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Abstract

Background: Diagnostic errors are an underappreciated cause of preventable mortality in hospitals and pose a risk for severe
patient harm and increase hospital length of stay.

Objective: This study aims to explore the potential of machine learning and natural language processing techniques in improving
diagnostic safety surveillance. We conducted a rigorous evaluation of the feasibility and potential to use electronic health records
clinical notes and existing case review data.

Methods: Safety Learning System case review data from 1 large health system composed of 10 hospitals in the mid-Atlantic
region of the United States from February 2016 to September 2021 were analyzed. The case review outcome included opportunities
for improvement including diagnostic opportunities for improvement. To supplement case review data, electronic health record
clinical notes were extracted and analyzed. A simple logistic regression model along with 3 forms of logistic regression models
(ie, Least Absolute Shrinkage and Selection Operator, Ridge, and Elastic Net) with regularization functions was trained on this
data to compare classification performances in classifying patients who experienced diagnostic errors during hospitalization.
Further, statistical tests were conducted to find significant differences between female and male patients who experienced diagnostic
errors.

Results: In total, 126 (7.4%) patients (of 1704) had been identified by case reviewers as having experienced at least 1 diagnostic
error. Patients who had experienced diagnostic error were grouped by sex: 59 (7.1%) of the 830 women and 67 (7.7%) of the 874
men. Among the patients who experienced a diagnostic error, female patients were older (median 72, IQR 66-80 vs median 67,
IQR 57-76; P=.02), had higher rates of being admitted through general or internal medicine (69.5% vs 47.8%; P=.01), lower
rates of cardiovascular-related admitted diagnosis (11.9% vs 28.4%; P=.02), and lower rates of being admitted through neurology
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department (2.3% vs 13.4%; P=.04). The Ridge model achieved the highest area under the receiver operating characteristic curve
(0.885), specificity (0.797), positive predictive value (PPV; 0.24), and F1-score (0.369) in classifying patients who were at higher
risk of diagnostic errors among hospitalized patients.

Conclusions: Our findings demonstrate that natural language processing can be a potential solution to more effectively identifying
and selecting potential diagnostic error cases for review and therefore reducing the case review burden.

(J Med Internet Res 2024;26:e50935) doi: 10.2196/50935
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Introduction

Diagnostic errors are an underappreciated cause of preventable
mortality in hospitals, estimated to affect a quarter million
hospital inpatients, and account for an estimated 40,000-80,000
deaths annually in the United States [1]. These errors pose a
risk for severe patient harm [2,3], increase hospital length of
stay [4], and made up 22% and accounted for US $5.7 billion
of paid malpractice claims in hospitalized patients throughout
a nearly 13-year period [5]. In their analysis of malpractice
claims occurring in the US National Practitioner Database from
1999 to 2011, Gupta et al [5] found that diagnosis-related paid
claims were most likely to be associated with death and cost
(following surgery); among diagnosis-related paid claims, failure
to diagnose was the most common subtype and was more likely
than other types to be associated with mortality. Several factors
have been proposed as contributors to inpatient diagnostic errors
including time constraints related to the concurrent care of
multiple patients, unpredictable workflows, distractions, and
competing priorities for trainees. From their systematic review
and meta-analysis, Gunderson et al [2] estimate that 250,000
diagnostic adverse events occur annually among hospitalized
patients in the United States, and this is likely an
underestimation of the problem due to several challenges in
diagnostic error measurement [6].

Challenges in identifying and measuring diagnostic errors occur
due to the evolving and iterative nature of the diagnostic process,
making it difficult to determine when, if at all, a correct or more
specific diagnosis could have been established by clinicians to
start the appropriate treatment [6]. Since its landmark report,
Improving Diagnosis in Health Care, the National Academies
of Science, Engineering, and Medicine (NASEM) has produced
a common understanding of diagnostic error that includes
accuracy, timeliness, and communication of the explanation to
the patient or patient’s family member [3]. Diagnostic errors
often involve missed opportunities related to various aspects of
the diagnostic process [7-9] and diagnostic adverse events
resulting in harm [10]. However, many hospitals currently do
not capture or include surveillance for diagnostic errors, despite
having robust systems in place to report and analyze patient
safety issues [6,11,12].

