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Abstract

Background: Acute kidney injury (AKI) is common in patients with community-acquired pneumonia (CAP) and is associated
with increased morbidity and mortality.

Objective: This study aimed to establish and validate predictive models for AKI in hospitalized patients with CAP based on
machine learning algorithms.

Methods: We trained and externally validated 5 machine learning algorithms, including logistic regression, support vector
machine, random forest, extreme gradient boosting, and deep forest (DF). Feature selection was conducted using the sliding
window forward feature selection technique. Shapley additive explanations and local interpretable model-agnostic explanation
techniques were applied to the optimal model for visual interpretation.

Results: A total of 6371 patients with CAP met the inclusion criteria. The development of CAP-associated AKI (CAP-AKI)
was recognized in 1006 (15.8%) patients. The 11 selected indicators were sex, temperature, breathing rate, diastolic blood pressure,
C-reactive protein, albumin, white blood cell, hemoglobin, platelet, blood urea nitrogen, and neutrophil count. The DF model
achieved the best area under the receiver operating characteristic curve (AUC) and accuracy in the internal (AUC=0.89,
accuracy=0.90) and external validation sets (AUC=0.87, accuracy=0.83). Furthermore, the DF model had the best calibration
among all models. In addition, a web-based prediction platform was developed to predict CAP-AKI.

Conclusions: The model described in this study is the first multicenter-validated AKI prediction model that accurately predicts
CAP-AKI during hospitalization. The web-based prediction platform embedded with the DF model serves as a user-friendly tool
for early identification of high-risk patients.

(J Med Internet Res 2024;26:e51255) doi: 10.2196/51255
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Introduction

Acute kidney injury (AKI) is common in patients with
community-acquired pneumonia (CAP), which is associated
with higher morbidity and mortality, longer hospital stays, and
increased financial costs. In recent years, outbreaks of
pneumonia caused by new pathogens, including SARS in 2002,
Middle East respiratory syndrome in 2012, and the COVID-19
pandemic in 2019, have severely strained resources and had
significant societal impacts. In addition, a considerable
percentage of patients with CAP, ranging from 4.3%
(429/10,069) to 34.4% (631/1836), develop AKI [1-3].
Identifying and intervening in AKI early can facilitate the timely
restoration of renal function, ultimately enhancing survival rates
and aiding patients in their recovery post discharge [4,5].
However, AKI is primarily detected through elevated levels of
serum creatinine (Scr), which is a delayed indicator of AKI.
Although various novel urine and plasma biomarkers have
shown promising results in diagnosing AKI, only a few are
presently used in clinical practice [6]. Furthermore, the cost
associated with biomarker assessment and the challenges in
interpreting the results have limited their widespread adoption.

In recent years, machine learning (ML) techniques have offered
the potential to develop accurate prediction models for AKI,
enabling early risk stratification and personalized interventions.
A retrospective study published in Nature in 2019 included a
total of 703,782 adult patients from 172 hospitals and 1062
outpatient facilities. By using the recurrent neural network
algorithm, this study demonstrated the ability to predict 55.8%
(18,837/33,759) of patients with AKI 48 hours in advance, with
an impressive area under the receiver operating characteristic
curve (AUC) of 92% [7]. These findings suggest that ML can
accurately predict the occurrence of AKI at an early stage.

Numerous studies have focused on ML models for predicting
AKI in patients. However, these models have primarily focused
on vigorous patients, patients with sepsis, patients with cardiac
surgery, patients with cancer, and other specific populations.
Currently, there is a lack of models for predicting AKI in
patients with CAP. Furthermore, most of the studies have relied
on databases like MIMIC-III (The Medical Information Mart
for Intensive Care III), with a scarcity of local patient databases
and a lack of external validation. Therefore, there is an urgent
need to develop AKI prediction models specifically tailored to
the population of patients with CAP to provide targeted guidance
for diagnosis and treatment. This study aimed to use ML
methods to develop models that accurately predict
CAP-associated AKI (CAP-AKI).

Methods

Study Population
This retrospective cohort study involved 3 independent tertiary
hospitals—Wuxi People’s Hospital, Nanjing First Hospital, and
Sir Run Run Hospital affiliated with Nanjing Medical
University. Data were collected from January 2016 to December
2017. The inclusion criteria included patients aged 18 years and
older who were diagnosed with CAP during hospitalization.
The study exclusion criteria were (1) patients diagnosed with

stage 4-5 chronic kidney disease (CKD) or receiving regular
renal replacement therapy, (2) patients with a history of kidney
transplant, (3) patients with a hospital stay of less than 24 hours
or exceeding 90 days, (4) patients who had been treated by other
medical institutions within 14 days before hospitalization, (5)
patients who relied on mechanical ventilation and palliative
care for advanced tumors on a chronic basis, (6) occurrence of
AKI within 24 hours of admission or 7 days thereafter, and (7)
patients with peak Scr levels less than 53 μmol/L or Scr
measurements fewer than 2 times between 1 year before
hospitalization and discharge or fewer than 1 time during
hospitalization.

Primary Outcome
The primary outcome for developing the ML models was AKI
in patients with CAP. AKI is identified based on the Scr level,
as stated by the Kidney Disease Improving Global Outcomes
(KDIGO) [8]. It is defined as an increase in Scr to ≥1.5 times
baseline within 7 days of admission, or an increase in Scr ≥0.3
mg/dL within 48 hours. The baseline Scr level was determined
as the average within 7 to 365 days before hospitalization. If
baseline Scr is not recorded, the first Scr value upon admission
is used as the baseline Scr. Urine output was not considered for
AKI diagnosis due to missing data [9]. Estimated glomerular
filtration rate (eGFR) was calculated using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) creatinine
equation [10]. Proteinuria is defined as “The presence of at least
1+ protein in urinalysis.”

