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Abstract

Adverse drug reactions are a common cause of morbidity in health care. The US Food and Drug Administration (FDA) evaluates
individual case safety reports of adverse events (AEs) after submission to the FDA Adverse Event Reporting System as part of
its surveillance activities. Over the past decade, the FDA has explored the application of artificial intelligence (AI) to evaluate
these reports to improve the efficiency and scientific rigor of the process. However, a gap remains between AI algorithm
development and deployment. This viewpoint aims to describe the lessons learned from our experience and research needed to
address both general issues in case-based reasoning using AI and specific needs for individual case safety report assessment.
Beginning with the recognition that the trustworthiness of the AI algorithm is the main determinant of its acceptance by human
experts, we apply the Diffusion of Innovations theory to help explain why certain algorithms for evaluating AEs at the FDA were
accepted by safety reviewers and others were not. This analysis reveals that the process by which clinicians decide from case
reports whether a drug is likely to cause an AE is not well defined beyond general principles. This makes the development of
high performing, transparent, and explainable AI algorithms challenging, leading to a lack of trust by the safety reviewers. Even
accounting for the introduction of large language models, the pharmacovigilance community needs an improved understanding
of causal inference and of the cognitive framework for determining the causal relationship between a drug and an AE. We describe
specific future research directions that underpin facilitating implementation and trust in AI for drug safety applications, including
improved methods for measuring and controlling of algorithmic uncertainty, computational reproducibility, and clear articulation
of a cognitive framework for causal inference in case-based reasoning.
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Introduction

A very common task accomplished by medical professionals
many times a day is reasoning about an individual case to make
medical decisions. Supporting case-based reasoning with
automation for most clinical situations remains a challenge
despite advances in artificial intelligence (AI) [1]. To be most
successful, predictive “AI” (eg, machine learning [ML]) requires
large amounts of annotated data and will, therefore, perform
best in large-scale clinical situations where such annotation is
possible (eg, image interpretation). However, most of clinical
medicine (1) consists of situations that, while common, are very
complex, making the identification of all the necessary
predictive features difficult; (2) is small-scale, where there is
incomplete understanding about what the important features
are; and (3) can involve genuine uncertainty in the application
of consensus guidelines to an individual patient. Developing
strategies for how best to apply AI to these situations is essential
to fulfill the potential of AI to assist with patient care.

Case-based reasoning about a drug’s risks is a key component
of the assessment of postmarketing individual case safety reports
(ICSRs) at the Food and Drug Administration (FDA) [2]. An
ICSR contains a description of an adverse drug experience
related to an individual patient prepared in a standard format
for submission to the FDA and other regulators. Information
about the risks of a drug tend to increase after the drug is
approved and used by large numbers of patients. While some
of this information comes from postmarketing trials and
observational studies required by the FDA and observational
studies conducted in the FDA’s Sentinel System [3], a critical
source of information is case reports of adverse events (AEs)
from individual patients and their providers [4-7]. The process
of assessing these ICSRs is akin to a clinician’s task of
considering multiple possibilities to assign a diagnosis and
includes the identification of key features of the drug, the clinical
events, the temporal relationship between drug exposure and
the clinical events, and demographic features of the patients.
These factors must be interpreted against a background of past
medical history, other medications and exposures, and the
natural history of the disease being treated. The goal of this
process is a decision as to whether it is likely the drug in
question caused the observed clinical events.

To make this process more efficient and improve its scientific
rigor, the FDA embarked on a program to develop automation
support for ICSR assessment [8]. In this viewpoint, our aim is
to describe the lessons learned from this experience and
additional research needed to address both general issues in
case-based reasoning using AI and specific needs for ICSR
assessment. We first describe the FDA’s experience applying
natural language processing (NLP) and ML to ICSR assessment
and the recognition that, for automation support to be successful,
it must have the full trust of those it is supporting. Then, we
apply the Diffusion of Innovations theory to the FDA’s
experience to illuminate the sociotechnical reasons for FDA
safety reviewers’acceptance of one AI algorithm (ie, the process
of deduplication) but not another (ie, assignment of causal
relationships) [9]. This analysis leads to the recognition of the
importance of a formal inferential framework for ICSR

assessment. We conclude with a discussion of the need for a
deeper understanding and potential reframing of the cognitive
framework used for causal inference and research priorities for
AI to be fully applied to case-based reasoning and clinical drug
safety assessment.