A crucial first step to improving diagnosis in hospitals is the
creation of programs to identify, analyze, and learn from
diagnostic errors. Ongoing efforts by the Agency for Health
Care Research and Quality have supported pragmatic

measurement approaches for health organizations to build a
diagnostic safety program and identify and learn from diagnostic
errors such as those described in the Measure Dx resource [9].
One proposed and promising solution for hospitals to improve
diagnostic surveillance is to build on existing efforts to collect
patient safety data, root cause analyses, or other forms of case
reviews for quality improvement purposes. Cases that have
already been reviewed or investigated in the organization for
general patient safety and quality purposes may be able to
inform or be rereviewed for information and learning
opportunities specific to diagnostic safety. Widely used
case-based learning methodologies in particular, such as the
“Learning From Every Death” initiative developed at Mayo
Clinic [13] used both nationally and worldwide, offer an
excellent opportunity for hospitals to augment their existing
quality and safety efforts and support diagnostic safety.

Clinical notes in electronic health records (EHRs) written by
health providers in free-text format are rich sources of a patient’s
diagnoses and care trajectory through hospitalization time.
Approaches to processing free text, such as through natural
language processing (NLP) and machine learning (ML), have
demonstrated significant opportunities to improve quality and
safety within health care organizations in diverse applications
[14-16] such as cancer research [17,18] and infection prediction
[19] to sleep issues [20] and neurological outcome prediction
[21]. Besides its use in the diagnostic process, ML models
proved to have added benefits when used in diagnostic error
identification [22,23]. However, despite significant progress
and evidence about the use of these ML and NLP approaches
to improve patient safety, the use of ML and NLP approaches
to diagnostic safety and surveillance has largely remained
untapped. A 2022 study demonstrates how an academic medical
center’s implementation of an NLP-based algorithm to flag
safety event reports for manual review enabled early detection
of emerging diagnostic risks from large volumes of safety
reports, and was among the first to apply an NLP approach to
safety event reports to facilitate identification of COVID-19
related diagnostic errors [24]. Meanwhile, progress in the use
of data mining approaches to develop electronic trigger tools
offers promising methods to detect potential diagnostic events,
promote organizational learning, and support the monitoring of
data prospectively to identify patients at high risk for future
adverse events [25]. To our knowledge, however, NLP has not
yet been applied to case review data to facilitate the
identification of diagnostic errors and understand its features
and sources.
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While free-text formatted clinical notes provide unique
opportunities to incorporate ML models, the lack of reliable
labels to represent diagnostic errors often limits the use of
clinical notes for diagnostic safety surveillance efforts. The
opportunity to train ML and NLP algorithms to identify
diagnostic errors and opportunities depends on the collation of
EHR data with existing efforts to identify diagnostic errors such
as through case review findings from the Safety Learning
System (SLS). To further explore the potential for this approach
to be used to improve diagnostic safety surveillance, a rigorous
evaluation of the feasibility and potential of using EHR and
existing case review data is needed.

We hypothesized that ML and NLP methods can be applied to
train models based on available case review data to examine
content potentially related to diagnostic errors within EHR
clinical notes. These approaches automatically identify features
or information from free text using controlled vocabularies, rule
sets, reference dictionaries, or lexicons.

Methods

Data Sets and Case Review Approach
We analyzed SLS data from 1 large health system comprised
of 10 hospitals in the mid-Atlantic region of the United States.
The SLS is one example of a holistic case review methodology
delivered by health care organizations in the United States and
globally. Established in 2015, the SLS builds upon the Mayo
Clinic Mortality Review System of Huddleston et al [13] to
review and analyze EHR data from patient mortality cases to
find safety issues that could be found and mitigated. This
approach was designed to enhance current quality improvement
projects done within health organizations, providing a
perspective and strategy based on the Safety II lens and rooted
in the belief that every death provides an opportunity to improve
care. With a Safety II lens, participating organizations use a
holistic case review methodology designed to identify
vulnerabilities in systems and processes of care delivery.
Reviewers identify and translate these into different categories
and labels to (1) define and quantify types of process of care
and system failures contributing to adverse outcomes (errors)
and (2) identify the components of the process of care and
system failures that when fixed will improve performance
(opportunities for improvement [OFIs]).