Training and Validation Data
The dataset was divided into 2 parts: one from Wuxi People’s
Hospital for training and internal validation (2568/3211, 80%
for model development and 643/3211, 20% for validation) and
the other from the multicenter patients for external validation.

Data Processing
Baseline characteristics and clinical data of patients within 24
hours of admission, including 62 indicators, were obtained from
the electronic record system. Variables with over 15% (9/62)
missing values were excluded, and the remaining variables were
imputed using the missForest method. Outliers were identified
and treated as missing values. The data of each feature were
standardized using the z score method. Variables with strong
collinearity (variance inflation factor [VIF] value≥10) were
discarded using the VIF. The synthetic minority over-sampling
technique (SMOTE) was applied to address data imbalance and
improve the prediction efficiency of the models.

Feature Selection and Machine Learning Models
Establishment
Feature importance was evaluated using the sklearn library
method. Features were sorted in descending order based on their
scores. A sliding windows sequential forward feature selection
technique method based on random forest (RF) and out-of-bag
(OOB) filtering was used to select features related to AKI. The
optimal number of features is determined by finding the subset
that results in the lowest OOB error (or the highest OOB score).
After feature selection, 5 ML algorithms, including logistic
regression (LR), RF, support vector machine, extreme gradient
boosting (XGBoost), and deep forest (DF) models, were used
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to construct the prediction models. A detailed description of
ML methods was given in Multimedia Appendix 1.

Model Validation and Performance
External datasets were used to validate the models, and their
performances were evaluated using various metrics such as the
AUC, specificity, sensitivity, positive predictive value (PPV),
negative predictive value, F1-score, expected calibration error
(ECE), calibration curve, and decision curve. A 1000-bootstrap
method was used to determine CIs by sampling with replacement
on the prediction indices.

Explanation of the Model
Shapley additive explanations (SHAP) is a method that
constructs an additive interpretation model. It considers all
features as “contributors” and calculates the marginal
contribution of each feature when added to the model output.
SHAP aims to provide explanations for “black box models” at
both global and local levels, making the model more
understandable and applicable.

On the other hand, local interpretable model-agnostic
explanations (LIME) modify a single data sample by adjusting
the eigenvalues and observing its effect on the output. LIME
acts as an “interpreter” by explaining the prediction of each data
sample. In LIME, a set of interpretations represents the
contribution of each feature to the prediction of a single sample.

Statistical Analysis
To compare baseline characteristics across different datasets,
we used 1-way ANOVA and chi-square tests. Statistical

significance was determined using a 2-sided P value of less
than .05. The ML models were created using Python (version
3.9.7; Python Software Foundation) with packages such as
scikit-learn, NumPy, SHAP, and pandas, as well as R (version
4.1.0; R Core Team) with the glmnet package.

Ethical Considerations
The study was approved by the institutional review boards of
Wuxi People’s Hospital (KY22073), Sir Run Run Hospital
(2021-SR-042), and Nanjing First Hospital
(KY20230410-01-KS-01). The study was conducted in
accordance with the declaration of Helsinki. Due to its
retrospective design, the ethics committees from Wuxi People’s
Hospital, Sir Run Run Hospital, and Nanjing First Hospital
waived the need for informed consent. Data can be analyzed
secondary without additional consent. The personal information
of patients was kept confidential throughout the entire study.
Since the experimental design did not involve any intervention
for the patients, no compensation was paid to the patients in the
study.

Results

Baseline Characteristics
The study comprised a total of 6371 patients, with 3211 (50.4%)
patients assigned to the training and internal validation groups,
and 3160 (49.6%) patients assigned to the external validation
group (Figure 1). Out of the total patients, 2566 (40.2%) were
female, with a mean age of 67.0 (SD 17.6) years and a baseline
Scr level of 72.5 (SD 31.1) μmol/L. Table 1 illustrates the
differences between the training and validation sets.

Figure 1. Flowchart for patient selection. CAP: community-acquired pneumonia; CAP-AKI: community-acquired pneumonia–associated acute kidney
injury.
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Table 1. Baseline characteristics of the patients with community-acquired pneumonia.

P valueExternal validation
set (n=3160)

Internal validation
set (n=643)

Training set
(n=2568)

All (n=6371)Variables

<.0011343 (42.5)227 (35.3)996 (38.8)2566 (40.2)Female, n (%)

<.00168.8 (17.3)65.7 (17.2)65.0 (17.9)67.0 (17.6)Age (years), mean (SD)

.681484 (46.9)296 (46)1227 (47.8)3007 (47.1)Hypertension, n (%)

<.001495 (15.6)201 (31.3)720 (28)1416 (22.2)Diabetes, n (%)

<.001150 (4.7)61 (9.5)209 (8.1)420 (6.6)CKDa, n (%)

.003711 (22.5)127 (19.8)484 (18.8)1322 (20.7)CVDb, n (%)

.40504 (15.9)94 (14.6)379 (14.7)977 (15.3)Cerebrovascular disease, n (%)

.51996 (31.5)195 (30.3)774 (30.1)1965 (30.8)Chronic lung disease, n (%)

.23215 (6.8)49 (7.6)205 (8)469 (7.4)Cancer, n (%)

.17188 (5.9)30 (4.7)127 (4.9)345 (5.4)Mechanical ventilation, n (%)

<.00136.9 (1.8)37.8 (1.2)37.8 (1.2)37.3 (1.2)Temperaturec (℃), mean (SD)

.00185.0 (15.6)83.6 (14.2)83.7 (14.2)84.3 (14.9)Heart rated (beats/minute), mean (SD)

