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Abstract

Modern machine learning approaches have led to performant diagnostic models for a variety of health conditions. Several machine
learning approaches, such as decision trees and deep neural networks, can, in principle, approximate any function. However, this
power can be considered to be both a gift and a curse, as the propensity toward overfitting is magnified when the input data are
heterogeneous and high dimensional and the output class is highly nonlinear. This issue can especially plague diagnostic systems
that predict behavioral and psychiatric conditions that are diagnosed with subjective criteria. An emerging solution to this issue
is crowdsourcing, where crowd workers are paid to annotate complex behavioral features in return for monetary compensation
or a gamified experience. These labels can then be used to derive a diagnosis, either directly or by using the labels as inputs to a
diagnostic machine learning model. This viewpoint describes existing work in this emerging field and discusses ongoing challenges
and opportunities with crowd-powered diagnostic systems, a nascent field of study. With the correct considerations, the addition
of crowdsourcing to human-in-the-loop machine learning workflows for the prediction of complex and nuanced health conditions
can accelerate screening, diagnostics, and ultimately access to care.
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Introduction

Crowdsourcing, a term first coined in 2006 [1], is the use of
distributed human workers to accomplish a central task.
Crowdsourcing exploits the “power of the crowd” to achieve
goals that are only feasible with a distributed group of humans
collaborating, either explicitly or implicitly, toward a common
goal. Crowdsourcing has often been applied to public health
surveillance [2], such as for tracking epidemics [3,4],
quantifying tobacco use [5], monitoring water quality [6],
tracking misinformation [7], and understanding the black-market
price of prescription opioids [8]. In the context of health care,
crowdsourcing is most often used for public health, a domain
that can clearly benefit from scalable and distributed assessments
of health status. Although sampling bias can be an issue in
epidemiological uses of crowdsourcing [9], approaches that
account for these issues have performed quite robustly.

A smaller but potentially transformative effort to apply
crowdsourcing to precision health rather than population health
has recently emerged. In precision health contexts, the goal is
to provide a diagnosis using information labeled by crowd
workers. There are several variations to this basic setup.
Crowdsourcing workflows for diagnostics can diverge with
respect to the underlying task, worker motivation strategies,
worker training, worker filtering, and privacy requirements.

Here, I describe the existing research in the relatively small and
early but growing field of crowdsourcing for precision health.
I then discuss ongoing challenges and corresponding
opportunities that must be addressed as this field matures.

J Med Internet Res 2024 | vol. 26 | e51138 | p. 1https://www.jmir.org/2024/1/e51138
(page number not for citation purposes)

WashingtonJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:pyw@hawaii.edu
http://dx.doi.org/10.2196/51138
http://www.w3.org/Style/XSL
http://www.renderx.com/


Existing Examples of Crowdsourcing in
and Adjacent to Health Care

There are relatively few examples of crowdsourcing in precision
health. The vast successes of machine learning for health [10-15]
and the human labor costs required for crowdsourcing make
purely automated approaches more appealing when they are
possible and feasible. However, the crowdsourcing approaches
that have been tested tend to perform well for prediction tasks
that are beyond the scope of current automated approaches,
especially in psychiatry and the behavioral sciences.

I want to begin by highlighting successes in science, as they
can often be applied to health and have started to lead to
improvements in diagnostics. Framing crowdsourcing tasks as
“citizen science” opportunities can be an effective incentive
mechanism [16]. Oftentimes, these projects are “gamified.”
Gamification refers to the incorporation of engaging elements
into traditionally burdensome workflows, and in particular
game-like affordances, to foster increased participation. A
combination of large crowd sizes, worker training procedures,
and easy identification tasks have led to previous success in the
existing gamified citizen science experiments applied to
precision health. For example, in a study involving nearly
100,000 crowd workers who scored images on a citizen science
platform, cancer was correctly identified with an area under the
receive operating characteristic of around 95% [17]. In the
BioGames app, users who performed with greater than 99%
accuracy in a training tutorial were invited to diagnose malaria
[18,19]. It was discovered that with a large crowd size, the
aggregated diagnostic accuracy of nonexpert crowd workers
approached that of experts [20]. Another citizen science malaria
diagnosis application, MalariaSpot, resulted in 99% accuracy
in the diagnosis of malaria from blood films [21]. If the
annotation task is relatively simple and nonexperts can be trained
with minimal onboarding efforts, then citizen science can be
an effective and affordable approach.

