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Abstract

Background: Clinical decision support systems (CDSSs) based on routine care data, using artificial intelligence (AI), are
increasingly being developed. Previous studies focused largely on the technical aspects of using AI, but the acceptability of these
technologies by patients remains unclear.

Objective: We aimed to investigate whether patient-physician trust is affected when medical decision-making is supported by
a CDSS.

Methods: We conducted a vignette study among the patient panel (N=860) of the University Medical Center Utrecht, the
Netherlands. Patients were randomly assigned into 4 groups—either the intervention or control groups of the high-risk or low-risk
cases. In both the high-risk and low-risk case groups, a physician made a treatment decision with (intervention groups) or without
(control groups) the support of a CDSS. Using a questionnaire with a 7-point Likert scale, with 1 indicating “strongly disagree”
and 7 indicating “strongly agree,” we collected data on patient-physician trust in 3 dimensions: competence, integrity, and
benevolence. We assessed differences in patient-physician trust between the control and intervention groups per case using
Mann-Whitney U tests and potential effect modification by the participant’s sex, age, education level, general trust in health care,
and general trust in technology using multivariate analyses of (co)variance.

Results: In total, 398 patients participated. In the high-risk case, median perceived competence and integrity were lower in the
intervention group compared to the control group but not statistically significant (5.8 vs 5.6; P=.16 and 6.3 vs 6.0; P=.06,
respectively). However, the effect of a CDSS application on the perceived competence of the physician depended on the participant’s
sex (P=.03). Although no between-group differences were found in men, in women, the perception of the physician’s competence
and integrity was significantly lower in the intervention compared to the control group (P=.009 and P=.01, respectively). In the
low-risk case, no differences in trust between the groups were found. However, increased trust in technology positively influenced
the perceived benevolence and integrity in the low-risk case (P=.009 and P=.04, respectively).

Conclusions: We found that, in general, patient-physician trust was high. However, our findings indicate a potentially negative
effect of AI applications on the patient-physician relationship, especially among women and in high-risk situations. Trust in
technology, in general, might increase the likelihood of embracing the use of CDSSs by treating professionals.

(J Med Internet Res 2024;26:e50853) doi: 10.2196/50853
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Introduction

Background
It was John McCarthy who coined the term “artificial
intelligence” (AI) at the Dartmouth conference in 1956 and
defined it as “the science and engineering of making intelligent
machines, especially intelligent computer programs” [1].
However, it was only in the 1990s, after the first so-called “AI
winter,” that interest in AI began to increase again [2]. Since
then, AI applications have been on the rise, ranging from
self-driving cars to AI-powered web search [3]. Development
and implementation of AI in health care is similarly increasing.
It is believed that AI has the potential to improve every facet
of health care—screening, diagnosis, prognosis, and treatment
[4]. Although the use of AI in routine clinical care is still in the
early stages, it has already shown promise in specific medical
fields, such as radiology, for the recognition of complex patterns
in imaging data [3,5]. Hospital-wide strategic programs have
been initiated to develop predictive AI algorithms based on
routine clinical care data in various hospitals [6]. The goal of
these projects is, among others, to integrate AI algorithms in
clinical decision support systems (CDSSs). CDSSs are often
classified as either knowledge-based or non–knowledge-based
systems. Knowledge-based CDSSs provide an output by
evaluating a certain rule, which is programmed based on
evidence or practice. Non–knowledge-based CDSSs use AI
techniques, such as machine learning, for decision support and
prediction [7]. AI-based CDSSs are often developed when
dealing with complex, high-dimensional, and large amounts of
data (ie, big data), such as routine care data. By linking patient
information to evidence-based knowledge, a CDSS can provide
case-specific information, which may support physicians in
developing more personalized judgments and recommendations
[8]. Despite these efforts, however, to date, only a fraction of

all developed AI-based algorithms have been implemented in
clinical care [9].

