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Abstract

Artificial intelligence (AI)–based clinical decision support systems are gaining momentum by relying on a greater volume and
variety of secondary use data. However, the uncertainty, variability, and biases in real-world data environments still pose significant
challenges to the development of health AI, its routine clinical use, and its regulatory frameworks. Health AI should be resilient
against real-world environments throughout its lifecycle, including the training and prediction phases and maintenance during
production, and health AI regulations should evolve accordingly. Data quality issues, variability over time or across sites,
information uncertainty, human-computer interaction, and fundamental rights assurance are among the most relevant challenges.
If health AI is not designed resiliently with regard to these real-world data effects, potentially biased data-driven medical decisions
can risk the safety and fundamental rights of millions of people. In this viewpoint, we review the challenges, requirements, and
methods for resilient AI in health and provide a research framework to improve the trustworthiness of next-generation AI-based
clinical decision support.
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Introduction

The advent of electronic health record (EHR) data sharing posed
expectations for improved, trustworthy development of artificial
intelligence (AI) in health through a larger volume and variety
of data. However, the development process of health AI and
the generalization and fairness of the resulting models face
significant challenges due to the inherent biases, uncertainty,
variability, and quality levels of real-world data (RWD). These

challenges include variable information across different settings
and over time, biases affecting underrepresented groups,
uncertainty from lacking or overlapping information, or data
quality (DQ) issues such as incomplete or implausible
information. These issues can be present in training data feeding
the AI learning or manifest de novo in the AI routine clinical
use (Textbox 1). If health AI is not designed resiliently with
regard to these RWD effects, potentially biased data-driven
medical decisions can risk the safety and fundamental rights of
millions of people.
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Textbox 1. Clinical case with potentially suboptimal clinical decision support outcomes in a high-risk artificial intelligence (AI) system according to
the European Union (EU) AI Act—Article 6(2)—Annex III.

A medical emergency dispatch center receives a call from a professor informing about an aged 20 years female student showing apparent respiratory
distress. After data input, with no known chronic respiratory disease reported, an AI triage support system confirms that the case is not life-threatening.
They send a basic life support ambulance. Eventually, the patient died during transport. The autopsy revealed a pulmonary embolism: she had recently
started taking oral contraceptives. Clearly, this lack of information affected the AI outcome. Should AI have reacted by warning about potentially
high uncertainty or asked for more information?

Alternatively, without previous embolism, a similar case might have occurred in March 2020 as a then-unknown effect of the SARS-CoV-2 infection.
Instead of using a static AI decision support system trained on prepandemic data, should AI have automatically adapted to the very recent data patterns
to provide better outcomes on new data?

Many recent papers in the highest-impact medical journals
warned about the increasing obstacles imposed by RWD
challenges for health AI. Cabitza et al [1] warned about the
effects of intrinsic uncertainty in medical observations and
interpretations on the reliability and accuracy of machine
learning (ML). They claimed to develop and validate ML
adaptable to the variable nature and actual DQ of medical
information. Chen and Asch [2] argued that just relying on past
data can have diminishing effects on AI’s usefulness and future
generalization, as well as the “butterfly effect” of tiny current
variations into the future. Gianfrancesco et al [3] outlined the
potential contribution to socioeconomic health disparities of
ML based on biased data. Rajkomar et al [4] classified the
availability of high-quality data and learning from undesirable
past practices among the key challenges for medical ML,
especially in RWD and nonimaging data from EHR. Google
Health and DeepMind teams identified data variability as among
the key challenges in delivering clinical impact with AI [5].
Besides, the COVID-19 pandemic highlighted potential
limitations in medical AI from inadequate training and
evaluation design and DQ and variability issues [6,7]. Not
surprisingly, the European Commission has recognized DQ as
a risk for the safety and fundamental rights assurance (FRA) in
AI and included it along with other RWD challenges within the
recently approved AI regulation (Article 10) [8,9] and among
the significant issues for the quality and economy of the
European Health Data Space (EHDS) [10-13].