FDA’s Experience in Applying NLP and ML to ICSR
Assessment
Analyzing ICSR data is challenging because of the limitations
of these data, including the underreporting of AEs and the lack
of accurate data on drug use preventing the calculation of
accurate AE occurrence rates; the lack of controls; as well as
data limitations within the reports themselves, including missing,
imprecise, or occasionally inaccurate clinical information. These
and other drawbacks limit the usability of current methods to
draw a causal link between a reported drug and the AE based
on statistical properties of their occurrence in an AE database
alone.

The assessment of ICSRs for possible causality still relies
primarily on expert judgment and global introspection. Figure
1 provides an overview of the ICSR evaluation workflow (Figure
1 is adapted from the study by Ball and Dal Pan [8]. Case
definitions are a set of prespecified criteria for determining
whether a patient should be identified as having a particular
disease, injury, or other health condition (ie, AE) [2]). Current
practice for drawing inferences from these data involves expert
review of case series and comparison with external sources of
information (eg, product labeling describing known AEs and
pharmacological mechanisms) supplemented with summary
statistics and disproportionality scores [2,10,11]. Important
clinical information (eg, temporality, concomitant medications,
comorbidities or past medical history, or alternative explanations
for the AE) is typically found in the ICSR narrative, which is
generally believed to be the key to making an accurate
assessment, provided that the narrative contains the relevant
information. This means that the application of AI techniques
must focus on methods to extract and organize meaningful
information from these narratives.

The initial development of this approach at the FDA was
conducted using reports to the FDA and Centers for Disease
Control and Prevention’s Vaccine Adverse Event Reporting
System focusing on automating the identification of 2 rare, but
important, vaccine AEs, anaphylaxis and Guillain-Barre
syndrome, as test cases [12-14]. The first step was to develop
an NLP approach to select and extract clinical manifestations
and demographic characteristics of the patients for the clinical
condition of interest. Subsequent work involved further
development of the text mining system to extract drug or
biologic product exposure, temporality, and alternative
explanations for the AE [15-17]. Finding duplicate reports of
the same case (ie, if the same AE instance for the same
individual is reported by multiple reporters) is an important
practical step in the assessment of ICSRs. While algorithms
based on structured fields in the ICSRs have been available, an
important advance occurred with the incorporation of clinical
text extracted using NLP from the case narratives into the
algorithm [18-20]. In these examples, the features were extracted
from narratives primarily using rule-based approaches.
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A complementary approach to the aforementioned one is to take
a holistic view of the causality assessment process and allow
the machine to identify the key features of a report. Using
relatively small subsets of ICSRs from the FDA Adverse Event
Reporting System classified on a 5-point scale as to the
likelihood that the drug caused the AE, supervised ML was used
to predict these classifications [21,22]. Another approach used
logistic regression to predict the likelihood that an ICSR
contained useful information by its inclusion in an FDA case
series review supporting a recommendation to modify product

labeling [23]. These efforts demonstrate the feasibility of
developing models to predict which ICSRs most likely contain
information for a human safety reviewer’s triage assessment of
the report. However, the algorithm’s performance is not
sufficient to allow for use without human expert review of the
predictions.

The relative success of these algorithms led to their
incorporation into decision support tools [24,25]. The experience
using these tools in operational pilots is described in the
following section.

Figure 1. Individual case safety report (ICSR) evaluation workflow. This figure illustrates the ICSR evaluation workflow from the retrieval of ICSRs
to the creation of a case series that has been deduplicated and assessed for causality. The assessment for causality uses case-based reasoning and considers
information from the ICSR about the drug or biologic product, adverse event, temporal relationship, and other etiologies for the adverse event. The
output from the ICSR causality assessment process is a case series of ICSRs that have been evaluated for causal association.

The Importance of Trust in Building AI Support for
ICSR Assessment
User trust in AI can be furthered through close collaboration
among end users and AI developers in an iterative process [26].
Continuous communication between these stakeholders is
needed to understand pharmacovigilance problems and uncover
challenges as experienced by safety reviewers, the selection of
use cases for AI, the development of required functionalities to
support the use case, and appropriate insertion of AI in the
pharmacovigilance workflow. Safety reviewers need to have
confidence that AI developers sufficiently understand the
complexity of the pharmacovigilance problem to propose
whether and which AI methods can be optimally applied to
address the specific problem. The ICSR evaluation workflow
is complicated by many and varied tasks; the consideration of
a multitude of features that require interpretation for
decision-making; and the application of clinical domain
expertise in the context of the use case, such as duplicate
detection, clinical classification, or causality assessment. A
shared understanding of the intricacies involved in ICSR
evaluation supports safety reviewers and AI developers working

together to define appropriate use cases and the approach for
integration in the pharmacovigilance workflow.