“Gamified” crowdsourcing for citizen science has also been
successful without explicitly requiring workers to undergo a
formal training process. Foldit [22-25] and EteRNA [26-31]
are 2 games where players with no biology or chemistry
background can explore the design space of protein and RNA
folding, respectively. These are both NP-hard (ie,
computationally complex) problems, and human players in
aggregate have designed solutions that outcompete
state-of-the-art computational approaches. These solutions have
been used to solve health challenges, such as finding a gene
signature for active tuberculosis, which can potentially be used
in tuberculosis diagnostics [32]. Other gamified experiences
have been used to build training libraries for complex
classification tasks in precision psychiatry. Notably, GuessWhat
is a mobile charades game played between children with autism
and their parents [33,34]. While the game provides therapeutic
benefits to the child with autism [35], the game simultaneously
curates automatic labels of behaviors related to autism through
the metadata associated with gameplay [36,37]. These
automatically annotated video data have been used to develop
state-of-the-art computer vision models for behaviors related

to the diagnosis of autism, such as facial expression evocation
[38-41], eye gaze [42], atypical prosody [43], and atypical body
movements [44,45].

An alternative incentive mechanism is paid crowdsourcing. The
most popular paid crowdsourcing platform, by far, is Amazon
Mechanical Turk (MTurk) [46]. While paid crowdsourcing
specifically for precision health is a relatively nascent field, the
general study of paid crowdsourcing (particularly on MTurk)
is quite mature. Studies have explored worker quality
management [47], understanding crowd worker demographics
[48], the generation of annotations for use in the training of
machine learning models [49-53], the rights of crowd workers
[54-56], and understanding crowd worker communities and
economics [57-59]. Preliminary studies of paid crowdsourcing
have yielded mixed success. Around 81% of images were
correctly classified on MTurk in a study involving the grading
of diabetic retinopathy from images, with workers failing to
correctly indicate the level of severity [60]. In a separate binary
labeling task for glaucomatous optic neuropathy, workers
achieved sensitivity in the 80s but reached a specificity below
50% [61].

In a broader classification task of various medical conditions,
workers consistently labeled the “easy” cases while struggling
to correctly label and even refusing to label more complicated
and nuanced tasks [62]. Clearly, there is a need for extensive
innovations to the traditional paid crowdsourcing workflow to
translate this methodology to precision health.

I have extensively investigated the utility of paid crowdsourcing
for the diagnosis of autism from unstructured home videos,
achieving relatively high diagnostic performance [63-66]. In
these experiments, untrained annotators watched short videos
depicting children with and without autism and answered
questions about the behaviors depicted within the videos. These
annotations were provided as input into previously developed
machine learning models, achieving binary test performance in
the 90s across performance metrics due to the reduction of the
complex feature space (unstructured videos) into a
low-dimensional representation (vectors of a few categorical
ordinal values). This pipeline combining crowdsourcing and
machine learning can possibly be extended to other diagnostic
domains in psychiatry where the input feature space is complex,
heterogeneous, and subjective.

Ongoing Challenges and Corresponding
Opportunities

Since crowdsourcing for precision health care is an emerging
field of study, numerous challenges must be solved for clinical
translation to develop. In the proceeding sections, I highlight
several areas that are pressing for the field and for which
preliminary work has been published.

Worker Identification and Training
While traditional crowdsourcing can work with minimal to no
worker training, complex annotation tasks require the
identification of qualified workers. I have found that worker
identification can occur through the quantification of their
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performance on test tasks [67,68] and training promising
workers [66]. Such crowd filtration paradigms will require
domain-specific procedures. There is ample room to develop
new crowdsourcing systems that inherently support natural
worker identification and training procedures for crowdsourcing
workflows that require well-designed training processes.

Worker Retention
Once proficient workers are identified, continually engaging
and retaining these workers is critical. I have found that workers
who are repeatedly encouraged by a human (or human-like
chatbot) and treated as members of a broader research team tend
to enjoy paid work and even ask for more tasks after the
completion of the study [69]. Thus, it is possible that the
guarantee of job security can lead to long-term worker retention.
However, worker retention in unpaid settings that rely on
intrinsic motivation will require additional innovations. For
example, there exists an opportunity to explore the creation of
crowd worker communities to provide a means of intrinsic
motivation leading to worker retention.

