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Abstract

Background: The continuous monitoring and recording of patients’ pain status is a major problem in current research on
postoperative pain management. In the large number of original or review articles focusing on different approaches for pain
assessment, many researchers have investigated how computer vision (CV) can help by capturing facial expressions. However,
there is a lack of proper comparison of results between studies to identify current research gaps.

Objective: The purpose of this systematic review and meta-analysis was to investigate the diagnostic performance of artificial
intelligence models for multilevel pain assessment from facial images.

Methods: The PubMed, Embase, IEEE, Web of Science, and Cochrane Library databases were searched for related publications
before September 30, 2023. Studies that used facial images alone to estimate multiple pain values were included in the systematic
review. A study quality assessment was conducted using the Quality Assessment of Diagnostic Accuracy Studies, 2nd edition
tool. The performance of these studies was assessed by metrics including sensitivity, specificity, log diagnostic odds ratio (LDOR),
and area under the curve (AUC). The intermodal variability was assessed and presented by forest plots.

Results: A total of 45 reports were included in the systematic review. The reported test accuracies ranged from 0.27-0.99, and
the other metrics, including the mean standard error (MSE), mean absolute error (MAE), intraclass correlation coefficient (ICC),
and Pearson correlation coefficient (PCC), ranged from 0.31-4.61, 0.24-2.8, 0.19-0.83, and 0.48-0.92, respectively. In total, 6
studies were included in the meta-analysis. Their combined sensitivity was 98% (95% CI 96%-99%), specificity was 98% (95%
CI 97%-99%), LDOR was 7.99 (95% CI 6.73-9.31), and AUC was 0.99 (95% CI 0.99-1). The subgroup analysis showed that
the diagnostic performance was acceptable, although imbalanced data were still emphasized as a major problem. All studies had
at least one domain with a high risk of bias, and for 20% (9/45) of studies, there were no applicability concerns.

Conclusions: This review summarizes recent evidence in automatic multilevel pain estimation from facial expressions and
compared the test accuracy of results in a meta-analysis. Promising performance for pain estimation from facial images was
established by current CV algorithms. Weaknesses in current studies were also identified, suggesting that larger databases and
metrics evaluating multiclass classification performance could improve future studies.

Trial Registration: PROSPERO CRD42023418181; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=418181
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Introduction

The definition of pain was revised to “an unpleasant sensory
and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage” in 2020 [1].
Acute postoperative pain management is important, as pain
intensity and duration are critical influencing factors for the
transition of acute pain to chronic postsurgical pain [2]. To
avoid the development of chronic pain, guidelines were
promoted and discussed to ensure safe and adequate pain relief
for patients, and clinicians were recommended to use a validated
pain assessment tool to track patients’ responses [3]. However,
these tools, to some extent, depend on communication between
physicians and patients, and continuous data cannot be provided
[4]. The continuous assessment and recording of patient pain
intensity will not only reduce caregiver burden but also provide
data for chronic pain research. Therefore, automatic and accurate
pain measurements are necessary.

Researchers have proposed different approaches to measuring
pain intensity. Physiological signals, for example,
electroencephalography and electromyography, have been used
to estimate pain [5-7]. However, it was reported that current
pain assessment from physiological signals has difficulties
isolating stress and pain with machine learning techniques, as
they share conceptual and physiological similarities [8]. Recent
studies have also investigated pain assessment tools for certain
patient subgroups. For example, people with deafness or an
intellectual disability may not be able to communicate well with
nurses, and an objective pain evaluation would be a better option
[9,10]. Measuring pain intensity from patient behaviors, such
as facial expressions, is also promising for most patients [4].
As the most comfortable and convenient method, computer
vision techniques require no attachments to patients and can
monitor multiple participants using 1 device [4]. However, pain
intensity, which is important for pain research, is often not
reported.