Humans have rich prior knowledge. The engagement of the
safety reviewer with the computer algorithm can facilitate
addressing the issue of incomplete features and data sparseness,
especially when there is a lack of training data, as is the situation
with many ICSR assessments and clinical decision-making. The
concept of “human-in-the-loop” has been proposed to tackle
these challenges, by incorporating human knowledge into the
process and addressing the AI algorithm’s limitations.

Acceptability of NLP and ML Algorithms by Safety
Reviewers and the Diffusion of Innovations Theory
Despite what would appear to be adequate performance to
provide an aid for improving ICSR review, the software tools
initially were met with limited acceptance by safety reviewers,
although each development cycle included their active
involvement in the collection of requirements and testing of
user interfaces.

Discussion with safety reviewers about AI for causality
assessment was met with skepticism because their perception
is that this problem is challenging for humans, let alone
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machines. In the previously mentioned FDA study [21]
classifying reports on a 5-point scale as to the likelihood that
the drug caused the AE, at least 2 of the 3 adjudicators tended
to agree as to a report’s classification. When the reports were
regrouped to create a binary classification (ie, Certain, Probable,
or Possible vs Unlikely or Unassessable), all 3 adjudicators
agreed on 61% of the reports [21].

In contrast to the causality assessment use case, duplicate ICSR
detection was perceived by the safety reviewers as a high
priority and a potentially solvable problem for AI. Duplicate
ICSRs contribute to inefficiencies by increasing workload
because they are generally identified via manual processes but
can be relatively easily verified if presented by an algorithm.
Trust-building efforts, aligning with the safety reviewers’
workflow and communication, were applied to explicitly map
clinical features used in the safety reviewers’ current manual
deduplication processes to that of the AI-based algorithm. In
addition, the NLP-extracted common clinical features and their
effects on the duplicates identified by the algorithm were further
visually presented to enhance end users’ understanding of the
features that were used by the algorithm to identify duplicates.

Feedback from safety reviewers [27] suggested several reasons
for their initial limited acceptance for causality assessment when
performed using AI. First, the AI approach is outside of their
domain of expertise and clinical training. Furthermore, the
approach did not offer sufficient explanation or flexibility to
accommodate information external to the ICSR (eg, reviewer’s
knowledge). The software tools were not fully aligned with the
reviewer’s current business practices and workflows. Because
of the lack of trust in the software tools, any efficiency gains,
compared to current business practices and workflows, were
not perceived as making it easier for the safety reviewers to
assess whether the drug caused the outcome described in the
report.

Ethical Considerations
FDA employees were asked to provide feedback about their
experience with the deduplication algorithm as part of a project
conducted in collaboration with Johns Hopkins University under
the FDA Centers of Excellence in Regulatory Science and
Innovation program. The Johns Hopkins Medicine Institutional
Review Board determined that the project did not constitute
human subjects research under the US Department Health and
Human Services or FDA regulations. As this was not considered
human subjects research, informed consent was not obtained.
All participation in surveys was voluntary and was part of
routine employment at the FDA; hence, participants did not
receive additional compensation. Survey participants provided
consent to use their anonymized responses in the manuscript.

Diffusion of Innovations Theory
Diffusion of Innovations is a well-known theory that has been
applied to explain how new ideas and technologies are adopted
[9]. According to the theory, several attributes influence the
rate of spread of an innovation and can offer insight into the
FDA safety reviewers’ acceptance of AI algorithm use (Table
1).

In Table 1, the acceptability of the application of AI algorithms
to ICSR deduplication is assessed through the main attributes,
including the social system, the communication channels used
for dissemination, and the attributes of the innovation. This
example illustrates how the AI algorithm for deduplication
successfully incorporated the key attributes of an innovation,
namely, relative advantage, trialability, and observability. The
successful fulfillment of these attributes promoted trust in its
use. The key to its acceptance is that the tool transparently
implemented an algorithm that closely paralleled existing
pharmacovigilance workflows and safety reviewers’ cognitive
process for deduplication.