.0219.7 (4.3)19.3 (3.1)19.5 (3.7)19.6 (4.0)Breathing ratee (births/minute), mean (SD)

<.001125.7 (16.4)126.9 (19.5)127.6 (19.7)126.6 (18.3)Systolic BPf,g (mm Hg), mean (SD)

<.00175.1 (11)76.9 (10.7)77.4 (19.3)76.1 (10.9)Diastolic BPh (mm Hg), mean (SD)

<.001199 (6.2)79 (12.3)320 (12.5)598 (9.4)Acute respiratory failure, n (%)

<.00199 (3.1)55 (8.6)200 (7.8)354 (5.6)Acute cardiac dysfunction, n (%)

.97447 (14.1)93 (14.5)369 (14.4)910 (14.3)ACEIi or ARBj, n (%)

<.001928 (29.3)110 (17.1)414 (16.1)1452 (22.7)Diuretic, n (%)

.02576 (18.2)129 (20)546 (21.2)1251 (19.6)CCBk, n (%)

.77175 (5.5)40 (6.2)149 (5.8)364 (5.7)β-block, n (%)

.5272.2 (37.3)73.7 (24.3)72.5 (22.5)72.5 (31.1)Baseline Scrl (μmol/L), mean (SD)

.0285.8 (29.3)82.8 (25.4)84.3 (25.7)84.9 (27.6)eGFRm (mL/min×1.73m2), mean (SD)

.036.4 (4.9-8.8)7.0 (5.2-9.5)6.9 (5.3-9.5)6.9 (5.2-9.5)WBCn (×109/L), median (IQR)

.0045.0 (3.5-7.6)4.8 (3.4-7.1)4.8 (3.3-7.4)4.9 (3.4-7.4)Neutrophil count (×109/L), median (IQR)

.22208.1 (88.4)214.9 (107.4)211.7 (86.0)210.0 (87.9)Platelet (×109/L), mean (SD)

<.00119.1 (6.4-73.9)13.9 (2.0-48.3)14.0 (2.0-48.9)21.9 (4.0-74.2)CRPo (mg/L), median (IQR)

<.001119.3 (20.9)122.6 (19.2)123.0 (18.7)121.1 (20.0)Hemoglobin (g/L), mean (SD)

<.00133.9 (5.3)31.7 (5.9)32.0 (5.9)32.9 (5.7)Albumin (g/L), mean (SD)

<.0015.4 (4.3-8.0)4.9 (3.2-6.2)5.0 (3.5-6.3)5.1 (3.7-4.7)BUNp (mmol/L), median (IQR)

<.0013.7 (0.5)3.8 (0.5)3.8 (0.4)3.8 (0.5)Potassium (mmol/L), mean (SD)

.08138.9 (6.0)138.5 (3.9)138.8 (3.7)138.8 (5.1)Natrium (mmol/L), mean (SD)

<.001102.4 (6.0)101.2 (5.3)101.5 (4.6)101.9 (5.6)Chloride (mmol/L), mean (SD)

<.001746 (23.6)239 (37.2)942 (36.7)1927 (30.2)Proteinuriaq, n (%)

aCKD: chronic kidney disease.
bCVD: cardiovascular disease.
cThe peak temperature on the day of admission.
dThe immediate admission heart rate.
eThe immediate admission respiratory rate, or if mechanical ventilation has been initiated, select the respiratory rate upon emergency department
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admission.
fBP: blood pressure.
gThe systolic blood pressure at admission, or if vasopressor medication has been administered, select the systolic blood pressure upon emergency
department admission.
hthe diastolic blood pressure at admission, or if vasopressor medication has been administered, select the diastolic blood pressure upon emergency
department admission.
iACEI: angiotensin-converting enzyme inhibitor.
jARB: angiotensin receptor antagonists.
kCCB: calcium-channel blockers.
lScr: serum creatinine.
meGFR: estimated glomerular filtration rate.
nWBC: white blood cell.
oCRP: C-reactive protein.
pBUN: blood urea nitrogen.
qProteinuria: positive urine protein.

Among the 6371 patients, 1006 (15.8%) developed AKI, with
the median time for AKI diagnosis being day 3 (IQR 2-4) post
admission. A comparison between patients with and without
AKI is presented in Table 2. Patients with AKI exhibited higher
age, temperature, heart rate, breathing rate, and lower diastolic
blood pressure levels. They also had a higher incidence of
hypertension, CKD, cardiovascular disease, cerebrovascular
diseases, acute respiratory failure, and acute cardiac dysfunction

and a higher rate of mechanical ventilation compared with those
without AKI. Furthermore, patients with CAP having AKI
demonstrated significantly elevated baseline Scr, white blood
cell count, neutrophil count, C-reactive protein (CRP), and blood
urea nitrogen (BUN) levels compared with those without AKI
(all P<.05). Conversely, baseline eGFR, platelet count,
hemoglobin, and blood albumin levels were substantially lower
in the non-AKI group (all P<.05).
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Table 2. Clinical features of patients in the AKIa and non-AKI groups.