To ensure a sufficient cross-sampling of patients across different
specialties and areas, patients are selected for case reviews at
this health system based on their primary provider service line
category (eg, medicine, surgery, etc) and hospital length of stay;
patients in primary and ambulatory care settings are not included
for case review selection. The case review process occurs
according to the standardized SLS methodology and
recommendations [13,26], and between at least 1 physician and
1 nurse within the health system who have both received training
in the SLS approach. The case review outcome and identification
of OFIs, including diagnostic OFIs, relies on the reviewer’s
consensus of any findings and through multiple multidisciplinary

and multispecialty meetings that may involve a committee Chair
member, clinical department leader, or escalation to other
leadership.

Sample
We obtained SLS data from February 2016 to September 2021;
data in later years were available but not included because of
key changes to the case selection process made during and in
response to the COVID-19 pandemic. All hospitalized adult
patients older than 18 years were included for analysis,
regardless of their hospitalization outcome (eg, mortality or
discharge location). Pediatric and neonatal patients were
excluded.

Ethical Considerations
The original data collection and study protocol was approved
by the institutional review board (00001245) at MedStar Health
Research Institute on August 26, 2019.

Variables

Data Extraction
Medical record number, encounter number, length of stay, age,
date of birth, sex, diagnosis at the time of admission (ie, ICD-10
[International Statistical Classification of Diseases, Tenth
Revision] diagnosis codes), mortality, OFI categories (eg,
delayed or missed diagnosis and diagnostic opportunities),
number of identified OFIs and diagnosis issues (eg, the accuracy
of diagnosis and confirmation or fixation bias) were the features
and patient identifiers which were extracted from SLS data
[13,26].

Because chart reviews generally occur at a single point in time
within the patient’s care trajectory, they often do not contain
information or details of the patient’s full hospital course.
However, clinical notes written by health care providers are
rich sources of patient’s health status throughout their
hospitalization period [27-29]. Therefore, to supplement these
chart review data, we additionally extracted and included all
clinical notes from the EHR for patients who could be matched
by patient identifiers (eg, encounter number and date of birth).

Coding Diagnostic Errors
Case reviewers can select any number of labels to describe a
diagnosis issue or an OFI identified and agreed upon by
consensus. For this study, diagnostic errors were defined by the
available features from chart review pertaining to diagnosis and
impacting the timeliness, accuracy, or communication of a
diagnosis. Our definition of diagnostic errors was limited to the
categories identified during chart reviews and recorded within
the SLS data set; therefore, our diagnostic error definition does
not include all aspects of the definition developed by the
NASEM report [3]. Table 1 describes the SLS categories and
values that were labeled as diagnostic errors and used to train
our classification models. Patients were coded as having
experienced a diagnostic error if one or more of the conditions
listed in Table 1 were identified in their SLS case review.
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Table 1. Indicators of diagnostic error in Safety Learning System data.

Value to indicate diagnostic errorFeature from chart reviews

Delayed or missed diagnosisOFIa category

Diagnostic opportunitiesOFI category

accuracy of diagnosisDiagnosis issues

Accuracy of interpretation of laboratory or test resultsDiagnosis issues

Squirrel (red herring lab or test results)Diagnosis issues

Confirmation or fixation biasDiagnosis issues

Appropriateness of chosen tests or equipment given the patient’s differential diagnosisDiagnosis issues

aOFI: opportunity for improvement.

NLP Approach
We used an NLP approach on critical incident reporting system
data to explore the features and risk of diagnostic error among
hospitalized patients.