We focus on ML as the methodological driver for current
well-established health AI and clinical decision support systems
(CDSSs) across diverse clinical fields. In health ML, new
knowledge is learned computationally from data in a training
phase, generally from dedicated data cohorts or the EHR. This
knowledge is then used to assist decision-making for new cases
in a prediction phase. At prediction, a CDSS can retrieve its
inputs from the EHR or manual input. Potential data-related

uncertainties, variability, and biases for health AI can arise both
at the training and prediction phases (eg, see Table S1 in
Multimedia Appendix 1 for some examples).

The definitions we provide in this work apply to multiple
traditional and state-of-the-art ML approaches for CDSS,
including predictive analytics and the potential upcoming use
of conversational AI [14]. The related techniques include, but
are not limited to, deep learning, ensemble models, and
statistical methods, with knowledge acquisition schemes based
on learning from scratch and using pretrained or foundation
models [15,16].

Resilient AI: Definition and Requirements

Definition
We define resilient AI (RAI) as an AI that can automatically or
semiautomatically adapt and react to unprecedented, uncertain,
or undesired situations in real-world environments during model
training and its use.

RAI emerges as a new paradigm over conventional AI
procedures, generally aimed at model generalization and stability
in controlled environments. The conventional AI approach
expects learning on preprocessed, curated datasets and then
inferring on equivalently consistent input data. The RAI
approach, however, aims to learn and predict raw RWD by
relying on resiliency-enabling methodologies and functions
while improving its generalization and stability in variable
environments. In RAI, adaptation would involve using new
information to change or update AI knowledge, and reaction
would involve providing appropriate information to support
decision-making. Overall, RAI aims to enable trustworthy
CDSSs for real-world environments, from adapting and
explaining against potential biases and variability in the
secondary use of EHR to handling uncertainty in
decision-making, covering the whole AI lifecycle (Figure 1).
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Figure 1. Comparison of the conventional AI process and the proposed resilient AI paradigm. Conventional AI is generally aimed at generalization
and stability in controlled environments. That is, typically learning and validating a static model from a standardized, quality-controlled dataset, and
applying the inference on equivalently consistent inputs. Resilient AI, however, aims to handle real-world variable environments during all its lifecycle,
from adapting and explaining against potential biases and variability in the secondary use of electronic health records, both at model training and during
use, to handling uncertainty in decision-making, enabling next-generation, trustworthy clinical decision support systems. AI: artificial intelligence, MD:
medical device, I/O: input/output.

The challenges for RAI include DQ issues, data variability over
time or across sources, information uncertainty,
human-computer interaction, security and privacy, and FRA,
among others. By wrapping the desired behavior of health AI

against these challenges, we propose a set of requirements for
the behavior and functionality of RAI in health (Figure 2). These
requirements are organized in the 4 blocks described next.
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Figure 2. A classification for the expected behavior and functionality of resilient AI in health, regarding the AI training phase, the prediction in new
cases, the routine maintenance of AI during production, and related regulatory aspects. We focus on supervised ML as the methodological driver for
current well-established medical AI and clinical decision support systems. AI: artificial intelligence; FRA: fundamental rights assurance; GDPR: General
Data Protection Regulation; ML: machine learning; MNAR: missing not-at-random.

Training
RAI should ensure quality, generalizable knowledge through
automated or semiautomated data preparation and lifelong
learning processes cost-effectively. Manual data preparation
generally consumes 80% of the costs of AI projects, and many
data issues neither generally addressed nor detected in
apparently error-free data can potentially lead to biased or
inaccurate models.

Most data-related barriers in training are categorized as DQ
issues [17-19], including missing, implausible, or outlier data.
RAI should tag DQ issues and allow models to discard or fix
them, infer any useful knowledge associated with faulty inputs,
or suggest multiple modelling pipelines. For example, repeated
missing laboratory tests at emergency admission in patients

with COVID-19 due to rapid intensive care unit admissions
might lead to a missing not-at-random situation associated with
higher severity in the outcome.

RAI training should be resilient against variability over time
and across settings or sites. Changing or unexpected information
patterns can present as shifts in the covariates—p(x)—prior
probability shifts in the outcomes—p(y)—or as concept shifts
in one conditioned to the other—p(y|x) or p(x|y)—leading to
dataset shifts [20-22]. For example, would prediction models
for acute respiratory distress syndrome trained on the first
COVID-19 wave EHRs perform on new cases as initially
evaluated? Would a model trained on a global European sample
perform equally cross-border? These shifts can even relate to
FRA-sensitive variables such as gender or race [10]. To
delineate and characterize variability is critical, as it is to
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optimize model performance according to the population where
the model will be used. Therefore, variability-resilient AI
training should apply both at the initial dataset learning and
during its prospective production cycle, as described in this
paper.