The debate on AI-based CDSSs in health care has mainly
focused on the technical aspects of the technology [10,11],
including questions like “How well does the predictive algorithm
perform in terms of, for example, recall and precision?” or
“What is the importance of its features?” To date, less attention
has been given to the acceptability of using AI-based CDSSs
in terms of patients’ or physicians’ trust in CDSSs even though
these are crucial for the implementation and acceptance of these
systems [12,13]. Some concerns revolve around how the
patient-physician relationship is directly affected by the
integration of AI applications into clinical practice. This concern
arises due to all the new possibilities that AI offers, such as
decision support, patient dashboards, and eHealth [14-16].
Figure 1 illustrates how the relationship between a patient and
physician could be influenced by AI [17,18]. Studies have shown
that algorithms developed to diagnose or predict a disease often
perform as well as, and sometimes even better than, a physician
[19]. As a result, physicians may be able to make more informed
decisions and subsequently improve patient care, which was
the incentive to start the Applied Data Analytics in Medicine
(ADAM) project at the University Medical Center (UMC)
Utrecht [6]. On the other hand, to build and maintain
interpersonal trust, patient involvement in the decision-making
process is important [20-23]. However, these algorithms,
especially those that include AI, are sometimes perceived as
“black boxes,” which could potentially lead to a reduction in
trust in the physician, even though these algorithms can be
beneficial to the patient’s care process. In medicine, trust is
considered a central aspect of the patient-physician relationship.
Without trust, treatments have proven to be less effective, and
patients are more prone to ask for a second opinion [24].
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Figure 1. Relationships between the patient, health care, and data (adapted from Groenhof [17], which is published under Creative Commons Attribution
4.0 International License [18]).

Trust
To the best of our knowledge, we are among the first to study
the impact of AI-based CDSSs on patient-physician trust in
both a clinical high-risk and low-risk setting. Trust is a complex
and multidimensional concept [25]. Over the past decades, a
lot of research has been conducted on this notion and various
dimensions of trust have been described in the academic
literature [26]. The most commonly named dimensions of trust
in a physician are privacy and confidentiality [27,28],
compassion [27,29], reliability and dependence [28], competence
[27-31], communication [32], and honesty [33]. However, these
dimensions of trust are often studied separately. With so many
described trust dimensions, it is difficult to develop a framework
specifically for patient-physician trust. Therefore, a framework
that integrates these components of trust in a physician has not
been established yet. In social sciences, trust is commonly
studied in 3 dimensions: benevolence, competence, and integrity
[34-37]. In a clinical context, benevolence is the extent to which
a patient perceives a physician as caring about the patient’s
personal and health interests. Competence is the extent to which
a patient perceives a physician as competent, capable, effective,
and professional. Integrity concerns the extent to which a patient
sees a physician as honest and truthful, handling the patient’s
sensitive information with care and confidentially.

We aim to study the extent to which these aspects of
patient-physician trust are affected by AI-based CDSSs.

Methods

We followed the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines for observational
(cross-sectional) studies.

Study Setting
We conducted a cross-sectional vignette study at the UMC
Utrecht, the Netherlands. We reached out to all members of the
UMC Utrecht patient panel (N=860) as part of the ADAM
program (2017-2020; currently known as the Digital Health
Department within the UMC Utrecht) [6]. In brief, the ADAM
program consisted of 11 projects all aiming to answer clinical
questions to personalize health care using routine care data and
innovative methodology, such as AI. The overall goal of the
ADAM program was to investigate the need to apply this health
care innovation on a large scale at the UMC Utrecht to establish
a learning health care system [6].

