models for elderly patients.

NPVd (95% CI)PPVc (95% CI)Specificity (95% CI)Sensitivity (95% CI)CutoffAUROCb (95% CI)Cohort and models

Training cohort

0.810 (0.790-0.829)0.451 (0.421-0.481)0.619 (0.584-0.653)0.683 (0.661-0.704)0.3080.698 (0.675-0.721)LRMe

0.899 (0.883-0.913)0.594 (0.564-0.624)0.793 (0.763-0.821)0.772 (0.752-0.791)0.3120.870 (0.853-0.886)XGBoostf

0.885 (0.869-0.899)0.610 (0.579-0.641)0.754 (0.722-0.784)0.798 (0.779-0.816)0.3340.861 (0.843-0.878)LightGBMg

0.815 (0.796-0.833)0.491 (0.459-0.523)0.603 (0.568-0.637)0.737 (0.716-0.757)0.3320.731 (0.709-0.753)MLPh

0.851 (0.835-0.867)0.702 (0.667-0.736)0.632 (0.597-0.666)0.887 (0.872-0.901)0.3510.844 (0.826-0.862)RFi

0.817 (0.797-0.837)0.447 (0.418-0.476)0.648 (0.614-0.682)0.662 (0.640-0.683)0.3130.717 (0.695-0.740)KNNj

Internal validation cohort

0.838 (0.818-0.856)0.449 (0.420-0.479)0.669 (0.647-0.690)0.676 (0.642-0.709)0.3010.720 (0.697-0.742)LRM

0.893 (0.876-0.908)0.503 (0.474-0.532)0.686 (0.665-0.707)0.793 (0.763-0.822)0.2900.810 (0.790-0.830)XGBoost

0.916 (0.901-0.929)0.573 (0.543-0.602)0.753 (0.733-0.773)0.828 (0.799-0.854)0.3030.868 (0.851-0.885)LightGBM

0.835 (0.817-0.853)0.497 (0.465-0.529)0.744 (0.724-0.764)0.633 (0.598-0.667)0.3390.750 (0.728-0.771)MLP

0.776 (0.760-0.790)0.567 (0.533-0.599)0.761 (0.745-0.776)0.625 (0.561-0.637)0.3300.706 (0.605-0.759)RF

0.854 (0.833-0.873)0.408 (0.382-0.434)0.558 (0.535-0.580)0.762 (0.730-0.792)0.2780.725 (0.703-0.748)KNN

External validation cohort

0.794 (0.700-0.869)0.640 (0.532-0.739)0.740 (0.628-0.834)0.706 (0.612-0.790)0.2850.772 (0.701-0.843)LRM

0.733 (0.638-0.815)0.605 (0.490-0.712)0.636 (0.519-0.743)0.706 (0.612-0.790)0.3850.698 (0.620-0.776)XGBoost

0.796 (0.703-0.871)0.648 (0.539-0.747)0.740 (0.628-0.834)0.716 (0.621-0.798)0.3120.746 (0.673-0.820)LightGBM

0.789 (0.700-0.861)0.701 (0.586-0.800)0.701 (0.586-0.800)0.789 (0.700-0.861)0.3390.770 (0.699-0.841)MLP

0.767 (0.664-0.852)0.570 (0.467-0.669)0.740 (0.628-0.834)0.606 (0.507-0.698)0.3370.716 (0.639-0.792)RF

0.829 (0.679-0.928)0.483 (0.399-0.567)0.909 (0.822-0.963)0.312 (0.227-0.408)0.1880.602 (0.519-0.685)KNN

aAKD: acute kidney disease.
bAUROC: area under the receiver operating characteristic curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
eLRM: logistic regression model.
fXGBoost: Extreme Gradient Boosting.
gLightGBM: Light Gradient Boosting Machine.
hMLP: multilayer perceptron.
iRF: random forest.
jKNN: K-nearest neighbor.
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Figure 5. ROC curves, DCA , and calibration curves of AKD prognostic mortality prediction models. AKD: acute kidney disease; AUROC: area under
the receiver operating characteristic curve; DCA: decision curve analysis; KNN: K-nearest neighbor; LightGBM: Light Gradient Boosting Machine;
LRM: logistic regression model; MLP: multilayer perceptron; RF: random forest; ROC: receiver operating characteristic; XGBoost: Extreme Gradient
Boosting.