Similarly, ML responds suboptimally at overlapping information
zones, that is, where repeated similar cases show distinct
outcomes, bounding the Bayes error, the minimum and
irreducible error rate achievable by a model. RAI should help
delineate these zones during training, enabling reviewing,
skipping, or fixing these cases or suggesting complementary
models trying to optimize prediction at these zones.

RAI training should account for user requirements regarding
the expected performance, including cost-benefits for each
miss-correct classification, targets for sensitivity, specificity,
or positive predictive value, and their trade-offs. These
estimations are key in unbalanced outcomes and against
FRA-unbalanced subpopulations. Lastly, training should enable
prospective explainability and interpretability in the prediction
phase.

Prediction
Directly related to clinical decision-making, resilience becomes
critical in prediction. Balancing clinical usefulness with
time-efficiency—with minimum intrusiveness—RAI should
encompass fully automated support with smart human-AI
interaction: a fully automated RAI will act without additional
user feedback, while a semiautomated RAI will help improve
or investigate the results through additional feedback.

Determinant for the user’s adherence to the AI decision
processes, RAI predictions should be explainable and
interpretable [23,24]. Interpretability means understanding in
human terms why a model provides an output and how it could
vary from changes in the input—for example, through a
sensitivity analysis. Explainability means understanding the
internal mechanics of a model driving causality in a specific
decision-making process.

Uncertainty is intrinsic to decision-making. Therefore, informing
and quantifying uncertainty in health AI would significantly
increase the system’s trustworthiness and confidence in derived
decisions. Particularly relevant are input cases showing
unprecedented data patterns. RAI outcomes should count, where
relevant, with CIs or levels. Likewise, RAI should handle
potential input issues by identifying DQ-affected inputs, smartly
encoding missing data, and identifying lacking optional
information potentially relevant to the prediction.

Toward CDSS transportability, endurance, and fairness, RAI
should enable the comparison of predictions obtained at multisite
consensus or local level, identify potential changes in the
outcome over time, or check for differences at distinct
FRA-related subpopulations. Of note is that RAI should compare
our case with similar past cases with validated outcomes,
particularly beneficial in rare cases, and warn about potential
FRA violations.

Production
Once an AI is in routine clinical use, changes can occur in the
data acquisition contexts, the target populations of the model,
or in clinical knowledge and user requirements. The dataset
shifts described before in the training block can still occur in
production, either over time or using the AI in different settings
from those we initially trained it in. To avoid unexpected biases
and obsolescence, we must continuously benchmark AI
performance on target populations and enable automated or
semiautomated self-adaptation mechanisms to these changes.

Besides benchmarking model performance in clinical
indicators—for example, number of hospital readmissions in
readmission prediction—or confusion matrix-derived
metrics—for example, sensitivity and specificity—an RAI in
production should monitor dataset shifts, user-defined DQ rules,
user requirements—for example, deprecated or new International
Classificafion of Diseases codes—and continuously
benchmarking FRA.

On any significant change in AI performance, or even in advance
of them, RAI should be able to self-adapt its knowledge over
time or when transporting a model to other settings. Further,
changes in requirements and clinical knowledge should be easily
incorporated into previously built models without requiring a
whole reengineering process.

Regulation
Production health AI and CDSS require regulations for medical
device products, such as the European Union (EU) Medical
Device Regulation [25], and specific regulations for AI,
including the European Regulatory Framework for AI or AI
Act [8,9,11]. The US Food and Drug Administration provides
the AI and ML in Medical Devices white paper and its AI and
ML Software as a Medical Device Action Plan [26,27].

The flexibility of current regulations on putting trustworthiness
and patient safety as the top priority accommodates most of the
described resilient AI needs. However, the wide RAI casuistry,
involving more system self-decisions and higher levels of
interaction and data access, might deserve more detailed
definitions.