For our study, we simulated possible future clinical decision
support applications of 2 of the ADAM projects. The Neonatal
Intensive Care Unit (NICU) application concerned data of babies
between 24 and 32 weeks old admitted in the NICU using an
algorithm that was trained on a data set from the Wilhelmina
Children’s Hospital of the UMC Utrecht. This CDSS tool aimed
to predict late-onset sepsis using the algorithm to prevent
unnecessary antibiotic use and enable timely treatment [6]. The
rheumatoid arthritis (RA) CDSS worked on the premise that
disease flares can be predicted based on data about the course
of the disease, patient characteristics, and information about
current treatment. The aim of the RA application was to predict
flares to support data-driven reduction of high preventative
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doses of RA medication [6,38]. This algorithm was trained on
data of patients with RA of the UMC Utrecht [38].

Study Population
Members of the patient panel (N=860) were all current and
former patients of the UMC Utrecht willing to participate in
research from the UMC Utrecht. The majority (693/860, 80.6%)
of the panel was between 45 and 80 years of age, 57.3%
(493/860) had higher education levels, and 52.8% (454/860) of
the patient panel were women.

Questionnaire
In our study, we focused on interpersonal trust. We used the
definition from Mayer et al [34] to define interpersonal trust as
“the willingness of a party to be vulnerable to the actions of
another party based on the expectation that the other will
perform a particular action important to the trustor, irrespective
of the ability to monitor or control that other party.”

We studied 3 dimensions of trust: competence, integrity, and
benevolence. We used an adapted version of the “Trust in
Physician Scale” to assess patient-physician trust. The “Trust
in Physician Scale” is a questionnaire consisting of 11 items
and is commonly used to measure patient-physician trust
[28,39]. Table 1 illustrates how the 11 questions of the Trust in
Physician Scale were adapted and divided into the 3 trust
dimensions.

In addition to the questions of the Trust in Physician Scale, we
added several self-constructed questions to study these aspects
of trust more comprehensively. We added the following 3
statements in the integrity dimension:

• I have the feeling that this physician is not holding anything
back from me (scale 1-7).

• I have the feeling that this physician is being honest with
me (scale 1-7).

• I trust this physician is handling my medical data with care
(scale 1-7).

One additional statement was added in the benevolence
dimension, as follows: “This physician’s recommendation is in
my personal best interest (scale 1-7).”

Besides trust in the physician, we added 2 additional questions
about trust in health care and technology in general on a 7-point
Likert scale (1: “no trust at all”; 7: “fully trust”), as follows:

• Please indicate your level of trust in health care in general
(scale 1-7).

• Please indicate your level of trust in technology in general
(scale 1-7).

Additionally, we asked the panel members their age, sex, and
education level.

Subsequently, we performed a factor analysis on the
questionnaire, including the Trust in Physician Scale and the
self-constructed questions, to check whether the predefined
dimensions were present in the questionnaire. The factor analysis
revealed the correlations between the items of the questionnaire
and subdivided them into factors. Thereafter, we calculated
Cronbach α to measure the degree of coherence between the 3
trust dimensions [40]. A Cronbach α of more than 0.75 was
considered high, and thus, acceptable, meaning that all items
of the dimension measured the same concept [41].

Table 1. Trust in Physician Scale questions divided by dimensions of trust, rated on a 7-point Likert scale, with 1 indicating “strongly disagree” and
7 indicating “strongly agree,” as answer possibilities.

StatementDimension

Benevolence • This physician really cares about me as a person.
• This physician’s recommendation takes into account my wishes and puts them first.
• I trust this physician’s recommendation will put my medical needs above other interests.
• I feel that with this recommendation the physician does everything to help me.

Competence • This physician is a real expert in taking care of medical problems like mine.
• I trust this physician’s judgment about this medical problem.
• I trust this physician’s recommendation and therefore have no need for a second opinion.
• I trust my physician’s recommendation so much that I will follow it.

Integrity • I trust this physician will tell me if he/she makes a mistake in this recommendation.
• If this physician tells me this recommendation, then I also believe that this recommendation is correct.
• I feel that this physician keeps the medical information used for this recommendation private.