P valueNon-AKI group (n=5365)AKI group (n=1006)All (n=6371)Variables

<.0012279 (42.4)287 (28.5)2566 (40.2)Female, n (%)

<.00165.1 (17.7)77.3 (13.6)67.0 (17.6)Age (years), mean (SD)

<.0012390 (44.5)617 (61.3)3007 (47.1)Hypertension, n (%)

.051216 (22.6)200 (19.8)1416 (22.2)Diabetes, n (%)

<.001207 (3.9)213 (21.2)420 (6.6)CKDb, n (%)

<.001975 (18.2)347 (34.5)1322 (20.7)CVDc, n (%)

<.001785 (14.6)192 (19.1)977 (15.3)Cerebrovascular disease, n (%)

.711660 (30.9)305 (30.3)1965 (30.8)Chronic lung disease, n (%)

.79393 (7.3)76 (7.5)469 (7.4)Cancer, n (%)

<.001158 (2.9)187 (18.6)345 (5.4)Mechanical ventilation, n (%)

.00237.7 (1.2)38.0 (1.2)37.8 (1.2)Temperature (℃), mean (SD)

<.00183.3 (13.9)89.9 (18.8)84.3 (14.9)Heart Rate (beats/minute), mean (SD)

<.00119.2 (3.6)21.6 (5.3)19.6 (4.0)Breathing rate (births/minute), mean (SD)

.71126.6 (18.0)126.4 (19.7)126.6 (18.3)Systolic BPd (mm Hg), mean (SD)

<.00176.8 (10.2)72.4 (13.7)76.1 (10.9)Diastolic BP (mm Hg), mean (SD)

<.001398 (7.4)200 (19.9)598 (9.4)Acute respiratory failure, n (%)

<.001229 (4.2)125 (12.4)354 (5.6)Acute cardiac dysfunction, n (%)

<.001722 (13.5)188 (18.7)910 (14.3)ACEIe or ARBf, n (%)

<.001854 (15.9)598 (59.4)1452 (22.7)Diuretic, n (%)

.281041 (19.4)210 (20.8)1251 (19.6)CCBg, n (%)

.51302 (5.6)62 (6.1)364 (5.7)β-block, n (%)

<.00170.1 (24.6)85.3 (52.1)72.5 (31.1)Baseline Scrh (μmol/L), mean (SD)

<.00187.4 (26.3)71.9 (30.7)84.9 (27.6)eGFRi (ml/min×1.73m2), mean (SD)

.036.7 (5.1-9.0)8.8 (6.3-12.7)6.9 (5.2-9.5)WBCj (×109/L), median (IQR)

.0044.6 (3.2-6.8)7.2 (4.9-11.1)4.9 (3.4-7.4)Neutrophil count (×109/L), median (IQR)

<.001215.5 (84.4)180.4 (92.8)210.0 (87.9)Platelet (×109/L), mean (SD)

<.00117.2 (3.2-57.8)67.6 (18.8-131.0)21.9 (4.0-74.2)CRPk (mg/L), median (IQR)

<.001122.8 (18.4)112.1 (25.0)121.1 (20.0)Hemoglobin (g/L), mean (SD)

<.00133.6 (5.5)29.5 (5.6)32.9 (5.7)Albumin (g/L), mean (SD)

<.0014.8 (3.6-6.1)9.5 (6.6-14.2)5.1 (3.7-4.7)BUNl (mmol/L), median (IQR)

<.0013.7 (0.4)3.9 (0.7)3.8 (0.5)Potassium (mmol/L), mean (SD)

.85138.8 (4.6)138.9 (7.3)138.8 (5.1)Natrium (mmol/L), mean (SD)

.84102.0 (5.1)102.0 (5.6)101.9 (5.6)Chloride (mmol/L), mean (SD)

<.0011391 (25.9)536 (53.3)1927 (30.2)Proteinuria, n (%)

aAKI: acute kidney injury.
bCKD, chronic kidney disease.
cCVD: cardiovascular disease.
dBP: blood pressure.
eACEI: angiotensin-converting enzyme inhibitor.
fARB: angiotensin receptor antagonists.
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gCCB: calcium-channel blockers.
hScr: serum creatinine.
ieGFR: estimated glomerular filtration rate.
jWBC: white blood cell.
kCRP: C-reactive protein.
lBUN: blood urea nitrogen.

Model Validation and Performance
In the training model, 9 variables with over 15% (9/62) missing
values were excluded from the final cohort. These variables
included blood lactic acid, ferritin, glycosylated hemoglobin C,
blood oxygen partial pressure, blood carbon dioxide partial
pressure, sputum pathogens, complement C3, complement C4,
and procalcitonin. Among the remaining 53 variables, 3 had
VIF values≥10. These variables were inhaled oxygen
concentration, oxygen inhalation status, and vasoactive drug
application. After eliminating variables with collinearity, the
remaining 50 features (including age, sex, smoking status, and
severe pneumonia), comorbidities (including history of chronic
lung disease, CKD, malignancy, hypertension, diabetes,
cardiovascular disease, chronic liver disease, and
cerebrovascular disease), complications (such as septic shock,
acute respiratory failure, and acute cardiac dysfunction), vital
signs (including temperature, heart rate, respiratory rate, systolic
blood pressure, and diastolic blood pressure), treatment on the
day of admission (including noninvasive ventilation, mechanical
ventilation, antiplatelet therapy, anticoagulation,
renin-angiotensin-aldosterone system [RAAS] inhibitors, proton
pump inhibitors, statins, diuretics, nonsteroidal

anti-inflammatory drugs, insulin, calcium channel blockers,
beta-blockers, and corticosteroids), and laboratory tests
(including baseline Scr, baseline eGFR, CRP, urine protein,
serum albumin, white blood cell count, platelet count,
hemoglobin, neutrophil count, monocyte count, lymphocyte
count, BUN, alanine aminotransferase [ALT], aspartate
aminotransferase [AST], serum potassium, serum chloride, and
serum sodium) were evaluated using the sliding windows
sequential forward feature selection technique method.