To promote AI while addressing potential risks, the EU AI Act
includes a list of prohibited AI practices, rules for high-risk AI
systems, transparency obligations, liability rules, and an
innovation support legal framework, all consistent with the EU
General Data Protection Regulation (GDPR). Specifically, the
EU AI Act Article 15—Accuracy, Robustness, and
Cybersecurity—Section 4 states that high-risk AI systems shall
be as resilient as possible regarding errors, faults, or
inconsistencies that may occur within the system or the
environment in which the system operates, in particular, due to
their interaction with natural persons or other systems. How to
implement these resilience features is left to the system
designers. At the simplest level, RAI could stop or warn users
of unexpected situations, such as potential uncertainties or FRA
risks at outputs or inputs. How this information is presented
and interacted with, since it potentially affects decision-making,
might be the subject of more specific regulations. Further,

J Med Internet Res 2024 | vol. 26 | e50295 | p. 5https://www.jmir.org/2024/1/e50295
(page number not for citation purposes)

Sáez et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Article 15, Section 5, also claims resilience against attempts to
exploit system vulnerabilities.

However, in addition to during system operation, issues can
occur as well at initial model training and in prospective
retraining, where alternative resilience features could also take
place. In this regard, Article 10—data and data
governance—claims that data governance and management
practices can be used to mitigate these data-related biases.
However, fully resilient AI should, to some extent, make
self-decisions for automated data curation or FAIRification
procedures, which could be applied both during training and
system operation. These may require stricter regulation and a
justification supported by the added value of this process.

An innovative regulatory aspect for RAI focuses on self-adaptive
AI, which automatically updates its knowledge to maintain
performance and avoid obsolescence during production or,
similarly, when transporting the AI to other settings. RAI
self-updates should avoid, to some extent, new conformance
evaluations. Self-adaptive RAI might also need data access
regulations for benchmarking and retraining AI while respecting
data security and privacy, such as in compliance with the EU
GDPR [28]. Besides, accessing the EHRs for similar cases
search and comparison, and the need for sensitive, FRA-related
information potentially improving the system performance
should also be regulated.

Lastly, for black-box models significantly outperforming other
interpretable solutions, regulations should consider mitigation
through resilient explainable and FRA features rather than
limiting the AI use indications [29,30].

Available Methods and Solutions

Overview
Next, we describe a collection of currently available methods
and solutions with a feasible while relevant use to address to
some extent the RAI objectives and resiliency functions defined
in the previous section.

Data Quality
The assurance of DQ can apply to the whole health data and AI
lifecycles. Initially, AI is typically trained on secondary use
data, of which quality and utility for AI should be labeled
appropriately for trustworthy use. The current proposal for a
regulation of the EHDS addresses the necessity of labeling the
DQ and utility (Article 56) for data uses including research and
personalized medicine, as is the case for AI.

DQ assurance can be specified based on DQ dimensions, which
characterize data attributes facilitating or impeding its expected
use. Dimension definitions vary according to the field of study
[17,18,31,32]. Some dimensions are intrinsic to the data
contents, including completeness, correctness, plausibility, or
stability. Others relate to data access, including availability,
accessibility, or security. Since potentially hindering or impeding
AI development and use, we set intrinsic and access dimensions
as the initial DQ targets in RAI.

Addressing DQ generally involves costly processes, from quality
rules checks and exploratory analysis to data curation. Simple

rules can find missing data footprints—blank spaces or, in the
worst case, negative numbers such as “–9.” Logic rules defined
by experts can help find implausible patterns in and between
variables. Principal component analysis plots can help find
apparently plausible but unlikely data, such as outliers. Further,
information variability methods can help delineate temporal
and source variability [22,33,34].

Addressing faulty data in training includes skipping faulty cases
or recovering faulty values through data imputation methods.
DQ flags can occasionally provide information relevant to AI
performance, such as in the missing not-at-random case
described in section 2. Further, as described in this paper,
continual learning and model transportability methods can help
address data variability in AI training.

Besides, DQ issues for AI can also occur when data is inputted
into the AI systems, either being created de novo or passed
through the EHR. At this stage, DQ handling methods can warn
or automatically update missing, implausible, or outlying inputs
with the most likely values given a context. However, any fully
automated modification should be notified, and its effect on the
output quantified through sensitivity analysis. This can be
achieved through smart human-computer interaction and
explainable AI methods.