Design of Data Collection
Data were collected in April 2019. The questionnaire included
1 of the 2 hypothetical cases in the form of a so-called
“vignette.” These vignettes were developed together with
physicians from the neonatology and rheumatology department
as well as the ADAM program staff to make them as realistic
as possible (eg, to assess whether the physician’s communication
style in the vignette reflected clinical practice) and to ensure
that the AI-based CDSS applications of both projects were
accurately described. The vignettes were tested on master’s

degree students of Public Management from Utrecht University
and employees of the ADAM program (N=36) first to study
whether they could empathize well with the situation presented
to them. This test resulted in a mean score of 4.6 for the NICU
and 5.7 for the RA vignette on a 7-point Likert scale (the higher
the score, the better they could empathize with the situation
presented). We processed the feedback we received from the
test participants to further improve the vignettes. After
successful testing, we randomly divided the panel members into
4 groups (Multimedia Appendix 1). The groups were presented
with either a life-threatening (high-risk) vignette in the NICU

J Med Internet Res 2024 | vol. 26 | e50853 | p. 4https://www.jmir.org/2024/1/e50853
(page number not for citation purposes)

Zondag et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(from now on referred to as the “high-risk case”), or a
non–life-threatening (low-risk) vignette regarding RA (referred
to as the “low-risk case”). Details of the vignettes are described
in Multimedia Appendix 2. The high-risk case described a baby
in the NICU that possibly had sepsis. In this case, we asked the
panel members to empathize with the role of the baby’s parents.
The low-risk case described a patient with RA, and panel
members were asked to empathize with the role of the patient.
In both situations, the physician made a treatment
recommendation. This recommendation was made by a
physician only in the control group and by a physician supported

by a CDSS application in the intervention group. After reading
the vignette, the panel members were asked to fill in the
questionnaire. Possible answers were given using a 7-point
Likert scale, with 1 indicating “strongly disagree” and 7
indicating “strongly agree.”

We tracked the time it took panel members to read the vignettes.
To minimize the potential loss of statistical power due to panel
members not being diligent and motivated to complete the
survey, we excluded the 2.5% slowest and fastest readers from
all analyses. Figure 2 illustrates the patient inclusion and
exclusion procedure in a flow diagram.

Figure 2. Inclusion procedure of the University Medical Center Utrecht panel members.

Data Analyses
We presented the results of all groups in medians (IQRs),
stratified by case. We compared perceived trust between the
intervention and control group using the Mann-Whitney U test
(Wilcoxon rank sum test).

We assessed the presence or absence of effect modification
using a two-way multivariate analysis of variance (MANOVA)
or multivariate analysis of covariance (MANCOVA), as
appropriate. The participant’s sex, age, education level, general
trust in health care, and general trust in technology were
considered potential effect modifiers in the relation between
the use of a CDSS and patient-physician trust. We further
stratified the results by sex in case of effect modification to
examine this potential effect.

All analyses were performed using SPSS edition 26 (IBM SPSS
Inc) [42]. Differences with a 2-sided P value of <.05 were
considered statistically significant.

Ethical Considerations
All participants provided informed consent digitally for this
study. The panel members received an introductory text with
information about this study. At the end of the introductory text,
the privacy statement informed the panel members that by
clicking the “Continue” button, they agreed to the use of their
data in this study. Data were anonymized and IP addresses were
not stored.

The questionnaires were administered in Qualtrics in accordance
with Utrecht University guidelines and stored on the Yoda
server, which is a research data management service from the
Utrecht University, among others, enabling secure storage of
the research data [43,44]. The methods have been performed
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based on relevant guidelines and regulations. The institutional
review board of UMC Utrecht waived ethical approval because
it ruled that this study did not concern a medical research
question.