The model generated an OOB value for each included feature.
Figure 2 indicates that as the number of features increased to
11, the OOB value (0.579773) decreased substantially, and
subsequently, the OOB value remained stable with increasing
features. When the number of features reached 40, the OOB
value (0.0340017) reached its lowest point. Therefore, to
facilitate clinical application, we selected the first 11 features
as the final model variables. These variables included sex,
temperature, breathing rate, diastolic blood pressure, CRP,
albumin, white blood cell count, platelet count, hemoglobin,
neutrophil count, and BUN. Figure 3 illustrates that the BUN
and neutrophil count consistently ranked among the top 5
indicators in all 5 models, suggesting their significant
contribution to the occurrence of AKI.

Figure 2. Feature selection based on the sliding windows sequential forward feature selection technique process. The optimal number of features was
determined according to the OOB value. A lower OOB value and fewer variables included results in the optimal combination of features (11 at the red
circle). OOB: out-of-bag.
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Figure 3. Feature importance derived from the machine learning models. (A) logistic regression model, (B) random forest model, (C) support vector
machine model, (D) extreme gradient boosting model, and (E) deep forest model. BUN: blood urea nitrogen; CRP: C-reactive protein; DiasBP: diastolic
blood pressure; WBC: white blood cells.

Internal Validation of the Model
A total of 643 patients were included in the internal validation,
with an AKI incidence of 13.5% (n=87). Figure 4A illustrates
the AUC of the 5 models in the internal validation set. Among
them, the DF model exhibited the highest discrimination
compared with the other 4 models, achieving an AUC of 0.89
(95% CI 0.84-0.92). The XGBoost model followed closely with
an AUC of 0.88 (95% CI 0.84-0.92). Detailed prediction
performance of the 5 ML models is presented in Table 3. The
DF model demonstrated the best specificity prediction for AKI
(0.99, 95% CI 0.98-0.99). Compared with the other models

except DF, the XGBoost model showed higher accuracy (0.92,
95% CI 0.90-0.94), PPV (0.78, 95% CI 0.68-0.86), and F1-score
(0.63, 95% CI 0.54-0.70). Calibration curves of the 5 models
are depicted in Figure 4B. The results indicated that the DF
model exhibited the lowest ECE value of 0.03, signifying
superior calibration. The XGBoost model followed with an ECE
of 0.05. Decision curve analysis of the prediction models is
presented in Figure 4C. The findings revealed that the DF,
XGBoost, and RF models yielded net benefits within the
threshold range of 0-0.8. In the internal validation set, the DF
model demonstrated the highest predictive ability for AKI in
patients with CAP.
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Figure 4. The performance of machine learning models in the internal validation set. (A) area under receiver operating characteristic curve, (B)
calibration curve, and (C) decision curve analysis curve. AUC: area under the receiver operating characteristic curve; DF: deep forest; LR: logistic
regression; RF: random forest; SVM: support vector machine; XGBT: extreme gradient boosting.

Table 3. Detailed prediction performance of 5 machine learning models in the internal validation set.

ECEd
F1-score,
(95% CI)

NPVc, (95%
CI)

PPVb, (95%
CI)

Specificity,
(95% CI)

Sensitivity,
(95% CI)

Accuracy,
(95% CI)

AUCa, (95%
CI)Models

0.120.46 (0.40-
0.52)

0.96 (0.95-
0.98)

0.32 (0.27-
0.37)

0.73 (0.70-
0.77)

0.81 (0.74-
0.88)

0.75 (0.72-
0.77)

0.85 (0.81-
0.90)

LRe

0.120.46 (0.40-
0.52)

0.96 (0.94-
0.97)

0.33 (0.28-
0.38)

0.75 (0.72-
0.78)

0.79 (0.71-
0.87)

0.76 (0.72-
0.78)

0.86(0.81-
0.90)

SVMf

0.080.61 (0.53-
0.69)

0.93 (0.91-
0.95)

0.74 (0.65-
0.83)

0.97 (0.96-
0.98)

0.52 (0.43-
0.61)

0.91 (0.89-
0.93)

0.87 (0.83-
0.90)

RFg

0.050.63 (0.54-
0.70)

0.93 (0.91-
0.95)

0.78 (0.68-
0.86)

0.98 (0.97-
0.99)

0.52 (0.43-
0.61)

0.92 (0.90-
0.94)

0.88 (0.84-
0.92)

XGBoosth

0.030.45 (0.34-
0.53)

0.90 (0.88-
0.92)

0.77 (0.65-
0.89)

0.99 (0.98-
0.99)

0.31 (0.23-
0.39)

0.90 (0.88-
0.91)

0.89 (0.84-
0.92)

DFi

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dECE: expected calibration error.
eLR: logistic regression.
fSVM: support vector machine.
gRF: random forest.
hXGBoost: extreme gradient boosting.
iDF: deep forest.

External Validation of the Model
The data for the external validation set were obtained from
Nanjing First Hospital and Sir Run Run Hospital affiliated with
Nanjing Medical University, encompassing 3160 patients with
CAP. The incidence of AKI was 20.4% (n=645) and the baseline
clinical features are outlined in Table 1. Figure 5A presents the
AUC of the 5 models in the external validation set. Among
them, the DF model exhibited the most favorable predictive
performance, achieving an AUC of 0.87 (95% CI 0.85-0.88),
specificity of 0.93 (95% CI 0.93-0.94), and PPV of 0.63 (95%
CI 0.59-0.67). The XGBoost model closely followed with an

AUC of 0.86 (95% CI 0.85-0.88), accuracy of 0.84 (95% CI
0.83-0.85), and F1-score of 0.65 (95% CI 0.63-0.68). Detailed
performance metrics are presented in Table 4. Calibration curves
of the prediction models are depicted in Figure 5B. The results
demonstrated that the DF model exhibited the best calibration
ability in the external validation set. Figure 5C presents the
decision curve analysis curves of the 5 models, indicating that
the DF, XGBoost, and RF models yielded net benefits within
the threshold range of 0-0.6. In the external validation set, the
DF model showcased the highest predictive ability for AKI in
patients with CAP.
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Figure 5. The performance of machine learning models in the external validation set. (A) area under receiver operating characteristic curve, (B)
calibration curve, (C) decision curve analysis curve. AUC: area under the receiver operating characteristic curve; DF: deep forest; LR: logistic regression;
RF: random forest; SVM: support vector machine; XGBT: extreme gradient boosting.