Features From Free-Text Data
Descriptive statistical analyses were performed to identify any
differences among age, length of stay, and mortality between
the female and male patients who had experienced diagnostic
errors.

All EHR clinical notes were transformed to lowercase. Extra
white spaces, numbers, punctuations, and stop words were
removed and words were stemmed. The term frequency-inverse
document frequency (TF-IDF) matrix was calculated for each
clinical note using the bag-of-words from the preprocessed EHR
clinical notes [30]. TF-IDF is a statistical measure that evaluates
how relevant a word is to a document in a collection of
documents and is a popular method to translate free text to
numerical features in training ML models. The TF-IDF of a
word in a document is calculated by multiplying 2 metrics: the
number of times a word appeared in a document and the inverse
document frequency of the word across a set of documents.
TF-IDF is computationally efficient and easy to interpret. We
excluded the most frequent words that had appeared in more
than 95% of the EHR clinical notes, as these frequent words do
not provide information to help with the classification.
Moreover, we excluded the rare words that appeared in less
than 5% of the EHR clinical notes [31].

In a TF-IDF matrix, the number of rows corresponds to the
unique patients, and the number of columns represents the
unique words found in EHR clinical notes. There are numerous
unique words used in EHR clinical notes; therefore, the TF-IDF
approach provides a high-dimensional input matrix for the
classification task. The high-dimensional input matrix can lead
to training inaccurate classifiers. To overcome that issue, we
used the chi-square statistical test to select the most relevant
words to identify diagnostic errors; therefore, if P values
associated with a word (also called a feature) are less than .05,
that word is selected and included in the feature matrix to train
ML classification models.

Classification Models
In lieu of an existing model with the same objective in the
literature, a simple logistic regression model was trained as the
baseline classifier to identify patients within SLS data who were
at higher risk of diagnostic error. Moreover, 3 forms of logistic
regression models with regularization functions were trained
on this data to compare classification performances and identify
the best-performing model [32]: Least Absolute Shrinkage and
Selection Operator (LASSO), Ridge, and Elastic Net.

• LASSO: for a more accurate prediction, LASSO
regularization is used with a logistic regression model. The
LASSO procedure encourages simple, sparse models which
has fewer parameters in a way that the estimated coefficient
of features with less effect will be set to zero. This
characteristic makes LASSO well-suited for models
showing high levels of multicollinearity or variable selection
and parameter elimination is needed. LASSO is also called
L1 regularization.

• Ridge: also called L2 regularization, Ridge is a
regularization method used for models suffering from
multicollinearity or high-dimensional feature space. Ridge
regularization keeps all the features regardless of their effect
on the model. However, it pushes the estimated coefficient
of features with less effect toward zero to minimize their
effect on the classification outcome. This characteristic of
Ridge makes it well-suited when most features impact the
outcome variable.

• Elastic Net: a logistic regression model with Elastic Net
regularization is a weighted combination of LASSO (L1)
and Ridge (L2) regularizations [33]. Elastic Net can remove
the effect of the insignificant features by setting their
estimated coefficient to zero and lower the effect of the less
significant features by pushing their estimated coefficient
toward zero while adding more weights to the more
important features. From implementation and interpretation
aspects, the Elastic Net model is simple to use. Such
characteristics make this model an accepted baseline in
ML-based studies [34].

The hyperparameters of the 3 classification models were
optimized through cross-validation. All the analyses were
conducted using Python 3 (Python Software Foundation).
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Classification Performance Metrics
We calculated 7 common performance metrics reported for
binary classifiers to compare the performance of the 4
classification models: area under receiver operating
characteristics curve (AUROC), sensitivity or recall or true
positive rate, specificity or true negative rate, positive predictive

value (PPV) or precision, negative predictive value (NPV),
F1-score, and area under precision-recall curve (AUPRC). The
7 metrics take values between 0 and 1. Values closer to 1
indicate a well-performing classifier. Multimedia Appendix 1
presents the definition of the performance metrics used in this
study. Figure 1 presents the summary of the methods used in
this analysis.