Uncertainty Management
In health AI, data-related uncertainty can stem from epistemic
or aleatoric factors, including lacking or faulty data or from
pure statistical randomness in data or information overlap
[35-37].

Quantification of uncertainty in AI focuses mainly on prediction
accuracy, that is, informing about variability and confidence of
the outputs. Available approaches include deterministic,
Bayesian, ensemble, and augmentation methods [35,37].
Deterministic methods aim to predict jointly an output and its
variability in single models, thus requiring this information at
training. Bayesian methods model the statistical distribution of
AI parameters—for example, the coefficients of logistic
regression—rather than as single values, capturing the training
data variability and enabling an output distribution from which
to estimate a mean and CI. Bayesian methods include Monte
Carlo dropout or Gaussian mixture models. Ensemble methods
estimate multiple models—for example, through boosting or
bagging approaches—in which combined outputs conform to
a distribution. Lastly, augmentation methods apply artificial but
realistic perturbations to inputs enabling multiple predictions
which then also conform to a distribution.

Further, uncertainty from lacking information is particularly
relevant in open inputs, including free text and dialogue systems
such as in large language models (LLMs). It can be managed
through deep learning network architectures, such as using
recurrent neural networks that treat the input as a sequence with
order information, recursive neural networks that treat the input
as a hierarchical structure, transformers masked models such
as BERT, where the different parts of an input sequence can
influence each other through attention mechanisms [38], or
using input embedding layers, where partial inputs can be
expressed as indexes of dense vector representations [39].
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Continual Learning and Model Transportability
Continual learning provides AI with mechanisms to self-adapt
to information changes over time [40]. The model knowledge,
generally represented as hyperparameters—for example, an
artificial neural network layout—and parameters—the network
weights—updates as new data batches arrive. Continual learning
must balance forward and backward knowledge transfer, that
is, rapidly adapting to dataset shifts while avoiding a
catastrophic forgetting of important predictive past patterns.
When using an AI model at settings or sites different from where
it was trained, we face the problem of model transportability.

The continual learning and model transportability fields
encompass similar methods from diverse ML paradigms,
including online, active, transfer, or multitask learning [41].
Given their adaptative flexibility, these methods generally relate
to artificial neural networks and deep learning. However, other
simpler methods, including logistic regression or random forests,
can also use batch or iterative learning. Of note is that these
methods can update their knowledge without needing past data,
conforming to data access regulations. Continual learning and
model transportability can also benefit from infrastructure and
organizational practices, including interoperability and domain
knowledge management. Further, recent ML methodologies
such as ML operations consider continual benchmarking and
model updating [42]. Of note is that the use of AI foundation
models, pretrained across various domains, can be of potential
benefit to optimize resilience in continual learning and model
transportability [43].

Fundamental Rights Assurance
Health AI involves potential risks for FRA regarding equality
and nondiscrimination, economic and social rights, access to a
fair trial and effective remedies, protection of personal data, or
good administration [10]. RAI can address some of these rights
by attaching to principles including the EU Charter of
Fundamental Rights [44], the Ethics Guidelines for Trustworthy
AI [45], or the GDPR [28]. In fact, FRA is at the core of medical
AI regulations [46]. A successful implementation demands
specific computational methods handling potential algorithmic
biases.

We can classify FRA computational methods into pretraining,
in-training, and posttraining methods [47,48]. Initially, we
should identify available or derived variables potentially
defining FRA-sensitive subpopulations, such as gender, race,
or socioeconomic status. In pretraining methods, we compensate
underrepresented subpopulations or imbalanced outcomes via
resampling methods. Reweighting mechanisms can mitigate
discrimination in outcomes. Further, we can remove or obfuscate
FRA-sensitive variables if they do not affect model performance
or usability. Besides, in-training methods focus mainly on
defining objective functions or constraints in the AI learning
process to compensate for unfair performance metrics in
sensitive subpopulations—for example, optimizing the
false-negative rate for a discriminated subpopulation. In
screening and classification tasks, we can set
subpopulation-specific cost benefits in confusion matrices or
use specific deep learning loss functions—that is, the functions
that measure the difference between the model prediction to the

true answers to learn the network weights. Lastly, posttraining
methods adapt a model’s outcome to the sensitive situations of
the tested individual—for example, setting custom receiver
operating characteristic curves and decision thresholds or
readjusting uncertain outcomes to favor sensitive
subpopulations.