Table 4. Detailed prediction performance of 5 machine learning models in external validation sets.

ECEd
F1-score,
(95% CI)

NPVc, (95%
CI)

PPVb, (95%
CI)

Specificity,
(95% CI)

Sensitivity,
(95% CI)

Accuracy,
(95% CI)

AUCa, (95%
CI)Models

0.380.42 (0.40-
0.44)

0.97 (0.96-
0.98)

0.27 (0.25-
0.28)

0.32 (0.30-
0.33)

0.97 (0.95-
0.98)

0.45 (0.43-
0.46)

0.85 (0.83-
0.86)

LRe

0.360.44 (0.42-
0.46)

0.97 (0.96-
0.98)

0.29 (0.27-
0.30)

0.39 (0.38-
0.41)

0.95 (0.94-
0.96)

0.51 (0.49-
0.52)

0.86 (0.84-
0.87)

SVMf

0.160.61 (0.59-
0.64)

0.91 (0.90-
0.92)

0.58 (0.55-
0.61)

0.88 (0.87-
0.90)

0.65 (0.62-
0.68)

0.83 (0.82-
0.84)

0.86 (0.85-
0.87)

RFg

0.130.65 (0.63-
0.68)

0.93 (0.92-
0.94)

0.59 (0.56-
0.62)

0.87 (0.86-
0.88)

0.73 (0.70-
0.76)

0.84 (0.83-
0.85)

0.86 (0.85-
0.88)

XGBoosth

0.050.52 (0.49-
0.55)

0.87 (0.86-
0.88)

0.63 (0.59-
0.67)

0.93 (0.93-
0.94)

0.44 (0.41-
0.47)

0.83 (0.82-
0.84)

0.87 (0.85-
0.88)

DFi

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dECE: expected calibration error.
eLR: logistic regression.
fSVM: support vector machine.
gRF: random forest.
hXGBoost: extreme gradient boosting.
iDF: deep forest.

SHAP Values Evaluate Feature Importance
We used SHAP to determine the importance ranking of the 11
features, as shown in Figure 6A. The significance of SHAP
features is depicted in Figure 6B, where the x-axis represents
the positive or negative contribution of a single feature to the
model. The y-axis displays the 11 features in descending order
of importance based on the absolute value of SHAP. A higher

absolute value of SHAP indicates a greater contribution of the
feature to AKI risk. The results revealed that BUN, neutrophil
count, CRP, white blood cell count, breathing rate, and
temperature made positive contributions, implying that higher
values increased the risk of AKI. Conversely, female sex,
albumin, platelet count, diastolic blood pressure, and
hemoglobin made negative contributions, indicating that higher
values decreased the risk of AKI.
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Figure 6. Shapley additive explanations (SHAP) interpretation and visualization of the deep forest model. (A) SHAP analysis shows a vital ranking
of 11 features, and (B) SHAP analysis shows point estimation of features to model output. Each point represents a single patient in the data set. BUN:
blood urea nitrogen; CRP: C-reactive protein; DiasBP: diastolic blood pressure; WBC: white blood cells.

In addition to explaining the overall contribution of the model
using SHAP, we used LIME to individualize the contribution
of the last 11 features in the prediction process. Figure 7A
illustrates the predictive process for a patient without AKI. First,
the 11 patient characteristics were ranked by importance. Blue
indicates the contribution to the prediction as non-AKI, orange
represents the contribution as AKI, and the corresponding
prediction probability is displayed on the left. The specific

values of the patient’s 11 features are presented on the right. In
this case, the patient had a BUN level of 5.0 mmol/L, neutrophil

count of 9.52×109/L, breathing rate of 20 breaths/min,

temperature of 36.8°C, white blood cell count of 10.6×109/L,
albumin level of 24.6 g/L, CRP level of 0.5 mg/L, diastolic
blood pressure level of 85 mm Hg, hemoglobin level of 110

g/L, and platelet count of 161×109/L. The probability of
predicting non-AKI for this patient was 1.0.

Figure 7. Local interpretable model-agnostic explanations (LIME) explaining individual’s prediction results. The left part of the figure shows predicted
results using LIME. The middle part presents the impact of the 11 variables on acute kidney injury (AKI) or no AKI. The length of the bar for each
feature indicates the importance (weight) of that feature in making the prediction. A longer bar indicates a feature that contributes more to (A) No AKI
or (B) AKI. The right panel shows the critical values of these 11 variables when they had the greatest impact on (A) No AKI or (B) AKI. AKI: acute
kidney injury; BUN: blood urea nitrogen; CRP: C-reactive protein; DiasBP: diastolic blood pressure; SHAP: SHapley Additive exPlanations; WBC:
white blood cells.

Furthermore, Figure 7B demonstrates the predictive process for
a patient with AKI. With a BUN level of 19.1 mmol/L,

neutrophil count of 11.5×109/L, breathing rate of 30 breaths/min,

temperature of 37.8°C, white blood cell count of 12.4×109/L,
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albumin level of 34.2 g/L, CRP level of 1 mg/L, diastolic blood
pressure level of 80 mm Hg, hemoglobin level of 137 g/L, and

platelet count of 240×109/L, the probability of predicting AKI
for this patient was 0.9.