Results

Demographics of the Study Population
In total, 398/860 (46.3%) panel members of the UMC Utrecht
patient panel participated in this study. Characteristics of the

study population can be seen in Table 2. Participants were older
in the intervention group of both cases. In the high-risk case,
the intervention group consisted of more men (52/92, 56.5%),
whereas the control group consisted of more women (54/93,
58.1%). In the low-risk case, both the control and intervention
groups consisted of more women (55/109, 50.5% and 56/104,
53.8%, respectively). The education level was similar across
the groups. In all groups, the majority of participants (62/93,
66.7%; 60/92, 65.9%; 69/109, 63.3%; and 68/104, 66.0%) had
a high education level, that is, a degree from a university of
applied sciences or higher.

Table 2. Demographics of the study population by case.

Low-risk caseHigh-risk caseDimension

Intervention (n=104)Control (n=109)Intervention (n=92)Control (n=93)

61.6 (10.0)60.1 (12.0)58.9 (12.1)57.9 (11.7)Age, mean (SD)

Sex, n (%)

48 (46.2)54 (49.5)52 (56.5)39 (41.9)Men

56 (53.8)55 (50.5)40 (43.5)54 (58.1)Women

Education level, n (%)

35 (34)40 (36.7)31 (34.1)31 (33.3)Lower

68 (66)69 (63.3)60 (65.9)62 (66.7)Higher

Measured Trust in the Physician
Based on the results of the factor analysis and Cronbach α
calculation, we assessed trust on both a multidimensional and
a unidimensional scale. The reason to use a unidimensional
scale was that the factor analysis initially showed 2 factors
(Table S1 in Multimedia Appendix 3); however, after removing
the 2 items that loaded strongly on both factors and 1 item that
primarily loaded on the second factor, only 1 factor remained.
The reason for using a multidimensional scale was that the
Cronbach α of the 3 dimensions was considered high enough
(>0.75) to measure trust on a multidimensional scale (Table S2
in Multimedia Appendix 3).

Overall, trust in the physician was high, with a median of 5.8
(control group IQR 5.0-6.5; intervention group IQR 4.7-6.2) in
the high-risk case and 6.0 (control group IQR 5.3-6.5;
intervention group IQR 5.1-6.5) in the low-risk case on a 7-point
Likert scale (Multimedia Appendix 4). The high-risk case
showed a lower median for the integrity of the physician using
a CDSS (6.3, IQR 5.3-6.8 vs 6.0, IQR 5.0-6.7; U=3590.0; P=.06;
Table 3) compared to the physician who did not use a CDSS,
but these results were not statistically significant. Similarly,
perceived competence was lower in the intervention group

compared to the control group (median 5.8, IQR 4.8-6.5 vs 5.6,
IQR 4.3-6.3; U=3771.5; P=.16). We observed no between-group
differences in perceived competence, integrity, and benevolence
of the low-risk group.

In the analyses exploring whether the results were different
among subgroups, in the high-risk case, the effect of a CDSS
application on the perceived competence of the physician
depended on the participant’s sex (F1,181=4.694; P=.03;
Multimedia Appendix 5). In women, perceived competence and
integrity were significantly lower in physicians who used a
CDSS compared to physicians who did not (U=740.5; P=.009
and U=756.0; P=.01, respectively; Table 4), whereas no such
statistically significant differences were found in men.

In the low-risk case, results showed that the effect of the CDSS
application on the perceived benevolence and integrity depended
on the participant’s trust in technology in general (F1,209=6.943;
P=.009 and F1,209=4.119; P=.04, respectively; Multimedia
Appendix 5). An increase in the participant’s trust in technology,
in general, led to an increased perceived integrity and
benevolence of physicians using a CDSS. This increase was
more significant in the intervention group compared to the
control group.
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Table 3. Measured levels of trust of the 3 dimensions between groups, by case.