DQ and variability methods can also help detect unfair
differences in data representations, DQ levels, or model
performance across subpopulations. Another FRA aspect is
decision-making transparency, where the models’ interpretability
is highly important.

Human-Computer Interaction
Resilient human-computer interaction is key to trustworthy AI
and FRA. The methodological drivers for RAI by
human-computer interaction include user experience and
interface design methods [49], toward developing resilient
user-centered CDSSs from the beginning [50], and AI and CDSS
engineering aiming for dynamic and explainable AI [23,24].

Dynamic human-computer interaction in AI can use sequential
prediction models that generate and update outcomes on partial
inputs as new information is introduced, such as in recurrent or
transformer neural networks [24]. Sequential models can
establish a smart human-computer dialogue, particularly useful
for sequential anamnesis inputs and natural language processing,
such as using LLM.

Regarding explainable AI, the simpler the model, the more
interpretable it is. For example, we can easily reason about a
logistic regression behavior based on the feature’s coefficients.
Explainable AI post hoc methods provide explanations for less
interpretable or “black box” models, which typically perform
higher in complex tasks, including natural language processing
or medical imaging. Post hoc local methods explain specific
predictions, including the model-agnostic Shapley values or
neural network gradient attribution techniques such as saliency
maps. Post hoc global methods estimate each feature’s average
importance for any prediction. Surrogate interpretable models
in points close to the test case can assist in explaining individual
predictions from less-interpretable models [51]. Lastly,
explainable AI local techniques can provide a sensitivity analysis
for the outcomes.

Regulation
Current regulations supporting the development and
maintenance of RAI solutions AI include those described in
section 2, namely the EU AI Act, the EU Medical Device
Regulation, the AI Action Plans by the Food and Drug
Administration, and the proposal for the EHDS.

As a first step to facilitate the transportability of production AI
systems, the EHDS provides a set of common specifications
(Article 23) and a list of interoperability and security
requirements (Annex II). These include structural and semantical
requirements, and requirements related to DQ, patient safety,
and data protection.

Some of the harmonized rules (HRs) that provide concrete
details on how to meet the EU AI Act’s goals align with our
aim for RAI in health: high DQ and proper statistical properties
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in training, testing, and validation are essential for the
performance of AI and to avoid biases—HR-67; explainability
and transparency to avoid opacity is key to use the system
appropriately—HR-72; the system performance should be
consistent throughout its lifecycle and monitored in real-life
settings—HR-74; and the systems should be resilient against
errors, faults, inconsistencies, or unexpected situations, as well
as malicious actions, to avoid erroneous, potentially harmful
decisions or biased outputs—HR-75.

Regarding self-adaptive AI, once a system is put into service,
the EU regulatory framework for AI suggests providing rules
establishing that changes in the algorithm and its performance,
predetermined by the provider and assessed at conformity
assessment, should not constitute a substantial
modification—HR-128. Similarly, the American Medical
Informatics Association suggests a set of recommendations for
the safe, effective use of self-adaptive CDSS and their
prospective regulation concerning: the design and development

based on transparency metrics; implementation using standards
for communication and planning retraining criteria; in-situ
evaluations and testing; and on-going monitoring including
system maintenance and user training [52].

Others
Further transversal approaches can benefit RAI. Federated
learning provides algorithms and interoperability infrastructure
for multisite AI learning, enabling secure model transportability
and continual learning addressing potential data access
regulations. In the prediction phase, fast nearest-neighbor search
and phenotyping algorithms can proactively display relevant
comparative past cases [53-55]. Lastly, we bring attention to
the proposed commandments of ethical medical AI by Muller
et al [30], which can help design RAI-enabled CDSS while
encompassing human-AI decision roles.

Figure 3 summarizes the main solutions described in this section,
linking to potential new research aims, as described in this paper
in more detail.