Establishment of a Web-Based Prediction Platform
We developed a web-based prediction platform specifically
designed for predicting AKI in patients with CAP (Figure 8).

This platform uses the 11 selected variables as inputs to generate
a risk value for predicting CAP-AKI. If the predicted risk value
exceeds the predefined threshold of 74.5% set by the system,
the result is considered positive, indicating that the patient falls
into the high-risk category for developing CAP-AKI.

Figure 8. Web-based prediction platform of community-acquired pneumonia–associated acute kidney injury (CAP-AKI). (A) When 11 variables of a
patient with community-acquired pneumonia were entered, the risk of CAP-AKI was calculated to be 56.25 %, and the result was 0, that is, the patient
was not a high-risk group of CAP-AKI. (B) When 11 variables of a patient with community-acquired pneumonia were entered, the risk of CAP-AKI
was calculated to be 82.75 %, and the result was 1, that is, the patient was a high-risk group of CAP-AKI. We set the risk threshold of our web calculator
was 74.50% based on the best F1-score. When the predictive probability exceeds the risk threshold, the output is 1, otherwise the output is 0.

Discussion

Principal Findings
In this study, we used ML algorithms to develop an innovative
prediction tool for CAP-AKI. CAP stands as a prevalent
infectious disease globally, entailing considerable morbidity
and mortality [11-13]. Among the array of complications linked
with CAP, AKI has surfaced as a notable concern [14,15]. Our
study unveils a noteworthy incidence of 15.8% for AKI among
patients with CAP, indicating a substantial incidence of AKI
within this population. Pinpointing the risk factors associated
with AKI and crafting a predictive model are pivotal endeavors,
enabling effective risk stratification and timely intervention for
AKI. In this study, we identified the top 11 important predictors,
including BUN, neutrophil count, respiratory rate, CRP,
temperature, albumin, diastolic blood pressure, hemoglobin,
platelet count, white blood cell count, and sex, as these variables
can be easily collected in medical practice. In addition, our DF
model showed good performance in both internal (AUC 0.89,
95% CI 0.84-0.92) and external (AUC 0.87, 95% CI 0.85-0.88)
validation sets, indicating strong generalization ability.

ML techniques offer a promising path by harnessing the
extensive pool of clinical data to offer insightful early-stage
predictions of AKI. This approach potentially eliminates the
necessity for additional AKI biomarker testing [16,17]. Hsu et
al [18] constructed an AKI prediction model using 10
preprocedural indicators through an XGBoost algorithm,
revealing an AUC of 0.767 on derivation and 0.761 on validation
for any stage of AKI. Other researchers also found that XGBoost
[19] and recurrent neural network [20] could perform well in
predicting cardiac surgery–associated AKI and in-hospital AKI.

Due to the distinct etiology of AKI in patients with CAP
compared with other causes such as cardiac surgery–related
AKI or sepsis-induced AKI, there are differences in the
characteristics and factors required for model establishment.
Some unique features need to be incorporated, including
respiratory status, body temperature, blood pressure, and
inflammatory markers, which have a significant impact on the
occurrence of AKI. These parameters may differ from those in
AKI models related to other etiologies. This aspect has been
further elaborated in the discussion section.

In this study, we used ML algorithms to develop an innovative
prediction tool for CAP-AKI. Furthermore, we determined the
top 11 important predictors in the DF model as prediction model
variables as these variables can be collected easily in medical
activities. These features comprehensively consider the patient’s
basic characteristics (such as age and sex), disease status (such
as blood pressure and Scr), and potential causes (such as
infections and chronic diseases), providing a well-rounded
informational foundation for the model from multiple
perspectives. Similarly, AUC for AKI in patients with CAP of
the internal validation and external validation cohorts was shown
to be 0.86 (95% CI 0.84-0.92) and 0.87 (95% CI 0.85-0.88),
respectively. In addition, we constructed SHAP to provide
personalized interpretation for each patient. Subsequently, an
online web risk calculator model for AKI in patients with CAP
was established to predict the occurrence of AKI within 7 days
upon patients’ hospital admission. The median time for
diagnosing AKI in our study was the third day. Although there
was a certain time difference between the diagnosis time of AKI
and the time of the indicators we included, our results showed
that the model still exhibited good predictive performance in
the validation set, and we believed that this time difference
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could be used as the best time for early intervention in high-risk
patients who may develop AKI.

Among the 5 ML models used in this study, LR is commonly
used in clinical settings. However, its performance is suboptimal
when dealing with large-sample and high-dimensional data. RF
exhibits good generalization ability and can prevent overfitting.
XGBoost derived from RF is unaffected by multicollinearity
and possesses characteristics such as flexibility and efficiency.
DF is a novel ensemble-based method proposed in recent years,
serving as an alternative to deep neural networks. It combines
various ensemble-based methods with indivisible modules.
Compared with deep neural network, DF has the advantage of
achieving the optimal model with a small amount of training
data, without the need for backpropagation, and has low
computational costs. Zhang et al [21] found that the DF model
achieved an AUC of 0.881 for predicting AKI after cardiac
surgery, outperforming other ML models, including LR,
XGBoost, and RF. Since its proposal, DF has been widely
applied and has demonstrated good predictive performance in
various fields such as radiological diagnosis of COVID-19 and
emotion recognition [22,23].