With the growing trend of assessing pain intensity using artificial
intelligence (AI), it is necessary to summarize current
publications to determine the strengths and gaps of current
studies. Existing research has reviewed machine learning
applications for acute postoperative pain prediction, continuous
pain detection, and pain intensity estimation [10-14]. Input
modalities, including facial recordings and physiological signals
such as electroencephalography and electromyography, were
also reviewed [5,8]. There have also been studies focusing on
deep learning approaches [11]. AI was applied in children and
infant pain evaluation as well [15,16]. However, no study has
focused on pain intensity measurement, and no comparison of
test accuracy results has been made.

Current AI applications in pain research can be categorized into
3 types: pain assessment, pain prediction and decision support,
and pain self-management [14]. We consider accurate and
automatic pain assessment to be the most important area and
the foundation of future pain research. In this study, we
performed a systematic review and meta-analysis to assess the
diagnostic performance of current publications for multilevel
pain evaluation.

Methods

This study was registered with PROSPERO (International
Prospective Register of Systematic Reviews; CRD42023418181)
and carried out strictly following the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [17].

Study Eligibility
Studies that reported AI techniques for multiclass pain intensity
classification were eligible. Records including nonhuman or
infant participants or 2-class pain detection were excluded. Only
studies using facial images of the test participants were accepted.
Clinically used pain assessment tools, such as the visual analog
scale (VAS) and numerical rating scale (NRS), and other pain
intensity indicators, were rejected in the meta-analysis. Textbox
1 presents the eligibility criteria.
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Textbox 1. Study eligibility criteria.

Study characteristics and inclusion criteria

• Participants: children and adults aged 12 months or older

• Setting: no restrictions

• Index test: artificial intelligence models that measure pain intensity from facial images

• Reference standard: no restrictions for systematic review; Prkachin and Solomon pain intensity score for meta-analysis

• Study design: no need to specify

Study characteristics and exclusion criteria

• Participants: infants aged 12 months or younger and animal subjects

• Setting: no need to specify

• Index test: studies that use other information such as physiological signals

• Reference standard: other pain evaluation tools, e.g., NRS, VAS, were excluded from meta-analysis

• Study design: reviews

Report characteristics and inclusion criteria

• Year: published between January 1, 2012, and September 30, 2023

• Language: English only

• Publication status: published

• Test accuracy metrics: no restrictions for systematic reviews; studies that reported contingency tables were included for meta-analysis

Report characteristics and exclusion criteria

• Year: no need to specify

• Language: no need to specify

• Publication status: preprints not accepted

• Test accuracy metrics: studies that reported insufficient metrics were excluded from meta-analysis

Search Strategy
In this systematic review, databases including PubMed, Embase,
IEEE, Web of Science, and the Cochrane Library were searched
until December 2022, and no restrictions were applied.
Keywords were “artificial intelligence” AND “pain recognition.”
Multimedia Appendix 1 shows the detailed search strategy.

Data Extraction
A total of 2 viewers screened titles and abstracts and selected
eligible records independently to assess eligibility, and
disagreements were solved by discussion with a third
collaborator. A consentient data extraction sheet was
prespecified and used to summarize study characteristics
independently. Table S5 in Multimedia Appendix 1 shows the
detailed items and explanations for data extraction. Diagnostic
accuracy data were extracted into contingency tables, including
true positives, false positives, false negatives, and true negatives.
The data were used to calculate the pooled diagnostic
performance of the different models. Some studies included
multiple models, and these models were considered independent
of each other.

Study Quality Assessment
All included studies were independently assessed by 2 viewers
using the Quality Assessment of Diagnostic Accuracy Studies

2 (QUADAS-2) tool [18]. QUADAS-2 assesses bias risk across
4 domains, which are patient selection, index test, reference
standard, and flow and timing. The first 3 domains are also
assessed for applicability concerns. In the systematic review, a
specific extension of QUADAS-2, namely, QUADAS-AI, was
used to specify the signaling questions [19].