In contrast, 2 attributes of innovation, compatibility and
complexity, offer a possible explanation for the lack of
acceptance of the causality assessment algorithm. Causality
assessment is much more complex than duplicate detection, as
illustrated by the larger number of attributes required for
consideration and their interactions, listed on the right side of
Figure 1. The determination of the likelihood that a drug caused
an AE in a report is considered the most challenging aspect of
a safety reviewer’s work. Not only are the drug exposure and
the AE outcomes important considerations, but alternative
explanations of the phenomenon and temporality must also be
considered. The social environment in which safety reviewers
work encourages complete and transparent characterization of
all evaluated ICSRs following a deterministic logic. Using
probabilistic predictions in such an environment requires either
perfectly performing algorithms or a validation process that
limits the benefits of the algorithms. While the same issue arises
in duplicate detection, the validation process is simpler, and the
consequences of incorrect duplicate classification are lower
than those for causality assessment. The existing technical
environment in which safety reviewers work offers no other
applications of computing to address a problem of similar
complexity. In fact, many simpler problems remain
unautomated, for example, automatically flagging an AE as
being present in the drug’s package insert, leading to the
perception that it is unlikely that a machine could successfully
help solve the more complex problems.

Furthermore, 2 other “diffusion of innovations” attributes, the
ability to readily observe an intervention’s functionality (ie,
observability) and to readily experiment with it (ie, trialability),
are also likely important. The relative difficulty of observing
the process by which an ML algorithm assigns a causality
assessment may complicate safety reviewer acceptance. While
the general parameters of the approach to causal inference in
ICSR evaluation have been described [2,10,11], no complete
articulation of all the data elements and their interrelationships
in the form of an algorithm has been accomplished. This lack
of a basis for verification of an algorithm’s validity suggests
that developing a more complete understanding of how
inferences are made in case-based reasoning is an important
next step. To increase acceptance of ML approaches to causality
assessment, more work is also needed on how to best fit
causality assessment algorithms into safety reviewer workflows
to allow them to try out the results of the algorithms without
total commitment.
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Table 1. Diffusion of Innovations theory applied to the Food and Drug Administration’s AIa algorithms.

Causality assessmentDeduplicationAttribute (definition)

EvidenceRelevanceEvidenceRelevance

Consistent with established
practices for safety surveil-

Assessing causality during IC-
SR evaluation involves evaluat-

Participants viewed themselves
as a community of safety review-

Duplicate ICSRsb are
viewed as a common

Social system (intercon-
nected units working col-
laboratively toward com-
mon goal)

lance, safety reviewers as-
sessed ICSRs before assem-
bling a case series that in-

ing the likelihood and strength
of the relationship between a
drug and an adverse event at a

ers in which their key role in-
volves evaluating ICSRs for
drug-related safety issues. During

problem by safety re-
viewers during their
case series evaluation.

cludes cases assessed asreport level. Causality assess-this process, they experienced the
causally associated. Review-ment is a critical component of

safety signal management.
challenges of efficiently identify-
ing duplicate ICSRs for exclu-
sion from the case series (Figure
1).

ers documented a summary
of the considerations or ratio-
nale for inclusion of the IC-
SRs in the case series [2].

Discussions with safety re-
viewers revealed concerns

As part of a series of research
and development efforts to im-

Verbal and written communica-
tion provided an explanatory de-

Safety reviewers were
involved in iterative

Communication channel
(method of information

about the effectiveness andplement a tool to support casescription of the deduplication al-requirements gather-spread; users’ ability to
perceive usefulness) utility of a one-size-fits all

algorithm that classifies IC-
series evaluation that include
causality assessment, interac-

gorithm tool and where it could
fit into the safety reviewers’

ing processes. They
provided continuous

SRs by level of causality.tive meetings with multipleworkflow. Multiple rounds ofinput during the test-
Safety reviewers viewedgroups of safety reviewers werefeedback were collected duringing and evaluation of

the deduplication tool. causality assessments as a
complex task for both hu-

held to understand current
practices and workflow for

the testing and evaluation of the
deduplication algorithm tool.

mans and AI. As a result,conducting causality assess-
ments. they did not prioritize

causality assessment for in-
corporation in a tool to sup-
port case series evaluation.

Safety reviewers did not
view the automation of drug

The existing approach for con-
ducting causality assessments

“I think the deduplication method
could be used instead of the cur-

Safety reviewers com-
pared the usefulness

Attributes of innovation:
relative advantage (percep-

causality assessment as ais a complicated manual pro-rent process, as the algorithm didand efficiency gainedtion of benefit or improve-
relative advantage over thecess that involves many steps.find some cases that would havefrom the automatedment over existing technol-

ogy) current manual process.
Rather, there was skepticism

In particular, it requires clinical
and pharmacovigilance exper-
tise.

been missed. However, the cases
still need to be screened to deter-
mine if the cases are duplicates
or not.”