Model Interpretability
Using SHAP values, we performed a visual analysis of a model
for predicting AKD prognostic mortality of the elderly. Figure
6A shows the top 10 predictors of in-hospital death in patients
with AKD, as follows: age, BUN on day 1, vasopressor use,
BUN on day 3, PaCO2, RRT, delta creatinine, RBC count,
respiratory rate, and creatinine on day 1. Figure 6B indicates a
more detailed representation of the positive and negative
relationships between features and outcomes. The risk of death
due to AKD during hospitalization was positively associated
with the following features: older age, higher BUN on day 1,
use of vasopressors, higher BUN on day 3, higher PaCO2, use

of RRT, higher delta creatinine, and creatinine on day 1. The
RBC count and respiratory rate were higher in hospitalized
survivors among elderly patients with AKD. For the first 4
continuous variables in Figure 6A, partial dependence plots
were drawn (Figure 7). According to Figure 7A, the probability
of in-hospital death increased from 0 when the patient reached
75 years of age. Similarly, Figures 7B, 7C, and 7D show that
the cutoff values of BUN on day 1, BUN on day 3 and PaCO2

affecting the risk of death were 15 mmol/L, 10 mmol/L, and 45
mmHg, respectively, which might contribute to guiding patients’
management and reducing the in-hospital risk of death for those
with AKD.
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Figure 6. Feature-ranking plots (A) and summary plots (B) of LightGBM for predicting prognostic mortality in AKD. AKD: acute kidney disease;
BUN: blood urea nitrogen; PaCO2: partial pressure of carbon dioxide; LightGBM: Light Gradient Boosting Machine; RBC: red blood cell; RRT: renal
replacement therapy; SHAP: Shapley additive explanation.

Model Application
We chose the LightGBM algorithm, which exhibited good
AUROC values in the training and validation cohorts, to deploy
the prognostic mortality function in the online version of the
AKD model. The optimal combination of hyperparameters for
the LightGBM prognostic model was as follows: “num_leaves”:
10, “max_depth”: 4, “max_bin”: 35, “min_data_in_leaf”: 100,
“feature_fraction”: 1.0, “bagging_fraction”: 0.7, “bagging_freq”:
5, “lambda_l1”: 0.0, “lambda_l2”: 0.1, “min_split_gain”: 0.0.
The web-based app to predict in-hospital death in elderly
patients with AKD could be accessed online (Multimedia
Appendix 8) [20]. When elderly patients were diagnosed with

AKD for the first time, we entered all the indicators correctly
on the web page and clicked the Predict button to predict the
prognosis (death or survival) of elderly patients with AKD
during hospitalization. Additionally, if users found a prediction
error, they could enter the variable’s value and their own email
address and then click the Feedback button, enabling the
corresponding data to be automatically sent to the author’s email
address. Using this feedback function could facilitate the
collection of new data for model iterations. At the same time,
according to the cutoff value shown in the partial dependence
plots in Figure 7, targeted interventions were performed on
patients at risk of death due to AKD, with the potential to
improve the survival of patients with AKD.
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Figure 7. Partial dependence plots of LightGBM for predicting prognostic mortality in patients with AKD. AKD: acute kidney disease; BUN: blood
urea nitrogen; LightGBM: Light Gradient Boosting Machine; PaCO2: partial pressure of carbon dioxide.

Discussion

Principal Findings

Predicting the Risk of AKD in the Elderly
As part of this study, we focused on model construction and
feature analysis for AKD risk during hospitalization, and
LightGBM was selected as the best algorithm for online
deployment (training cohort AUROC=0.844, 95% CI
0.831-0.857; validation cohort AUROC=0.755, 95% CI
0.699-0.811). To the best of our knowledge, our study was the
first to analyze the risk characteristics of AKD in critically ill
elderly patients during hospitalization and to develop an
easy-to-use online AKD risk identification app.