Meta-Analysis
Meta-analyses were conducted between different AI models.
Models with different algorithms or training data were
considered different. To evaluate the performance differences
between models, the contingency tables during model validation
were extracted. Studies that did not report enough diagnostic
accuracy data were excluded from meta-analysis.

Hierarchical summary receiver operating characteristic (SROC)
curves were fitted to evaluate the diagnostic performance of AI
models. These curves were plotted with 95% CIs and prediction
regions around averaged sensitivity, specificity, and area under
the curve estimates. Heterogeneity was assessed visually by
forest plots. A funnel plot was constructed to evaluate the risk
of bias.

Subgroup meta-analyses were conducted to evaluate the
performance differences at both the model level and task level,
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and subgroups were created based on different tasks and the
proportion of positive and negative samples.

All statistical analyses and plots were produced using RStudio
(version 4.2.2; R Core Team) and the R package meta4diag
(version 2.1.1; Guo J and Riebler A) [20].

Results

Study Selection and Included Study Characteristics
A flow diagram representing the study selection process is
shown in (Figure 1). After removing 1039 duplicates, the titles
and abstracts of a total of 5653 papers were screened, and the
percentage agreement of title or abstract screening was 97%.
After screening, 51 full-text reports were assessed for eligibility,
among which 45 reports were included in the systematic review
[21-65]. The percentage agreement of the full-text review was

87%. In 40 of the included studies, contingency tables could
not be made. Meta-analyses were conducted based on 8 AI
models extracted from 6 studies. Individual study characteristics
included in the systematic review are provided in Tables 1 and
2. The facial feature extraction method can be categorized into
2 classes: geometrical features (GFs) and deep features (DFs).
One typical method of extracting GFs is to calculate the distance
between facial landmarks. DFs are usually extracted by
convolution operations. A total of 20 studies included temporal
information, but most of them (18) extracted temporal
information through the 3D convolution of video sequences.
Feature transformation was also commonly applied to reduce
the time for training or fuse features extracted by different
methods before inputting them into the classifier. For classifiers,
support vector machines (SVMs) and convolutional neural
networks (CNNs) were mostly used. Table 1 presents the model
designs of the included studies.

Figure 1. Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) flowchart of study selection.
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Table 1. Model designs of studies included in the systematic review.

Classification methodFeature transformationTemporal featuresaFacial feature descriptorAuthor and year

SVMbLog-normal filters–CAPPHammal and Cohn (2012) [21]

Euclidean distance; an-
gular distance; SVM

None–PCAAdibuzzaman et al (2015) [22]

GMMd; SVMNone+GFc; DDFMajumder et al (2015) [23]

SVMDMLf+TPSeRathee and Ganotra (2015) [24]

Linear regressionNone++CERTSikka et al (2015) [25]

SVMMDMLg–Gabor; LBP; HOGRathee and Ganotra (2016) [26]

RCNNFlattening++AAMhZhou et al (2016) [27]

RVRRVRi++GF; HOG; CNN;Egede et al (2017) [28]

LSTMl-RNN; RNN-

HCRFm

None++PSPIj; I-FESk;Martinez et al (2017) [29]

GLMMnStatistical metrics–GF; ColorBourou et al (2018) [30]

CNNFine-tuned VGGFace++CNN-RGBHaque et al (2018) [31]

CNNMaxpooling–2D-ConvSemwal et al (2018) [32]

BEVLADo++Pretrained CASIATavakolian and Hadid (2018) [33]

CNNAverage pooling++3D-convolutionTavakolian and Hadid (2018) [34]

SVRSVRp++3D-convolution; HOG;
DFGS

Wang and Sun (2018) [35]

RNNNone–Fine-tuned VGGFaceBargshady et al (2019) [36]

CNNMDSq–LBPCasti et al (2019) [37]

ELMrNone–CNN-RGBLee and Wang (2019) [38]