Figure 1. A summary of the methods used in this study. EHR: electronic health record; LASSO: Least Absolute Shrinkage and Selection Operator;
TF-IDF: term frequency-inverse document frequency.

Results

Descriptive Summary
In total, there were 2184 unique patient records within SLS data
from February 2016 to September 2021. EHR clinical notes
were cross-matched, extracted, and included in analyses for
1704 (78%) of these SLS patient records. Of those patients with
cross-matched EHR data, 126 (7.4%) patients had been
identified by case reviewers as having experienced at least 1
diagnostic error. A total number of 20,848 EHR clinical notes
associated with the 1704 unique patients were used in this study.

Patients who had experienced diagnostic errors were grouped
by sex: 59 (7.1%) of the 830 women and 67 (7.7%) of the 874
men in the larger cross-matched sample had been found to have

a diagnostic error. Table 2 presents the descriptive statistics
between female and male patient groups. We applied the
Wilcoxon rank sum test for numerical features (ie, age and
length of stay), and the chi-square test for mortality rate,
admission diagnosis, and admission department or specialty.
Patients in the female group were older than the male group by
a median of 72 (IQR 66-80) versus a median of 67 (IQR 57-76;
P=.02). Compared to the male group, female patients who
experienced diagnostic error had higher rates of being admitted
through general or internal medicine (69.5% vs 47.8%; P=.01),
lower rates of cardiovascular-related admitted diagnosis (11.9%
vs 28.4%; P=.02), and lower rates of being admitted through
neurology department (2.3% vs 13.4%; P=.04). We observed
no differences between groups in mortality rates and length of
stay.
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Table 2. Descriptive statistics of patients.

All patientsPatients who experienced diagnostic error

Male group (n=874)Female group (n=830)Male group (n=67)Female group (n=59)

69 (59-79)72 (62-83)67 (57-76)72 (66-80)Age (in years), median (IQR)

Race, n (%)

429 (51.7)429 (51.7)42 (62)38 (64)African American

12 (1.4)12 (1.4)0 (0)0 (0)Asian

2 (0.2)2 (0.2)0 (0)0 (0)Multiple

30 (3.6)30 (3.6)2 (2.9)4 (6)Not recorded

310 (37.3)310 (37.3)21 (31.3)11 (18)White

47 (5.7)47 (5.7)2 (2.9)6 (10)Other

8 (4-12)7 (4-12)4 (8-14)4 (6-10)Length of stay in days, median (IQR)

Mortality, n (%)

459 (52.5)456 (54.9)29 (43)25 (42)Count

Admitting department or specialty, n (%)

389 (44.5)427 (51.4)32 (47)41 (69)General or internal medicine or hospitalist

131 (14.9)99 (11.9)12 (17)5 (8)Cardiology

142 (16.2)117 (14.1)6 (8)6 (10)Critical care

90 (10.3)75 (9)9 (13)2 (3)Neurology

31 (3.5)22 (2.6)1 (1)1 (1)Pulmonary

91 (10.4)90 (10.8)7 (10)4 (6)Other

Admitting diagnosis, n (%)

167 (19.1)154 (18.6)19 (28)7 (11)Cardiovascular

69 (7.9)88 (10.6)5 (7)7 (11)Respiratory

63 (7.2)65 (7.8)4 (5)7 (11)Sepsis

28 (3.2)36 (4.3)2 (2)1 (1)Altered mental status

3 (0.3)6 (0.7)1 (1)1 (1)Diabetes

270 (30.9)244 (29.4)21 (31)23 (38)Other

Admitting unit type, n (%)

179 (20.5)144 (17.3)60 (89)54 (91)General care

695 (79.5)686 (82.7)7 (10)5 (8.5)Critical care

OFIa categories, n (%)