Figure 3. Summary of available solutions and new proposed research for resilient AI in health and CDSS. AI: artificial intelligence; CDSS: clinical
decision support systems; DQ: data quality; EHDS: European Health Data Space; EU: European Union; FDA: Food and Drug Administration; GDPR:
General Data Protection Regulation; UX/UI: user experience and interface.

Research Agenda

Putting the methods and solutions described into practice would
be already a huge step toward RAI and trustworthy CDSS (see
Textbox 2 for an example of a desired use of an RAI-enabled
CDSS). However, this is not free of challenges. The

development complexity and costs can be considerable,
regulations must be met or extended, and additional validation
of the methods is needed. Fortunately, user acceptance and
organizational culture regarding RAI may benefit from
conventional AI, given its increased, user-centered flexibility.
Next, we propose several research aims to address current and
future challenges in RAI.
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Textbox 2. Example desired use of a resilient artificial intelligence–enabled clinical decision support system following the example from emergency
medical dispatch in Textbox 1.

Context

• Suppose a European emergency medical dispatch center develops a clinical decision support system based on resilient artificial intelligence (RAI)
for triage support. The aim is to predict the life-threatening situation of incidents based on the live transcription of the during-call conversations
to support resource allocation.

Training

• The initial RAI learning is fed from a raw database containing transcriptions, in situ maneuvers and diagnoses, transport, and hospitalization—as
the final gold standard—data of the last 10 years. The system vendor and its triage tree changed during this period, leading to different conversation
types. Further, the International Classification of Diseases codes at hospitalization were updated from version 9 to version 10. The RAI training
is based on a continual, deep learning methodology; the neural network is learnt in temporal batches through a continual fine-tuning strategy.
Therefore, the final model will retain past knowledge, but recent patterns will be more relevant. The training also relied on resiliency functions
that permitted, for example, alerting about outlying operators with training data biased toward overclassification, prospective uncertainty
quantification of inputs based on a Monte Carlo dropout function, and suggesting a parallel model for female cases with poor information in
cardiac disease incidents with positive outcome to avoid false negatives.

Prediction

• The case from Textbox 1 is inputted into the system, which classifies it as a high-uncertainty case using the uncertainty quantification function.
The system automatically asks for potentially relevant information to reduce uncertainty, such as the use of drugs or recent anxiety attack episodes.
In light of neither changes in the input nor interoperability with the patient EHR to retrieve this data, the system uses a reject option-based
classification function to classify the case as life-threatening to avoid potentially biased decisions.

Production

• A continuous artificial intelligence (AI) benchmarking system is used, counting with secure interoperability with gold-standard feedback data
and automated inspection of causes of changes. The system eventually detects reduced performance in older adults and newborns, finding
multidrug-resistant bacterial infections associated with these cases, and suggests retraining the model with these new data.

Regulation

• The system is a high-risk AI system in compliance with the European Union (EU) AI Act, ensuring its safe and trustworthy use. It conforms with
the European Health Data Space proposal’s common specifications, interoperability, and security requirements. An updated regulation framework
considered the digital document with clinically explained motivation for the retraining described before as a valid source for self-conformance
of the system to continue its use after its self-update.

We must standardize pipelines for fully automated and
semiautomated DQ processing during training. The implications
of DQ dimensions interactions, for example, across-site
missingness patterns, should be studied. Excessive curation
might lead to an unreal dataset; therefore, combining curation
with using affected informative patterns—for example,
informative missingness [56]—should be further studied. In
prediction, we must investigate user-centered human-computer
interaction approaches against faulty inputs, for example, using
automated DQ corrections and DQ-related sensitivity analysis.
Legal aspects for data curation, especially if automated, should
also be realized technically [57].

Uncertainty quantification can benefit from addressing input
uncertainty besides outcome uncertainty. Input uncertainty
quantification could combine imputation and data augmentation
methods. This approach can also help analyze the effect of DQ
on output uncertainty and lead to input-outcome sensitivity
analysis. Additionally, explainability might improve from
uncertainty quantification at specific decision stages, for
example, visualizing uncertainty at neural network branches.