NRNone–PCASaha et al (2019) [39]

CNNNone++3D-convolutionTavakolian and Hadid (2019) [40]

EDLMsPCA;DNN–VGGFaceBargshady et al (2020) [41]

EDLMsPCA–VGGFaceBargshady et al (2020) [42]

ResNetNone–ResNetDragomir et al (2020) [43]

SVMRNN-GRU++AAMHuang et al (2020) [44]

LSTM-RNNNone–GF; HOG; HOG; Open-
Face; VGGFace; ResNet-
50

Mallol-Ragolta et al (2020) [45]

Multiscale deep fusion
network

Probabilistic combination–DCNNtPeng et al (2020) [46]

SNNAggregation++GSMuTavakolian et al (2020) [47]

NNNone++HandcraftedXu and de Sa (2020) [48]

DCNNNone–NonePikulkaew et al (2021) [49]

NNFlattening++CNNRezaei et al (2021) [50]

CNNNone–CNNSemwal and Londhe (2021) [51]

CNNNone–VGGNet; MobileNet;
GoogLeNet

Semwal and Londhe (2021) [52]

SVRNone++Landmark trajectorySzczapa et al (2021) [53]

NNDOMLv++NoneTing et al (2021) [54]
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Classification methodFeature transformationTemporal featuresaFacial feature descriptorAuthor and year

LIANwNone++CNNXin et al (2021) [55]

Shallow CNNFlattening–OpenCVAlghamdi and Alaghband (2022) [56]

k-NNINCA–P-DarkNet19Barua et al (2022) [57]

CNN; SVMNone–OpenCVFontaine et al (2022) [58]

DCNNNone–ConvolutionHosseini et al 2022) [59]

CNNNone++3D-CNN (S3D-G)Huang et al (2022) [60]

CNNNone–CNNIslamadina et al (2022) [61]

CNNNone–NoneSwetha et al (2022) [62]

NNSiamese network; BiL-

STMx
+CNNWu et al (2022) [63]

CNNNone–CNNIsmail and Waseem (2023) [64]

LSTM networkAverage pooling–CNNVu and Beurton-Aimar (2023) [65]

aNo temporal features are shown by – symbol, time information extracted from 2 images at different time by +, and deep temporal features extracted
through the convolution of video sequences by ++.
bSVM: support vector machine.
cGF: geometric feature.
dGMM: gaussian mixture model.
eTPS: thin plate spline.
fDML: distance metric learning.
gMDML: multiview distance metric learning.
hAAM: active appearance model.
iRVR: relevance vector regressor.
jPSPI: Prkachin and Solomon pain intensity.
kI-FES: individual facial expressiveness score.
lLSTM: long short-term memory.
mHCRF: hidden conditional random field.
nGLMM: generalized linear mixed model.
oVLAD: vector of locally aggregated descriptor.
pSVR: support vector regression.
qMDS: multidimensional scaling.
rELM: extreme learning machine.
sLabeled to distinguish different architectures of ensembled deep learning models.
tDCNN: deep convolutional neural network.
uGSM: gaussian scale mixture.
vDOML: distance ordering metric learning.
wLIAN: locality and identity aware network.
xBiLSTM: bidirectional long short-term memory.
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Table 2. Characteristics of model training and validation.

Evaluation metricsExternal valida-
tion

Validation
method

Output
levels

ObjectsDatabaseAuthor and year

ICCc 0.85, 0.55; F1-score
0.96, 0.67

No5-fold; LOSOb4FrameUNBCaHammal and Cohn (2012) [21]

Sensitivity 0.53; Specifici-
ty 0.7

Yes10-fold3ImageSelf-preparedAdibuzzaman et al (2015) [22]

Accuracy 87.43No5-fold16FrameUNBCMajumder et al (2015) [23]

Accuracy 0.96; CTdNoLOO; 10-fold16FrameUNBCRathee and Ganotra (2015) [24]