In this study, we conducted a ranking analysis of the included
feature variables and observed that several factors, namely BUN,
neutrophil count, respiratory rate, CRP, temperature, albumin,
diastolic blood pressure, hemoglobin, platelet count, white blood
cell count, and sex, exerted a significant impact on the final
model. Among these features, BUN emerged as the most crucial
indicator for AKI. Similar to Scr, BUN serves as a reflection
of renal function and carries substantial predictive weight for
AKI occurrence. These findings align with the diagnostic criteria
recommended by the KDIGO and are consistent with previous
clinical investigations. Elevated levels of white blood cells,
neutrophils, and CRP are also risk factors for AKI in patients.
AKI is closely associated with renal and systemic inflammation.
In the presence of infection, inflammatory factors play a critical
role in combating microbial pathogens and facilitating tissue
repair. White blood cells, including neutrophils, can infiltrate
the injured kidneys through the circulatory system, triggering
the production of cytokines, chemokines, and other
inflammatory mediators, ultimately leading to renal damage
[24]. CRP, as a plasma protein synthesized in the liver, serves
as a nonspecific marker for systemic inflammatory response
during the acute phase and is closely related to the severity of
patients with CAP. Consistent with the findings of Wang et al
[25] in patients with AKI after myocardial infarction, we also
found that elevated CRP levels were a risk factor for AKI in
the cohort of patients with CAP. Hypoalbuminemia is another
risk factor for AKI in patients with CAP. Animal experiments
have shown that albumin can counteract the decline in arterial
vascular reactivity caused by endotoxemia, alleviate
ischemia-reperfusion injury, and possess anti-inflammatory
effects. Therefore, reduced albumin levels significantly reduce
a patient’s resistance to infection and stress damage [26]. Similar
conclusions have been reached by Bang et al [27]. The
relationship between hemoglobin levels and AKI has been
widely studied, with anemia being an independent risk factor
for AKI [28-30]. The findings of our study provide compelling
evidence that platelet levels act as a protective factor for AKI

in patients with CAP. These results align with the previous
investigations conducted by Zhang et al [31], thereby reinforcing
the notion that a decreased platelet count is significantly
associated with an elevated risk of AKI occurrence.

The prediction process of ML algorithms can be likened to a
“black box” [32], where the inner workings may not be readily
understandable to clinical physicians. Therefore, it is crucial
for physicians to not solely rely on predictive models but also
use their expertise in making appropriate diagnostic and
therapeutic decisions. In this study, we used SHAP and LIME
techniques to visualize the overall and individual contributions
of each indicator to the model’s predictive performance,
providing additional insights to clinical physicians. By
quantifying the individual risks of AKI occurrence through a
web-based prediction platform, we enhanced the clinical utility
of the predictive model and demonstrated its significant potential
in AKI risk prediction.

In this study, a comprehensive model was developed to predict
the occurrence of AKI in patients with CAP by integrating
multiple feature variables, resulting in robust predictive
performance in both internal and external datasets. In addition,
to enhance the interpretability of the best-performing DF model,
visual explanations were provided using SHAP and LIME
techniques.

Furthermore, a web-based prediction platform was established
to augment the clinical utility of the predictive model, offering
practical applications in real-world health care settings. The
threshold of 74.5% was chosen based on the method of selecting
the maximum F1-score on the training set. In a real-world
clinical setting, a model with low sensitivity means that a
significant number of patients with AKI might not be identified.
This could lead to missed opportunities for early intervention
and treatment, potentially worsening patient outcomes. However,
the higher PPV suggests that when the model does predict AKI,
it is more likely to be correct. This reduces the burden of false
positives on clinicians, who might otherwise need to follow up
on many non-AKI cases, saving time and resources.

The choice of threshold reflects a preference for higher
precision, which might be suitable in situations where the cost
of false positives is high, such as in scenarios with limited
resources or when unnecessary treatments pose risks to patients.
However, the trade-off with lower sensitivity means clinicians
must be aware that not all cases of AKI will be caught by the
model, and they should continue to use their clinical judgment
and other diagnostic tools to ensure comprehensive patient care.
Remarkably, the DF model outperformed others in both the
internal and external validation cohorts.

However, it is important to acknowledge the limitations of this
study. First, it should be noted that this was a retrospective
study, which may have introduced certain limitations in terms
of the completeness, accuracy, and homogeneity of data
recording compared with prospective studies. In addition, the
presence of selection bias cannot be ruled out, highlighting the
need for further validation through prospective research. Second,
the collection of urine output data posed challenges, resulting
in cases of incomplete data collection. Furthermore, the
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consideration of urine output standards was not incorporated in
this study, which could have provided additional valuable
insights. Finally, while the constructed risk prediction model
shows promise, it remains uncertain whether its implementation
in clinical practice would translate into tangible benefits for
patients. Therefore, prospective and multicenter studies are
necessary to comprehensively evaluate the effectiveness and
real-world impact of the model. Acknowledging and addressing
these limitations will be essential in further refining the
understanding and application of the findings in future research.

In summary, this study presents a valuable early prediction tool
utilizing ML techniques to identify patients with high risk of
AKI among patients with CAP. The developed predictive model
has the potential to aid physicians in the early identification of
patients at a higher risk of AKI during their hospitalization,
enabling prioritized treatment interventions and ultimately

improving patient outcomes. Moving forward, our future
research endeavors will focus on prospective evaluation of the
effectiveness of our AKI prediction model and determining its
impact on the prognosis of patients with AKI in real-world
clinical practice. In addition, the model could be applied to other
etiologies of AKI, such as sepsis-induced AKI, to assess its
generalizability.

Conclusion
This study developed a ML-based prediction model for
CAP-AKI, demonstrating excellent predictive performance in
both internal and external validation cohorts. By integrating
easily accessible clinical variables, the DF model achieved high
accuracy and interpretability, offering robust support for early
risk assessment and targeted intervention in patients with
CAP-AKI. In the future, we hope to reduce the risk of CAP-AKI
through our online prediction platform.
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