Conversational, dialogue-based RAI interactions, smartly asking
for new parameters anticipating the user needs, while
minimizing input costs following an uncertainty-reduction
targeted dialogue, are key research aims. This could be achieved
by combining recurrent AI with dynamic human-computer

interaction, for example, through voice or text-based LLMs
[58,59], enabling AI to work with partial information, the natural
case in medicine. Besides, user-centered design with a focus on
explainability deserves specific research toward its acceptance
[60].

Human-AI interaction is key to FRA since it influences users’
decision-making. Previous methods for uncertainty
quantification, DQ assessment, or RAI interactions shall be put
in common with AI and health data regulations, for example,
through specific HRs and methods enabling FRA as a priority
layer in RAI-based CDSS interactions.

The use of foundation models in CDSS development should be
further validated for safe and trustworthy clinical use. They can
enable rapid development and model transportability, and show
promising behavior to fill knowledge gaps in the training data,
increasing generalization [15,16,43]. However, risks and
uncertainty must still be thoroughly quantified. Besides,
foundation models will still need to be updated as data changes
through continual learning methods.

Continual learning can evolve from reactive to proactive.
Current resilience against dataset shifts is constrained by the
need for new labeled data to update the model’s parameters,
which is always one step behind the actual context. Further than
adapting periodically or after significant shifts, proactive
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continual learning can aim to anticipate changes. Domain
adaptation methods—for example, transductive learning—can
help update knowledge from cases before their gold-standard
outcomes are available [61,62]. Besides, comprehensive
variability characterizations in historical datasets can provide
an extensive knowledge base of variability patterns, potentially
enabling the forecasting of changes [22,63]. Overall, proper
benchmarking for continual learning in health is still
challenging, where we motivate the availability of publicly
available patient-level datasets including the cases’ date of
acquisition.

Predictions based on the “consensus” of parallel models may
support human decision-making resiliency—not generally based
on a single mental process—through cooperative knowledge
from different perspectives. Parallel models can apply to
FRA-sensitive subpopulations, missingness patterns, multisite
and temporal variability, and high uncertainty,
overlapping-information zones. However, this can risk the CDSS
user understanding; for example, what is the trustworthiness
balance between local and multisite outcomes? Transparent,
distributed, and continuous AI benchmarking is key.
Complementarily, consensus decision-making can benefit from
research in context and logic-based argumentation algorithms
[64].

Specific resilience and self-adaptiveness features must be
included in health AI regulations. The adaptability of AI to
different settings and the temporal evolution of medical practice
are recognized regulatory challenges [52,65]. Any change in an
AI production system currently requires human intervention
and conformance evaluation. Therefore, automatically providing
a clinically explainable justification for why and how
self-adaptive AI is updated without human intervention—besides
planned retraining—is significant future work. Further, we must
standardize AI documentation and record-keeping practices to
define the rules firing a self-adaptation process and keep track

of the latter—for example, based on performance changes or
dataset shifts—and, similarly, justify automated DQ curation
processes both at training and prediction.

Self-adaptiveness and federated learning infrastructures should
be validated and regulated for CDSSs’ retraining, production
use, and benchmarking with data access limitations. In cases
when protected information is required—for example, for
training or similarity searches—synthetic data fabrication can
be a solution.

Lastly, future work in RAI can address unsupervised and
reinforcement learning. Unsupervised learning aims to discover
natural subgroups in data. Generally applied at the population
level—for example, to find potential immune response patterns
in blood tests—it can also apply at the patient level—for
example, for tissue segmentation in medical imaging. Besides,
reinforcement learning aims to learn optimal decision-making
choices in nonstationary environments—for example, to
optimize intensive care unit procedures [66]. Improving the
resilience of both will potentially improve their contribution to
actual clinical practice.

Conclusions

Resilience is a significant factor in the success of health AI.
Health data is imperfect, incomplete, and permeated with
variable representations. However, this is not wrong. Instead
of artificially modifying data for AI, AI should be resilient to
the data nature. Methods enabling RAI involve disciplines
including DQ, uncertainty management, continual learning,
model transportability, foundation models, conversational AI,
human-computer interaction, and regulatory aspects. Their
implementation and specific research in RAI will define
new-generation CDSSs and maximize trustworthiness in
AI-enabled health care.
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RWD: real-world data
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