AUCe 0.94; Cohen κ0.61NoLOSO11SequenceSelf-preparedSikka et al (2015) [25]

Accuracy 0.75No5-fold4FrameUNBCRathee and Ganotra (2016) [26]

MSEf 1.54; PCCg 0.65NoLOSO16FrameUNBCZhou et al (2016) [27]

RMSEh<1; PCC 0.67NoLOSO16FrameUNBCEgede et al (2017) [28]

MAEi 2.8; ICCj 0.19NoSplit11SequenceUNBCMartinez et al (2017) [29]

Accuracy 0.27; RCI 0.03No10-fold5FrameBioVidBourou et al (2018) [30]

CTNo5-fold5FrameMIntPainHaque et al (2018) [31]

CT; Accuracy 0.93NoSplit3FrameUNBCSemwal and Londhe (2018) [32]

MSE 0.69; PCC 0.81NoLOSO16FrameUNBCTavakolian and Hadid (2018) [33]

MSE 0.53; ICC 0.75; PCC
0.84

NoLOSO16FrameUNBCTavakolian and Hadid (2018) [34]

RMSE 0.94; PCC 0.68NoLOSO16FrameUNBCWang and Sun (2018) [35]

Accuracy 0.75; AUC 0.83;
MSE 0.95

NoLOSO4FrameUNBCBargshady et al (2019) [36]

Recall 0.92; Precision 0.82NoSplit11FrameUNBCCasti et al (2019) [37]

MSE 1.22; PCC 0.5No5-fold16FrameUNBCLee and Wang (2019) [38]

Accuracy 0.71; CTNo10-fold3ImageSelf-preparedSaha et al (2019) [39]

MSE 0.32; PCC 0.92;
AUC 0.86

NoLOSO5; 16FrameUNBCTavakolian and Hadid (2019) [40]

Accuracy 0.89; AUC 0.93No10-fold5FrameMIntPain; UN-
BC

Bargshady et al (2020) [41]

Accuracy 0.91; AUC 0.98No10-fold4FrameUNBCBargshady et al (2020) [42]

Accuracy 36.6NoCV5FrameBioVidDragomir et al (2020) [43]

PCC 0.89; ICC 0.72; MSE
0.21; MAE 0.24

NoSplit6FrameUNBCHuang et al (2020) [44]

CCCk 0.174NoSplit11FrameEmoPainMallol-Ragolta et al (2020) [45]

Accuracy 0.80; PCC 0.6;
MAE 0.57; MSE 0.82

NoNR5FrameUNBCPeng et al (2020) [46]

MSE 1.03, 0.92; AUC
0.69, 0.71

YesLOSO5; 16FrameBioVid; UNBCTavakolian et al (2020) [47]

MSE 4.61; MAE 1.73;
ICC 0.61; PCC 0.67

No5-fold6; 11; 16;
16

SequenceUNBCXu and de Sa (2020) [48]

Accuracy 0.93NoNR3FrameUNBCPikulkaew et al (2021) [49]

PCC 0.48-0.7; ICC 0.31-

0.59l
Yes5-fold16FrameUofR; UNBCRezaei et al (2021) [50]

CT; Accuracy 0.97No5-fold4FrameSelf-preparedSemwal and Londhe (2021) [51]

CT; F1-score 0.91No10-fold5FrameUNBCSemwal and Londhe (2021) [52]
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Evaluation metricsExternal valida-
tion

Validation
method

Output
levels

ObjectsDatabaseAuthor and year

MAE 2.44; RMSE 3.15No5-fold; LOO;
LOSO

11SequenceUNBCSzczapa et al (2021) [53]

MAE 1.62; MSE 4.39;
ICC 0.66

No5-fold; LOSO11SequenceUNBCTing et al (2021) [54]

Accuracy 0.89; ICC 0.61;
PCC 0.81; MAE 0.45;
MSE 0.66

NoLOSO4FrameUNBCXin et al (2021) [55]