“Really a big help to save time.”

“It is helpful that the algorithm
grouped likely matches together;
this saved some time.”

deduplication algo-
rithm output against
that of the current
baseline, which is to
manually use spread-
sheets to find dupli-
cate ICSRs.

around whether and how
well AI could emulate hu-
man experts’ thinking in
terms of applying clinical
knowledge and judgment to
accurately conduct a causal-
ity assessment of ICSRs.

The use of AI for causality
assessments is viewed by

Causality assessments to detect
and evaluate the relationship

“Usability was very straightfor-
ward, easy to run.” “Very quick

The deduplication tool
is consistent with and

Attributes of innovation:
compatibility (consistent

safety reviewers as a compli-between a drug or biologic andturnaround time (minutes) al-supports the currentwith existing technical and
social environment) cated task that is likely not

yet solvable by current tech-
adverse event of interest are in-
herently part of the safety re-

lowed me to start working on it
right away.”

“I will continue to use the algo-
rithm.”

“This tool doesn’t replace my
deduplication process but is a
helpful addition.”

technical, business
process, and safety re-
viewers’ workflows. nology. Particularly, there

are nuances and factors that
need to be considered in
various use cases to which
causality assessments are
applied. A question remains

viewer’s workflow and process-
es.

whether the AI output for
causality assessment could
be generalized to any drug
and adverse event of inter-
est. In addition, it is not
clear how the AI output
could be usefully incorporat-
ed in the current workflow
to support safety reviewers.
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Causality assessmentDeduplicationAttribute (definition)

EvidenceRelevanceEvidenceRelevance

Safety reviewers participat-
ed in successive research
focused on applying AI for
causality assessments. To

train and test the MLc classi-
fication algorithm for
causality, safety reviewers
created a reference data set
of annotated ICSRs based
on the likelihood that the
drug caused the adverse
event. The ambiguity and
complexity of annotating
levels of causality was illus-
trated by the substantially
lower interannotator agree-
ment among 3 adjudicators
compared to that for 2 adju-
dicators. The performance
characteristics of the ML al-
gorithms for causality were
perceived as not being ade-
quate. Moreover, safety re-
viewers do not have domain
expertise in ML, which
could affect the perceptions
and understanding of the
strengths and limitations of
technology. When the ML
algorithm used certain fea-
tures not used by human
safety reviewers, it was per-
ceived as a limitation. In ad-
dition, the ML causality
classification algorithm did
not use external data
sources, such as clinical
knowledge of the medical
history or concomitant med-
ications, that safety review-
ers routinely apply.

The processes involved in
causality assessment require
more advanced logical reason-
ing and considerations of inter-
relationships among various
data in the structured and un-
structured information from
ICSRs. Furthermore, clinical
and pharmacovigilance knowl-
edge and expertise is applied
during causality assessment (ie,
external information that may
not be represented within an
ICSR).

The deduplication tool considers
multiple relevant features from
ICSR structured fields and narra-
tives, many of which overlap
with those used in the safety re-
viewers’best practices deduplica-
tion processes. Most safety re-
viewers stated that they were
very likely or likely to use the
deduplication algorithm for their
reviews and had medium to high
confidence in the deduplication
algorithm tool’s output.

During the manual
process of detecting
duplicate ICSRs, safe-
ty reviewers conduct-
ed a stepwise compar-
ison of data points
from structured fields,
followed by those
from the narratives
between potential du-
plicate pairs to find
actual duplicate re-
ports during case se-
ries evaluation.

Attributes of innovation:
complexity (perception of
the difficulty of implemen-
tation, use, or understand-
ing)

Despite the development of
the ML algorithm for ICSR
classification of causality,
the proposed plausible
workflow would still need
considerable time and hu-
man resource investment.
First, from the safety review-
ers’ perspective, the ML al-
gorithm did not preclude the
need to conduct causality
assessments, the most re-
source intensive step, for all
the ICSRs within a case se-
ries. Second, because ICSR
prioritization is a not part of
the current workflow, a new
workflow that effectively
integrates prioritization
would need to be developed.

Safety reviewers were offered
a plausible workflow option
that would incorporate the out-
put of the ML for causality as-
sessment in their workflow
process. The option was to use
the ML algorithm’s output to
prioritize the review of ICSRs
that were classified with the
highest likelihood of a causal
association, followed by those
with lower likelihood of
causality.