In addition to basic information, comorbidities, vital signs, and
laboratory indicators on day 1 of AKI diagnosis, some indicators
on day 3 and their fluctuations were also selected as features,
including creatinine on day 3, BUN on day 3, delta BUN, and
delta creatinine. A previous study found that the maximum
creatinine level is reached on day 3 within 1-5 days after cardiac
surgery in elderly patients [21]. Treiber et al [22] demonstrated
that in neonatal patients with perinatal hypoxia, the AUROC
of serum creatinine on day 3 after birth as a single predictor for
AKI is 0.660, indicating a certain predictive value. Similar to
these studies, our study revealed that serum creatinine on day

3 is higher than that on day 1 of AKD diagnosis in the elderly,
ranking first in the feature of the AKD risk prediction model.
Thus, serum creatinine on day 3 might be considered a focused
experimental indicator for clinical research on patients with
AKD in the ICU.

Delta BUN is commonly used to evaluate changes in renal
function; however, the definition of the specific delta BUN
varies. According to a study on patients with acute heart failure,
delta BUN refers to the difference between the day before and
after the administration of loop diuretics, but there was no
statistical difference between the treatment and control groups
(P>.05) [23]. Moreover, delta BUN was defined as the
difference between 1 year after transplantation and at
transplantation to evaluate renal function in a retrospective study
conducted by Ewald et al [24]. In our study, we found that delta
BUN (day 3 – day 1 after AKI diagnosis) is significantly
positively correlated with AKD in elderly patients, with higher
BUN on day 3 than on day 1 (delta BUN>0). Wu et al [25] also
observed a gradual increase in BUN after AKI, in which BUN
peaked at day 3 following cisplatin-induced AKI. Additionally,
we determined that delta creatinine and creatinine on day 1 are
associated with an increased risk of AKD during hospitalization.
In a prospective study on adult patients after cardiac surgery,
researchers defined delta creatinine as baseline – first
postoperative creatinine and concluded that delta creatinine
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combined with biomarkers has a good predictive effect on
mortality[24]. Furthermore, Garner et al [26] defined delta
creatinine to be higher than 26 μmol/L within 30 days of
admission, enabling 98% of hospitalized patients with AKI to
be identified.

At present, many studies have examined the factors associated
with sepsis-related AKI, such as age, CKD, diabetes, infective
endocarditis, and intra-abdominal infections [27-30]. However,
there are relatively few studies conducted on sepsis and AKD.
According to a single-center retrospective study, 46.9% of
patients with sepsis developed AKD; in other words, sepsis is
a critical factor contributing to the development of AKD in
patients with AKI [31]. As a result of this study, it was also
found that sepsis has a significant influence on renal function
recovery of elderly patients with AKI.

Renal dysfunction is primarily caused by insufficient renal
perfusion, indicating that improving the patient’s hemodynamics
to increase perfusion pressure might be an effective strategy for
reversing kidney damage [32]. Previously, it was demonstrated
that the DBP might be a valuable target for hemodynamic
therapy in AKI by affecting renal perfusion [33]. Additionally,
we found that the DBP is a major factor in the occurrence of
AKD in elderly patients with AKI and that the risk of AKD
gradually increases as the DBP decreases from 80 mmHg.
However, a study of patients with severe coronary artery disease
found that the risk of AKD is higher when the DBP is less than
50 mmHg [34]. This difference in the cutoff of the DBP for
predicting AKD might reflect varying patient populations. As
an indicator of overall health, the heart rate is affected by many
factors, including pain stimulation, temperature, blood volume,
and inflammatory responses. In a randomized controlled trial
of β-receptor blockers in heart failure, maintaining a heart rate
of 60 beats/minute was found to be beneficial to patient
outcomes [35]. Additionally, a heart rate higher than 100
beats/minute might be a predictor of sepsis in patients not on
advanced life support [36]. Our study also revealed that AKD
is more likely to develop when the heart rate exceeds 110
beats/minute.