Accuracy 0.99NoSplit4FrameUNBCAlghamdi and Alaghband (2022)
[56]

CT; Accuracy 0.95No10-fold4FrameDISFA; UNBCBarua et al (2022) [57]

Sensitivity 0.90NoSplit4FrameSelf-preparedFontaine et al (2022) [58]

Accuracy 0.85; AUC 0.88;
PCC 0.83

NoNR7FrameUNBCHosseini et al (2022) [59]

MAE 0.4; MSE 0.76; PCC
0.82

NoLOSO16FrameUNBCHuang et al (2022) [60]

CT; Accuracy 1.0NoCV5FrameMIntPianIslamadina et al (2022) [61]

Accuracy 0.75NoNR4FrameSelf-preparedSwetha et al (2022) [62]

Accuracy 0.81NoSplit3Frame; se-
quence

Self-preparedWu et al (2022) [63]

MAE 0.36; MSE 1.73;
Accuracy 0.82

No5-fold16FrameUNBCIsmail and Waseem 2023 [64]

MSE 0.57; MAE 0.35;
ICC 0.83; PCC 0.81

NoLOSO16FrameDISFA; UNBCVu and Beurton-Aimar 2023 [65]

aUNBC: University of Northern British Columbia-McMaster shoulder pain expression archive database.
bLOSO: leave one subject out cross-validation.
cICC: intraclass correlation coefficient.
dCT: contingency table.
eAUC: area under the curve.
fMSE: mean standard error.
gPCC: Pearson correlation coefficient.
hRMSE: root mean standard error.
iMAE: mean absolute error.
jICC: intraclass coefficient.
kCCC: concordance correlation coefficient.
lReported both external and internal validation results and summarized as intervals.

Table 2 summarizes the characteristics of model training and
validation. Most studies used publicly available databases, for
example, the University of Northern British Columbia-McMaster
shoulder pain expression archive database [57]. Table S4 in
Multimedia Appendix 1 summarizes the public databases. A
total of 7 studies used self-prepared databases. Frames from
video sequences were the most used test objects, as 37 studies
output frame-level pain intensity, while few measure pain
intensity from video sequences or photos. It was common that
a study redefined pain levels to have fewer classes than
ground-truth labels. For model validation, cross-validation and
leave-one-subject-out validation were commonly used. Only 3
studies performed external validation. For reporting test
accuracies, different evaluation metrics were used, including
sensitivity, specificity, mean absolute error (MAE), mean
standard error (MSE), Pearson correlation coefficient (PCC),
and intraclass coefficient (ICC).

Methodological Quality of Included Studies
Table S2 in Multimedia Appendix 1 presents the study quality
summary, as assessed by QUADAS-2. There was a risk of bias
in all studies, specifically in terms of patient selection, caused
by 2 issues. First, the training data are highly imbalanced, and
any method to adjust the data distribution may introduce bias.
Next, the QUADAS-AI correspondence letter [19] specifies
that preprocessing of images that changes the image size or
resolution may introduce bias. However, the applicability
concern is low, as the images properly represent the feeling of
pain. Studies that used cross-fold validation or leave-one-out
cross-validation were considered to have a low risk of bias.
Although the Prkachin and Solomon pain intensity (PSPI) score
was used by most of the studies, its ability to represent
individual pain levels was not clinically validated; as such, the
risk of bias and applicability concerns were considered high
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when the PSPI score was used as the index test. As an advantage
of computer vision techniques, the time interval between the
index tests was short and was assessed as having a low risk of
bias. Risk proportions are shown in Figure 2. For all 315 entries,

39% (124) were assessed as high-risk. In total, 5 studies had
the lowest risk of bias, with 6 domains assessed as low risk
[26,27,31,32,59].

Figure 2. Risk of bias and applicability proportions. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies 2.