Low-risk caseHigh-risk caseDimension

P valueU testIntervention
(n=104)

Control (n=109)P valuebU testaIntervention
(n=92)

Control (n=93)

.435319.06.0 (5.0-6.5)6.0 (5.3-6.5).163771.55.6 (4.3-6.3)5.8 (4.8-6.5)Competence, median (IQR)

.955698.06.0 (5.3-6.8)6.0 (5.5-6.8).063590.06.0 (5.0-6.7)6.3 (5.3-6.8)Integrity, median (IQR)

.725829.06.0 (5.3-6.6)6.0 (5.4-6.6).544055.55.8 (4.9-6.2)5.8 (5.0-6.6)Benevolence, median (IQR)

aU test: Wilcoxon test statistic.
bThe P values in the table indicate the difference between the control and intervention groups.

Table 4. Measured levels of trust of the 3 dimensions in the high-risk case, stratified by sex.

WomenMenDimension

P valueU testIntervention
(n=40)

Control (n=54)P valuebU testaIntervention
(n=52)

Control (n=39)

.009740.55.4 (4.0-6.0)6.0 (5.2-6.8).431111.05.9 (4.3-6.4)5.0 (4.5-6.3)Competence, median (IQR)

.01756.05.8 (5.0-6.3)6.5 (5.3-7.0).921001.06.1 (5.0-6.8)6.3 (5.3-6.8)Integrity, median (IQR)

.21918.55.5 (4.8-6.0)5.7 (5.0-6.8).681064.56.0 (5.1-6.4)5.8 (5.0-6.4)Benevolence, median (IQR)

aU: Wilcoxon test statistic.
bP values indicate the difference between the control and intervention groups.

Discussion

Principal Findings
We aimed to assess the extent to which patient-physician trust
was affected by using a CDSS application. We found that, in
general, trust in physicians was high. Nonetheless, in the
high-risk case, we observed that trust, in terms of competence
and integrity, was lower in physicians using a CDSS compared
to physicians who did not, and that the differences were larger
in women than in men. No differences were found in the
low-risk case. However, we found that perceived benevolence
and integrity in the low-risk case depended on the participant’s
trust in technology in general.

Comparison With Prior Literature
To our knowledge, this study is among the first to examine the
impact of AI-based CDSSs on patient-physician trust in both a
clinical high-risk and low-risk setting. There are several possible
explanations for our results. First, prior to our study, we asked
several physicians of the UMC Utrecht about their expectations
regarding CDSS applications. Some anticipated that the use of
CDSS applications in clinical practice could evoke a critical
response from patients, believing that CDSS applications “first
must prove their value before being accepted by patients.”
Regarding competence, physicians mentioned that the use of a
CDSS application could raise doubts about their professionalism,
as it could come across as “being dependent on such an
application.” This dependence and the associated loss of
competence, known as “deskilling,” is a known concern of the
introduction of clinical decision support applications in health
care [45]. Some of these concerns seem reasonable, as our study
indicates that patients’ trust in their physicians can decrease
when a CDSS is used. Moreover, the decrease found in trust in
terms of the integrity of a physician who uses a CDSS could be

explained by concerns about data protection. Patients may feel
they have no control over what happens with their personal data.
However, some studies indicated that privacy was not an issue
for some patients, as long as they trusted their physician [46,47].
Yakar et al [48] studied the general population’s view on the
use of AI in health care through a web-based survey in the
Netherlands and found less trust in AI than initially
hypothesized. They, and some others, also found that women
were less trusting of AI than men [48,49]. A reason for this
could be that the women participating in this study were aware
of the potential presence of gender bias in AI, as this issue has
often been raised in previous research and media [50-52].
Additionally, women generally are considered to have more
risk aversion than men [53]. Both these reasons combined could
explain why the effect of using a CDSS on the perceived trust
in the physician in the high-risk case depended on the
participant’s sex and why this was not the case in the low-risk
case.

In the low-risk case, our results showed that a patient’s general
trust in technology played a significant role in the effect that
CDSS applications could have on the perceived integrity and
benevolence of the physician. An increase in the perceived
integrity and benevolence of the physician seemed to be more
likely in patients who had more trust in technology in general.
This is in line with previous research investigating the
association between trust in technology in general and trust in
the implementation of AI in medicine [48,54].