There is evidence that an abnormal respiratory rate could
interfere with the baroreceptor reflex and cardiovascular
variability [37]. We also found that an excessively high or low
respiratory rate might adversely affect renal function recovery
and lead to AKD in elderly patients with AKI. Metabolic
acidosis is a common and life-threatening homeostatic disorder
in the ICU, especially in patients with sepsis [38]. Furthermore,
acidosis-related hemodynamic changes and decreased pH also
contribute to the risk of AKI [39]. However, there has been
relatively little attention given to metabolic alkalosis resulting
from mass gastric fluid loss, a compensatory response to
respiratory acidosis, or excess diuresis in critically ill patients.
In a retrospective study of patients with septic shock, metabolic
alkalosis was a significant predictor of the length of stay [40].
Likewise, we found that elevated pH is also a predictor of
patients with AKD in the ICU, suggesting persistent renal
impairment. Diabetes as a chronic disease is preventable and
controllable. Currently, some studies have indicated that AKI
is more common among patients with diabetes and that diabetes
might increase AKI risk [41]. According to a national study of

hospitalization trends in AKI in the United States between 2000
and 2014, the incidence of AKI among patients with diabetes
was significantly higher than among patients without diabetes
[42]. Our study also demonstrated that diabetes contributes to
the development of AKD in elderly patients with AKI in the
ICU.

Predicting Prognostic Mortality in Elderly Patients With
AKD
After analyzing and predicting the risk of AKD during
hospitalization for elderly patients with AKI in the ICU, a further
machine learning prediction study was conducted on the hospital
prognostic mortality of patients with AKD. Finally, the
LightGBM algorithm was selected and deployed as a
user-friendly web app, which performed well in both the training
(AUROC=0.861, 95% CI 0.843-0.878) and external validation
(AUROC=0.746, 95% CI 0.673-0.820) cohorts. In our opinion,
this study was the first to construct and validate online machine
learning models for continuously predicting the AKD risk and
prognostic mortality in elderly patients.

Notably, we found that among the top 10 significant variables
for predicting the occurrence of AKD in patients with AKI and
predicting the prognostic mortality in AKD, delta creatinine,
creatinine on day 1, and respiratory frequency all had good
predictive values. In the prediction of hospital death in the
elderly with AKD, creatinine on day 1 following renal injury
was proportional to the likelihood of death. Some studies have
shown that serum creatinine and mortality risk are significantly
correlated. Thongprayoon et al [43] concluded that the serum
creatinine level is a reliable predictor of mortality in critically
ill patients. According to a retrospective study by Pooja et al
[44], hepatorenal syndrome–related death is independently
affected by high serum creatinine levels. Further, our study
observed a positive correlation between delta creatinine and
hospital mortality in elderly patients with AKD, which also
appeared relevant to the risk of developing AKD in elderly
patients with AKI. In patients with liver cirrhosis, researchers
have found that creatinine variability (ie, delta creatinine) can
serve as an effective indicator for predicting mortality [45].
Bradypnea is often seen in patients with central respiratory
failure, sleep apnea syndrome, and high intracranial pressure.
There is evidence to suggest that slow breathing can lead to
death in patients with many diseases, including traumatic brain
injury and stroke [46,47]. Additionally, Gooneratne et al [48]
revealed that slow breathing with drowsiness results in increased
mortality in the elderly. In this study, we also found that slow
breathing is highly predictive of mortality in elderly patients
with AKD.

In previous studies, age has been found to be a critical factor in
the development of AKI [49]. Further, a retrospective study of
Chinese multicenter patients with AKI revealed that age is an
independent predictor of AKD progression in the logistic
regression model but is not considered a risk factor for death
[9]. As found in our study, age ranked first among the factors
influencing in-hospital death in elderly patients with AKD, with
patients aged over 75 years showing higher mortality and those
60-75 years old not appearing to present a significant risk of
death. Patients in the ICU with septic shock or cardiogenic
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shock usually require vasopressors, such as norepinephrine,
epinephrine, and dopamine. Plurad et al [50] found that early
administration of vasopressors in the ICU is independently
associated with the risk of death regardless of the volume status
at admission. In our study, vasopressor use was also a key
predictor of mortality in elderly patients with AKD. Research
has indicating that BUN is closely related to mortality risk in
those with critical illness, acute pancreatitis, and heart failure
[51-53]. In our study, we found that BUN on day 1 and day 3
after AKI diagnosis contributes to the risk of death due to AKD.
Importantly, the cutoff values for BUN on day 1 and day 3 to
predict in-hospital death were determined to be 15 and 20
mmol/L, respectively. However, Wernly et al [54] calculated
9.7 mmol/L as the optimal cutoff for BUN using Youden’s
index to predict patients’ mortality in the ICU. Among patients
with acute myocardial infarction complicated by cardiogenic
shock, Zhu et al [55] observed that patients with BUN levels
higher than 8.95 mmol/L on admission have an adverse
short-term outcome [55].