Pooled Performance of Included Models
In 6 studies included in the meta-analysis, there were 8 different
models. The characteristics of these models are summarized in
Table S1 in Multimedia Appendix 2 [23,24,26,32,41,57].
Classification of PSPI scores greater than 0, 2, 3, 6, and 9 was
selected and considered as different tasks to create contingency

tables. The test performance is shown in Figure 3 as hierarchical
SROC curves; 27 contingency tables were extracted from 8
models. The sensitivity, specificity, and LDOR were calculated,
and the combined sensitivity was 98% (95% CI 96%-99%), the
specificity was 98% (95% CI 97%-99%), the LDOR was 7.99
(95% CI 6.73-9.31) and the AUC was 0.99 (95% CI 0.99-1).

Figure 3. Summary receiver operating characteristic (SROC) curve plots of the summarized results.
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Subgroup Analysis
In this study, subgroup analysis was conducted to investigate
the performance differences within models. A total of 8 models
were separated and summarized as a forest plot in Multimedia
Appendix 3 [23,24,26,32,41,57]. For model 1, the pooled
sensitivity, specificity, and LDOR were 95% (95% CI
86%-99%), 99% (95% CI 98%-100%), and 8.38 (95% CI
6.09-11.19), respectively. For model 2, the pooled sensitivity,
specificity, and LDOR were 94% (95% CI 84%-99%), 95%
(95% CI 88%-99%), and 6.23 (95% CI 3.52-9.04), respectively.
For model 3, the pooled sensitivity, specificity, and LDOR were
100% (95% CI 99%-100%), 100% (95% CI 99%-100%), and
11.55% (95% CI 8.82-14.43), respectively. For model 4, the
pooled sensitivity, specificity, and LDOR were 83% (95% CI
43%-99%), 94% (95% CI 79%-99%), and 5.14 (95% CI
0.93-9.31), respectively. For model 5, the pooled sensitivity,
specificity, and LDOR were 92% (95% CI 68%-99%), 94%

(95% CI 78%-99%), and 6.12 (95% CI 1.82-10.16), respectively.
For model 6, the pooled sensitivity, specificity, and LDOR were
94% (95% CI 74%-100%), 94% (95% CI 78%-99%), and 6.59
(95% CI 2.21-11.13), respectively. For model 7, the pooled
sensitivity, specificity, and LDOR were 98% (95% CI
90%-100%), 97% (95% CI 87%-100%), and 8.31 (95% CI
4.3-12.29), respectively. For model 8, the pooled sensitivity,
specificity, and LDOR were 98% (95% CI 93%-100%), 97%
(95% CI 88%-100%), and 8.65 (95% CI 4.84-12.67),
respectively.

Heterogeneity Analysis
The meta-analysis results indicated that AI models are applicable
for estimating pain intensity from facial images. However,
extreme heterogeneity existed within the models except for
models 3 and 5, which were proposed by Rathee and Ganotra
[24] and Semwal and Londhe [32]. A funnel plot is presented
in Figure 4. A high risk of bias was observed.

Figure 4. In the funnel plot of the test results, significant heterogeneity was observed. DOR: diagnostic odds ratio; LDOR: log diagnostic odds ratio.

Discussion

Pain management has long been a critical problem in clinical
practice, and the use of AI may be a solution. For acute pain
management, automatic measurement of pain can reduce the
burden on caregivers and provide timely warnings. For chronic
pain management, as specified by Glare et al [2], further
research is needed, and measurements of pain presence,
intensity, and quality are one of the issues to be solved for

chronic pain studies. Computer vision could improve pain
monitoring through real-time detection for clinical use and data
recording for prospective pain studies. To our knowledge, this
is the first meta-analysis dedicated to AI performance in
multilevel pain level classification.