Implications
Results from this study underline that mainly communicating
about the technological aspects of AI algorithms in health care
may ultimately hamper the successful implementation and
acceptance of these algorithms in clinical practice. Personalized
health care starts with putting the patient’s values first.

J Med Internet Res 2024 | vol. 26 | e50853 | p. 7https://www.jmir.org/2024/1/e50853
(page number not for citation purposes)

Zondag et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Therefore, we believe that the development of AI-based CDSSs
in health care should be transparent in terms of methods,
alternatives, and understandability. In addition, patients should
be involved early in the developmental phase of the CDSS, and
the use of AI should be explained well during the visit with the
health care professional. Furthermore, AI applications should
not only be developed to predict the prognosis of a certain
disease (precision medicine) but also to improve and facilitate
discussions between patients and physicians about the patient’s
illness and personal care needs (shared decision-making). The
discussion between the patient and the physician may be
improved by being transparent about the CDSS application.
This potentially leads to more trust in the application, which,
as shown in this study, could lead to an increase in the perceived
integrity and benevolence of the physician. Moreover, it seems
sensible to distinguish between the types of situations or patient
populations in the development of AI algorithms for CDSS in
health care; the results from our study indicate that less favorable
reactions occur when AI is used in more life-threatening
situations, which could also be due to the different patient
populations, for example, babies in an acute situation versus
adults in a chronic situation. By implementing AI-based CDSS
in less risky situations first, patients could get acquainted with
such CDSSs before implementing them in high-risk situations.
Further study is warranted to establish the best implementation
strategy regarding AI-based CDSSs in clinical care.

We recommend replicating this study while providing a clear
explanation of the AI application. For example, by explaining
how it works, how patient data are handled, and the benefits of
such AI-based CDSSs for the patients. In addition, further
research with a larger sample size and in different preventive
care and cure settings, and across several age groups, should be
conducted to confirm the results found in this study. External
validation of our results will inform us whether our results are
similar in, for example, patients in other health care settings or
areas. Additionally, qualitative research methods should be
considered to gain more insights into the reasons
patient-physician trust might decline when using a CDSS from
a patient perspective.

Strengths and Limitations
Vignette studies have been criticized in the past for their
limitations. First, a frequently heard criticism of vignette studies
is the lack of reality due to their hypothetical nature [55].
However, we minimized this by creating both hypothetical cases
in collaboration with physicians working in the involved
departments—the neonatology and rheumatology
departments—and tested whether the participants could
empathize well with the situation during a pilot study. Second,
the participants in this study were (or still are) patients of the
UMC Utrecht. This made it easier for the participants to
empathize with the vignettes because they may have been in
similar situations themselves, and they indicated they could
(median 6.0, IQR 5.0-7.0 in all 4 groups). Third, it has been
shown that participants of vignette studies are not always
diligent and motivated to complete surveys or take these kinds
of experiments seriously, which may reduce statistical power
[56]. Participants could, for example, have put the questionnaire
aside for a while, or might not have read the described situations
properly [57]. We reduced this effect by tracking the time the
participants took to read the vignettes and by excluding the
fastest and the slowest 2.5% of readers from the analyses.
Therefore, participants spending a remarkably long or short
time reading the vignette were not included.

Conclusions
Trust in physicians is generally high among patients. However,
our findings point toward a negative effect that AI applications
can have on the patient-physician relationship, especially among
women. We, therefore, believe that, for a successful adoption
of AI applications in clinical practice, patients should be
involved in both the development and implementation of such
applications. Moreover, a broader societal discussion needs to
take place about humane values and AI to gain insights into
how we want AI to influence our lives when we encounter health
care. In addition, clear communication to patients and society
about the functions of the AI applications and what personal
data they use seems equally important.
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