As the main indicator of respiratory health and acid-base
homeostasis, PaCO2 levels higher than 45 mmHg often indicate
the presence of hypercapnia. In a prospective observational
study, patients with hypercapnia experienced higher in-hospital
and long-term mortality [56]. Additionally, we observed that
elderly patients with AKD who had PaCO2 levels higher than
45 mmHg are more likely to die during hospitalization. RRT
has been widely used as an effective intervention in patients
with AKI, acute severe pancreatitis, and poisoning. Our study
suggested that elderly patients with AKD requiring RRT might
be at higher risk of in-hospital death, similar to the fact that
patients with AKI in need for RRT usually have poorer survival
and less renal function recovery, although RRT could delay or
even stop this adverse process [57]. Based on our findings, AKD
is associated with decreased RBC counts, which are observed
in aplastic anemia, iron deficiency anemia, and massive
bleeding. Recently, the RBC distribution width (RDW) has been
widely regarded as a predictor of prognosis, especially in
patients with coronary heart disease, AKI, and CKD [58-60].
Nevertheless, because of the high missing proportion of the
RDW, we did not include it in our constructed model.

Strengths
We focused on elderly individuals with AKD for the first time,
identified features affecting AKD risk and prognostic mortality,
and developed 2 web-based prediction apps. After the users
input the apps’ URLs on the mobile phone or computer and

manually entered the variables’ values, they could click the
Predict button to obtain the predictions or the Feedback button
to send us new data. Although our online apps are easy to use,
the calibration tool deployed by Sun et al [61] is more
convenient and can be automated for use at different hospitals
without manual data preparation, which could serve as a
reference for further iterative development. Of note, data sets
from Xiangya Hospital (China) were used for external
validation, with good performance. However, the performance
of the AKI prediction model in different sites has shown
significant degradation [61], which might be due to the
following measures we took to minimize performance
degradation caused by a data shift. First, we adopted relatively
strict inclusion and exclusion criteria to reduce the heterogeneity
of enrolled patients. In addition, AKI and AKD were defined
based on laboratory measurements, which prevented errors in
medical record text recognition. Third, the units of the variables
in the MIMIC-IV and Xiangya Hospital cohorts were unified.
Finally, we added the Feedback button to 2 online forecasting
apps to gather new training data through user feedback, that is,
coping with data shifts by adhering to the fundamental principle
of increasing training data.

Limitations
However, there are still some limitations. First, since detailed
information about patients after discharge was lacking, the
emphasis was placed on AKD diagnosis and prognosis during
hospitalization. Second, the prediction models were based on
machine learning classification algorithms, which could only
identify a high or a low risk of AKD and patients’ survival but
could not display detailed risk values. Finally, although the 2
prediction models constructed in this study were externally
validated and demonstrated good generalization abilities,
additional variables, such as biomarkers, were needed to ensure
better performance, as well as prospective experiments to further
evaluate the online apps.

Conclusion
In conclusion, 2 online apps with machine learning algorithms
were successfully constructed and deployed for predicting the
AKD risk and prognostic mortality in elderly patients. SHAP
can intuitively explain the rankings of importance, threshold
values for partial features, and positive or negative correlations
between features and outcomes, thereby aiding medical staff in
early identification and targeted management to promote renal
function recovery and patient survival to a certain extent.
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DCA: decision curve analysis
EHR: electronic health record
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PPV: positive predictive value
PaCO2: partial pressure of carbon dioxide
PaO2: partial pressure of oxygen
RBC: red blood cell
RDW: RBC distribution width
RF: random forest
ROC: receiver operating characteristic
RRT: renal replacement therapy
SBP: systolic blood pressure
SHAP: Shapley additive explanation
WBC: white blood cell
XGBoost: Extreme Gradient Boosting
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