46 (5.3)43 (5.2)46 (68)43 (72)Delayed or missed diagnosis

16 (1.8)15 (1.8)16 (23)15 (25)Diagnostic opportunities

4 (0.5)1 (0.1)4 (6)1 (1)Accuracy of diagnosis

0 (0)0 (0)0 (0)0 (0)Accuracy of interpretation of laboratory or test re-
sults

1 (0.1)0 (0)1 (1)0 (0)Squirrel (red herring lab or test results)

0 (0)0 (0)0 (0)0 (0)Confirmation or fixation bias

0 (0)1 (0.1)0 (0)1 (1)Appropriateness of chosen tests or equipment given
patient’s differential diagnosis

OFI unit type, n (%)

318 (36.4)273 (32.9)22 (32)15 (25)Critical care

76 (8.7)81 (9.8)18 (26)17 (28)Emergency department
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All patientsPatients who experienced diagnostic error

Male group (n=874)Female group (n=830)Male group (n=67)Female group (n=59)

285 (32.6)290 (34.9)27 (40)27 (45)General care

aOFI: opportunity for improvement.

Classification Models’ Performance
Clinical notes were preprocessed for TF-IDF feature calculation.
The bag-of-words included 2227 words, and each word was
considered a feature (see Table S1 in Multimedia Appendix 2
for the top 100 words). We found that abscess, ascend,
abnormality, scant, pair, and prefer were the top 5 features with
the highest positive estimated coefficient (0.42 to 0.28); post,
select, gave, muscl, hours, and unrespons were the top 5 features
with the highest negative coefficients (–0.35 to –0.26). After
applying the chi-square test, 250 features with a P value less
than .05 were selected for the modeling process. All 4 ML
classifiers were trained using the 250 selected features.

Table 3 presents the performances of the simple logistic
regression and 3 regularized logistic regression models (LASSO,
Ridge, and Elastic Net). The Ridge model achieved the highest
AUROC (0.885), specificity (0.797), PPV (0.24), NPV (0.981),
and F1-score (0.369) in classifying patients who were at higher

risk of diagnostic errors among hospitalized patients in SLS
system. The simple logistic regression model obtained the
highest AUPRC (0.537). The simple logistic regression model
classified all patients as the ones with diagnostic errors;
therefore, it achieved a sensitivity of 1, and specificity and NPV
of 0.

Figures 2 and 3 present the receiver operating characteristics
curves and precision-recall curves for the 4 classifiers in this
study. Models that give ROC curves closer to the top-left corner
indicate a better performance. The AUROC values represent
the probability that a patient who experienced a diagnostic error,
chosen at random, is ranked higher by the Ridge model than a
randomly chosen patient who did not experience a diagnostic
error. The higher value of AUPRC indicates that the Ridge
model can identify patients who experienced diagnostic errors
more precisely with fewer false positives compared to LASSO
and Elastic Net models.

Table 3. Performance metrics. The performance metrics of 4 machine learning algorithms in classifying patients who are at higher risk of diagnostic
errors among hospitalized patients. The numbers represent the average of the 5-fold cross-validation approach.

Elastic NetRidgeLASSOaSimple logistic regression

0.8590.8850.8460.5AUROCb

0.8020.8020.8021.0Sensitivity

0.7420.7970.7330Specificity

0.1990.240.1930.074Positive predictive value

0.9790.9810.9790Negative predictive value

0.3190.3690.3120.138F1-score

0.4110.4910.3610.537AUPRCc

aLASSO: Least Absolute Shrinkage and Selection Operator.
bAUROC: area under receiver operating characteristics curve.
cAUPRC: area under precision-recall curve.
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Figure 2. Receiver operating characteristics curves. LASSO: Least Absolute Shrinkage and Selection Operator.

Figure 3. Precision recall curves. LASSO: Least Absolute Shrinkage and Selection Operator.