Task Assignment
Certain workers perform exceptionally well on a subset of tasks
while underperforming on other assigned tasks [70,71]. There
is an opportunity to develop algorithmic innovations involving
the effective and optimal assignment of workers to subtasks in
a dynamic manner. Reinforcement learning could be a promising
approach but has yet to be explored in such scenarios.

Privacy of Human Participants
Data in psychiatry and behavioral sciences are particularly
sensitive. Ensuring that sensitive health information is handled
appropriately and that workers’privacy is maintained is essential
from an ethical perspective. There are 2 general families of
approaches to achieving privacy in crowd-powered health care.
First, the data can be modified to obscure sensitive information
without removing information required for a diagnosis. I have
explored privacy-preserving alterations to video data that
obfuscate the identity of participants while maximizing the
capacity for workers to annotate behaviors of interest [70,71].
For example, in the case of video analytics on bodily
movements, the face can be tracked and blurred, or the body
can be converted to a stick figure using a pose-based computer
vision library. Sometimes, however, it is impossible to modify
the data without severely degrading the diagnostic performance.
Therefore, the second family of approaches involves carefully
vetting crowd workers, training them, and onboarding them into
a secure computing environment. In my previous experiences
with this process [40], I discovered that crowd workers were
enthusiastic about the prospect of the “job security” that is
implied from the thorough vetting procedure and were, therefore,
willing to complete extra privacy and security training (in our
case, Research, Ethics, Compliance, and Safety training). There
is ample room to expand upon these methods and to develop
new paradigms and systems for crowdsourcing involving
identifiable and protected health information.

Ensuring Reliability and Reproducibility
An intrinsic challenge when incorporating human workers into
precision health workflows is the variability in human responses,
both within workers and between workers. I have found that
while most crowd workers are inconsistent in their annotation
patterns, there are workers who provide consistently sensitive
and specific annotations across a wide spectrum of data points
[67]. It is therefore critical to measure both internal consistency
and consistency against a gold standard when recruiting crowd
workers for precision health care workflows.

Handling Financial Constraints
The crowdsourcing method with the lowest setup barriers is
paid crowdsourcing. In such scenarios, financial constraints can
limit the scalability of crowdsourcing workflows. One approach
is to migrate from a paid system to a gamified system or another
means of providing intrinsic motivation to crowd workers.
However, achieving critical mass for large-scale pipelines is
likely unattainable for such unpaid solutions. Paid crowd
workers who consistently perform well could be recruited as
full-time or long-term part-time employees for companies and
organizations providing crowd-powered services. Integrating
such workflows into a Food and Drug Administration
(FDA)–approved process can be challenging, but it is worth
exploring if it turns out that crowd-powered solutions for digital
psychiatry continue to remain superior to pure-artificial
intelligence (AI) approaches in the coming years.

Translation Outside of Research Contexts
While pure machine learning approaches for precision health
are beginning to translate to clinical settings through formal
FDA approval procedures, the prospect of translating
human-in-the-loop methods that integrate crowd workers rather
than expert clinicians is daunting, especially in light of the
challenges mentioned above. However, if such approaches lead
to clinical-grade performance for certain conditions that are
challenging to diagnose using machine learning alone, then the
extra implementation and regulatory effort required to migrate
these methods into production-level workflows are likely to be
warranted.

Conclusion

While machine learning for health has enabled and will continue
to enable more efficient, precise, and scalable diagnostics for a
variety of conditions, such models are unlikely to generalize to
more difficult scenarios such as psychiatry and the behavioral
sciences, which require the ability to identify complex and
nuanced social human behavior. Crowd-powered
human-in-the-loop workflows have the potential to mitigate
some of these current limitations while still offering a high
degree of automation. I invite researchers in the fields of digital
phenotyping [72-76], mobile sensing [77-83], affective
computing [84-90], and related subjects to consider integrating
crowdsourcing and human-in-the-loop approaches into their
methods when pure-AI leads to suboptimal performance.
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