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Abstract

We manually annotated 9734 tweets that were posted by users who reported their pregnancy on Twitter, and used them to train,
evaluate, and deploy deep neural network classifiers (F1-score=0.93) to detect tweets that report having a child with
attention-deficit/hyperactivity disorder (678 users), autism spectrum disorders (1744 users), delayed speech (902 users), or asthma
(1255 users), demonstrating the potential of Twitter as a complementary resource for assessing associations between pregnancy
exposures and childhood health outcomes on a large scale.
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Introduction

Many children are diagnosed with disorders that can impact
their daily lives and can last throughout their lifetime. For
example, in the United States, 17% of children are diagnosed
with a developmental disability [1] and 8% of them with asthma
[2]. Meanwhile, data sources for assessing the association of
these outcomes with pregnancy exposures are limited, as
pregnancy registries typically follow infants for up to 1 year
after birth. While our previous work [3,4] demonstrated the
utility of Twitter as a source of data regarding pregnancy
outcomes, the ability to continue collecting users’ tweets on an
ongoing basis after birth may present opportunities to detect
outcomes in childhood. Twitter data have been used to identify
self-reports of attention-deficit/hyperactivity disorder (ADHD)

[5], autism spectrum disorders (ASD) [6], and asthma [7], but
not to identify reports of these disorders in users’ children. This
study aimed to assess whether there are users who report having
a child with ADHD, ASD, delayed speech, or asthma, and
develop and evaluate an automated method for identifying these
reports.

Methods

Ethical Considerations
The study data were collected and analyzed in accordance with
the Twitter Terms of Service. The institutional review boards
of the University of Pennsylvania and Cedars-Sinai Medical
Center deemed this study exempt.
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Data Collection
We searched for mentions of ADHD, ASD, delayed speech,
and asthma among all the tweets posted by more than 100,000
users who reported their pregnancy on Twitter [8]. We then
searched these matching tweets for references to a child and the
user, and excluded tweets that matched specific patterns
indicating the user’s own disorder. The query (Multimedia
Appendix 1) returned 36,094 tweets (excluding retweets) posted
by 11,712 users.

Annotation
We used 400 matching tweets—100 per outcome—to develop
annotation guidelines (Multimedia Appendix 2) for
distinguishing those that report having a child with a disorder
from those that do not. An additional 9334 tweets—1 random
tweet per user—were then independently annotated: 8334 by 2
annotators and 1000 by all 3. Interannotator agreement (Fleiss
kappa) was 0.88. After resolving disagreements among all 9734
tweets, we determined that 3019 (31%) reported having a child
with a disorder and 6715 (69%) did not.

Automatic Classification
We split the 9734 tweets into 80% (n=7787) training
(Multimedia Appendix 3) and 20% (n=1947) test data, and
performed machine learning experiments using deep neural
network classifiers based on bidirectional encoder
representations from transformers (BERT) [9]: the
BERT-Base-Uncased, RoBERTa-Large, and BERTweet-Large
pretrained models in the Huggingface library. Our preprocessing
included normalizing URLs and usernames, and lowercasing

the tweets. For training, we used Adam optimization, 5 epochs,
a batch size of 8, and a learning rate of 0.00001, based on
evaluating after each epoch using a 5% split of the training set.
We fine-tuned all layers of the models with our annotated tweets.

Results

Table 1 presents the performance of the classifiers. The
RoBERTa-Large [10] classifier achieved the highest overall
F1-score (0.93). Table 1 also presents the performance of the
RoBERTa-Large classifier for tweets that mention specific
outcomes. We deployed the RoBERTa-Large classifier on the
additional 26,360 unlabeled tweets that matched our query
(Multimedia Appendix 1). Between the 9734 manually annotated
tweets and the 26,360 automatically classified tweets, we
identified 3806 total users who reported having a child with
ADHD (n=678), ASD (n=1744), delayed speech (n=902), or
asthma (n=1255).

Table 2 presents examples of tweets in the test set that were
misclassified by the RoBERTa-Large classifier. While 28 (58%)
of the 48 false positives do refer to the user’s child, 11 (39%)
indicate that someone other than the user’s child has a disorder
(tweet 1), and 9 (32%) indicate that a disorder is merely
suspected or exhibited (tweet 2). Among the other 20 (42%) of
the 48 false positives, 10 (50%) are reported speech, such as
quotations (tweet 3). Among the 42 false negatives, 22 (52%)
do not explicitly mention the user’s child (tweet 4)—for
example, using a pronoun or name—and 14 (33%) do not
explicitly indicate that the child has a disorder (tweet 5).

Table 1. Precision, recall, and F1-score of classifiers for the class of tweets that report having a child with attention-deficit/hyperactivity disorder
(ADHD), autism spectrum disorder (ASD), delayed speech, or asthma, including the outcome-specific precision, recall, and F1-score for the
RoBERTa-Large classifier.

F1-scoreRecallPrecisionClassifier

0.850.870.83BERT-Base-Uncased

0.920.940.89BERTweet-Large

0.930.940.92RoBERTa-Large

0.880.850.91ADHD

0.930.920.94ASD

0.950.960.94Delayed speech

0.940.960.91Asthma
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Table 2. Sample false positives and false negatives of a RoBERTa-Large classifier for detecting tweets that report having a child with
attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), delayed speech, or asthma (with the text that matched the data
collection query in italics).

PredictedActualTweetTweet
number

+–So Maxine Waters can be maskless on a plane but I can’t fly with my 2 year old cause she won’t wear a
mask? Kids with autism are being banned from flying because they won’t wear a mask?

1

+–they treat my baby with asthma meds all the time but didn’t diagnose her with it im pretty sure she has it
tho

2

+–Any tips for this mum: “My daughter is 10. My parents would like to gift her either a phone or a smart
watch which is easy to use and won’t be easily damaged by a very active ADHD kid... I need help choosi…
[URL]

3

–+Flying tomorrow...during a pandemic with a nonverbal 3 year old. We could use some prayers,

please.

4

–+I wouldn’t change my child for anything in the world. I’m just curious to know where autism came from
because me and his dad don’t have any family members that are autistic. It’s just a question out of curios-
ity

5

Discussion

Our ability to identify Twitter data during pregnancy for users
who reported having a child with ADHD, ASD, delayed speech,
or asthma suggests that Twitter could be a complementary

resource for assessing associations between pregnancy exposures
and childhood health outcomes, with potential clinical
implications for informing prenatal care. The overall and
outcome-specific performance for automatically identifying
these outcomes demonstrates the feasibility of using Twitter
data for observational studies on a large scale.
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