Discussion

Principal Findings
Our contribution is 2-fold; first, we integrated 2 data sources
that are currently used by and available to many organizations

across the United States, SLS and EHR data, to explore the use
of ML and NLP algorithms to help identify diagnostic errors
among hospitalized patients. Although case review
methodologies offer rich insights into systems errors and OFIs,
the predefined pull-down menus and structured data labels
typically do not capture all the necessary clinical and contextual
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details that are considered by reviewers. Therefore, a large
portion of these case review data are stored in free-text
narratives that typically record key information and judgments
decided upon by the multidisciplinary reviewers. However,
given persistent issues of staff shortage and lack of time in
health care settings, it is becoming increasingly important to
lower the burden of systematic EHR data reviews for health
care providers while maintaining the review systems in place.
Second, any developed ML and NLP approaches can potentially
be incorporated to generate a diagnostic error risk score for each
patient. The predicted risk score can be used in identifying and
prioritizing patients for focused chart reviews, thus lowering
the burden of systematic EHR data reviews for health care
providers while maintaining the review systems in place.

To our knowledge, this study is the first attempt to apply and
test several different ML classification models to identify
diagnostic errors within routinely collected organizational case
review data. Despite a substantial body of literature about the
prevalence of diagnostic errors in hospital settings, current
efforts to identify diagnostic errors generally rely on reviews
of patient cases and data by clinical or quality teams that often
are resource-intensive. ML classification models and NLP
techniques offer an opportunity to generate diagnostic error risk
scores to sort through large data sets and identify signals of
potential diagnostic errors that can be flagged for further review.
However, these classification models require a high number of
observations (and identified diagnostic errors) to perform well,
which might not be feasible for health organizations that are
just beginning to identify diagnostic errors or may have limited
personnel and efforts to perform high numbers of case reviews.
In this study, we accessed nearly 2000 patient records (and of
those, only 126 cases of diagnostic errors), which is considered
to be a limited data sample size in the field of ML. However,
techniques, such as feature selection and n-fold
cross-validations, can potentially be approaches to address small
sample size challenges [35].

Using the results of the simple logistic regression model as the
baseline performance, we found that 3 regularization functions,
namely LASSO, Ridge, and Elastic Net, boosted the
performance of the baseline model. The Ridge model
outperformed the rest of the models in terms of multiple
performance metrics: AUROC of 0.885, specificity of 0.797,
PPV of 0.24, NPV of 0.981, and F1-score of 0.369. The Ridge
algorithm tries to keep all features in the model even the features
with a slight effect on the classification outcome. Since the
patterns pointing at a diagnostic error were subtle in the clinical
notes, even a small effect of a feature on the model’s
classification outcome could be important for the classification
model to learn. On the other hand, the LASSO algorithm
rigorously removes features that have a small effect on the
classification outcome. The Elastic Net model is a weighted
combination of LASSO and Ridge. The performance results
presented in Table 3 show that the values achieved by the Elastic
Net model lie between those of the LASSO and Ridge models.

Insights From Diagnostic Errors Within Free-Text
Clinical Notes
We did not find the free text formatted clinical notes in the EHR
to reflect any sort of direct language around diagnostic errors.
Our analysis identified no use of the terms misdiagnosis, missed
diagnosis, or diagnostic error within clinical notes, finding
instead more subtle signals pointing at diagnostic errors such
as “there may be a chance of misreading the test,” or
“insufficient data to make a diagnosis.” Our findings
demonstrate that NLP algorithms can be used to identify such
patterns and find the associations between diagnostic errors and
the subtle signals in the clinical notes. A natural extension of
this work can focus on using other feature extraction methods,
such as Bidirectional Encoder Representations from
Transformers contextualized word embeddings, and explore the
use of the pretrained language models for this objective.

We found that the presence of terms, such as abscess,
abnormality, “cp” (chest pain), and dialysis in a patient’s EHR
clinical note were associated with reviewer-identified diagnostic
errors (Multimedia Appendix 2). Misinterpretation of chest
pain, specifically among female patients, has the potential to
cause a cardiovascular-related diagnosis error [36]. Patients
with chronic kidney disease are at higher risk of cardiovascular
complications [37]. Missing such risk for a patient who is on
dialysis, adds to the risk of diagnostic error.