In this study, one model’s performance at specific pain levels
was described by stacking multiple classes into one to make
each task a binary classification problem. After careful selection
in both the medical and engineering databases, we observed

J Med Internet Res 2024 | vol. 26 | e51250 | p. 10https://www.jmir.org/2024/1/e51250
(page number not for citation purposes)

Huo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


promising results of AI in evaluating multilevel pain intensity
through facial images, with high sensitivity (98%), specificity
(98%), LDOR (7.99), and AUC (0.99). It is reasonable to believe
that AI can accurately evaluate pain intensity from facial images.
Moreover, the study quality and risk of bias were evaluated
using an adapted QUADAS-2 assessment tool, which is a
strength of this study.

To investigate the source of heterogeneity, it was assumed that
a well-designed model should have familiar size effects
regarding different levels, and a subgroup meta-analysis was
conducted. The funnel and forest plots exhibited extreme
heterogeneity. The model’s performance at specific pain levels
was described and summarized by a forest plot. Within-model
heterogeneity was observed in Multimedia Appendix 3
[23,24,26,32,41,57] except for 2 models. Models 3 and 5 were
different in many aspects, including their algorithms and
validation methods, but were both trained with a relatively small
data set, and the proportion of positive and negative classes was
relatively close to 1. Because training with imbalanced data is
a critical problem in computer vision studies [66], for example,
in the University of Northern British Columbia-McMaster pain
data set, fewer than 10 frames out of 48,398 had a PSPI score
greater than 13. Here, we emphasized that imbalanced data sets
are one major cause of heterogeneity, resulting in the poorer
performance of AI algorithms.

We tentatively propose a method to minimize the effect of
training with imbalanced data by stacking multiple classes into
one class, which is already presented in studies included in the
systematic review [26,32,42,57]. Common methods to minimize
bias include resampling and data augmentation [66]. This
proposed method is used in the meta-analysis to compare the
test results of different studies as well. The stacking method is
available when classes are only different in intensity. A
disadvantage of combined classes is that the model would be
insufficient in clinical practice when the number of classes is
low. Commonly used pain evaluation tools, such as VAS, have
10 discrete levels. It is recommended that future studies set the
number of pain levels to be at least 10 for model training.

This study is limited for several reasons. First, insufficient data
were included because different performance metrics (mean
standard error and mean average error) were used in most
studies, which could not be summarized into a contingency
table. To create a contingency table that can be included in a
meta-analysis, the study should report the following: the number
of objects used in each pain class for model validation, and the
accuracy, sensitivity, specificity, and F1-score for each pain
class. This table cannot be created if a study reports the MAE,
PCC, and other commonly used metrics in AI development.
Second, a small study effect was observed in the funnel plot,
and the heterogeneity could not be minimized. Another
limitation is that the PSPI score is not clinically validated and
is not the only tool that assesses pain from facial expressions.
There are other clinically validated pain intensity assessment
methods, such as the Faces Pain Scale-revised, Wong-Baker
Faces Pain Rating Scale, and Oucher Scale [3]. More databases
could be created based on the above-mentioned tools. Finally,
AI-assisted pain assessments were supposed to cover larger
populations, including incommunicable patients, for example,
patients with dementia or patients with masked faces. However,
only 1 study considered patients with dementia, which was also
caused by limited databases [50].

AI is a promising tool that can help in pain research in the future.
In this systematic review and meta-analysis, one approach using
computer vision was investigated to measure pain intensity from
facial images. Despite some risk of bias and applicability
concerns, CV models can achieve excellent test accuracy.
Finally, more CV studies in pain estimation, reporting accuracy
in contingency tables, and more pain databases are encouraged
for future studies. Specifically, the creation of a balanced public
database that contains not only healthy but also nonhealthy
participants should be prioritized. The recording process would
be better in a clinical environment. Then, it is recommended
that researchers report the validation results in terms of accuracy,
sensitivity, specificity, or contingency tables, as well as the
number of objects for each pain class, for the inclusion of a
meta-analysis.
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