Clinical and System Implications Around Diagnostic
Inequity
Diagnostic inequity is defined as “the presence of preventable
unwarranted variations in diagnostic process among population
groups that are socially, economically, demographically, or
geographically disadvantaged” [38]. Despite persistent and
well-documented disparities in health care access and outcomes
across different population groups, few studies have examined
the association between diagnostic errors and health care
disparities [39]. Recent evidence supports the notion that
variation in diagnostic error rates across demographic groups
may exist, particularly across sex. A systematic review of
diagnostic errors in the emergency department, for example,
found that female sex and non-White race were often associated
with increased risk for diagnostic errors across several clinical
conditions in emergency settings [40]. In cardiovascular
medicine, a national cohort study of acute myocardial infarctions
found that women were nearly twice as likely as men to receive
the wrong initial diagnosis following signs of a heart attack
[41]. Despite efforts to understand and reduce disparities in
diagnosis and treatment, women not only continue to be
understudied, underdiagnosed, and undertreated in
cardiovascular medicine [42] but also may experience longer
lengths of time to diagnosis than men in most patterns of disease
diagnosis [43].

The analysis of case review data and other system-based data
(eg, patient safety events or incident reporting) by subsets offer
an opportunity to identify events in vulnerable patient
populations and help sensitize clinicians to potential biases
within the diagnostic process. To explore sex differences in
diagnostic errors within our case review data, we statistically
compared demographic and clinical differences between female
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and male patients who had been identified in case reviews as
having experienced diagnostic error or errors. We found that of
those patients who had experienced diagnostic error or errors,
the female group of patients were older, had higher rates of
being admitted through general or internal medicine or
hospitalist (vs specialty) departments, and had lower rates of
having a cardiovascular diagnosis on admission. These
preliminary results of this study revealed unexpected differences
between male and female diagnostic error groups, offering novel
insights that warrant further investigation to fully understand
the mechanisms underlying these relationships and their
implications for clinical decision-making and practice. Future
uses of NLP can potentially support clinical and system-based
approaches to capture and increase the evidence around
structural biases or disparities in diagnoses. Individual cases
from these types of data sources could be used as example
narratives to engage clinicians and improve clinician learning,
contributing to the development of tailored clinician and
systemic interventions that can improve quality and equity
throughout the diagnostic process.

Limitations
This study has several limitations. Our definition of diagnostic
errors was limited to the categories and labels used within the
SLS data set, reviewer interpretations of cases (subject to
reviewer bias), and does not include all aspects of the definition
developed by the NASEM report [3]. Despite several continued
differences in definitions of diagnostic error in the peer-reviewed
literature [8], we recommend that quality and safety teams
within health systems use the NASEM definition for diagnostic
error—including errors in communicating the diagnosis to the

patient—to develop any definitions, categories, or labels used
in their case review and surveillance initiatives. Although a
time-consuming task, future studies could consider EHR data
chart reviews to have the ground truth for the diagnostic error
cases and add to the accuracy of the data set used for training
the ML classifiers. Additionally, due to staffing challenges and
shifting organizational priorities, case review selection varies
by hospital and has changed over time, resulting in a relatively
small sample size and also introducing the potential for bias.
Our data came from a single health system and may reflect the
specific language, culture, and practices occurring within the
system and therefore may not be similar to that of other health
systems. To enhance the external validity and generalizability
of results, future efforts and research studies should consider
the random selection of cases to evaluate both diagnostic and
general quality issues within the organization; studies with larger
sample sizes can build on our preliminary findings and test
differences between clinical subgroups. Finally, our
classification models were developed and evaluated based on
a retrospective cohort from EHR; therefore, the performance
may deteriorate when the method is applied to real-time data.
Further work or future studies should be conducted to
prospectively validate the models.

Conclusions
We performed an NLP approach and compared 4 techniques to
classify patients who were at a higher risk of experiencing
diagnostic error during hospitalization. Our findings demonstrate
that NLP can be a potential solution to more effectively
identifying and selecting potential diagnostic error cases for
review, and therefore, reducing the case review burden.
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