“It’s a good backup and second
check to my own deduplication.”

“It’s a good second check.”

“Although the algorithm doesn’t
replace my own deduplication, I
find it helpful in combination
with my process.”

A 6-month study al-
lowed all safety re-
viewers to test and
evaluate the useful-
ness of the deduplica-
tion algorithm within
their current workflow
and provide additional
feedback.

Attributes of innovation:
trialability (ability to try
without total commitment
and with minimal invest-
ment)
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Causality assessmentDeduplicationAttribute (definition)

EvidenceRelevanceEvidenceRelevance

Safety reviewers neither
completely trusted nor val-
ued the benefit of solely us-
ing only the ML classifica-
tion output of assessable or
not assessable in their cur-
rent workflow. Concerns
were raised about the risk of
missing an important ICSR
because of misclassification
by the ML algorithm. Rather
than use the ML algorithm’s
final classification output,
reviewers requested to view
and understand components
of the algorithm. The poten-
tial benefits and how to opti-
mally incorporate this AI
output in their workflow re-
main unclear and thus not
observable.

Safety reviewers were present-
ed with the option to use only
the final output from the AI al-
gorithm for causality assess-
ment that automates the classi-
fication of ICSRs as assessable
or not assessable. Assessable
ICSRs contain sufficient infor-
mation for a safety reviewer to
be able to conduct a causality
assessment, whereas unassess-
able reports have insufficient
information.

“Although I don’t think it saved
any time in this data set, the algo-
rithm identified duplicates I
would have missed.”

“...good for screening large
numbers of reports.”

“I still believe there is beneficial
utility to the tool, possibly with
searches producing high
caseloads.”

Safety reviewers were
able to experience the
application of the
deduplication algo-
rithm tool to each of
their specific case se-
ries of interest within
the existing workflow.
The benefits of the
tool were apparent
while using the tool.

Attributes of innovation:
observability (visible bene-
fits to potential adopters)

aAI: artificial intelligence.
bICSR: individual case safety report.
cML: machine learning.

The Importance of a Formal Inferential Framework
for Building Trust in AI Support for ICSR and Clinical
Drug Safety Assessment
What are the key components of a plausible inferential
framework for building trust in AI systems for drug safety
causality assessment? At the heart of this framework is
measuring and managing uncertainty. Additional components
include understanding and mitigating the impact of data biases
as well as understanding how ML algorithms for drug safety
operate, their strengths and limitations, and how they can be
applied and tuned for a given task. Furthermore, computational
reproducibility is a key component for valid inference. Thus,
in our context, the term signifies well-described and standardized
workflows, computing environments, and the ability to obtain
the same results if the same data and algorithm are used by 2
users following the same workflows. In the following
paragraphs, we discuss these aspects in detail.

Traditionally, inference from clinical data has been based on a
hierarchy of evidence, with randomized, blinded clinical trials
considered the gold standard, while individual case reports,
such as those discussed in this paper, are considered to have the
least evidentiary value. More recently, there has been a
movement away from this “hierarchy” toward a recognition that
valid causal inferences can be made from a synthesis of different
types of data, enabled by advanced computational techniques
including AI [28,29]. Traditionally in pharmacovigilance, certain
AEs, such as anaphylaxis, have been attributed to drug exposure
after only a few case reports if the following two conditions are
met: (1) the time between the drug exposure and the onset of
the condition is relatively short and consistent with the known
mechanism of action and (2) there are no other obvious causal
factors. For anaphylaxis, most reactions occur within minutes

to hours after exposure [30]. Progressive multifocal
leukoencephalopathy (PML) was attributed to the treatment of
patients with multiple sclerosis with natalizumab after only a
few cases were observed based on the rareness of PML, the
plausibility of natalizumab causing immunosuppression, and
the presence of the infectious agent that causes PML [31]. What
matters more than the traditional hierarchy is the proper
application of the “rules of inference” to data that are
“fit-for-purpose.” In the context of drug safety, this means that
better understanding of both elements is necessary to make
advancements in creating a computable drug safety cognitive
framework.

By a drug safety cognitive framework, we mean the rules of
inference applied to fit-for-purpose data in ICSRs by safety
reviewers to assess whether there is likely to be a causal
relationship between an exposure and an AE. As outlined in
Figure 1, the data categories included in the framework include
the following:

• The drug exposure
• The timing between the exposure and the onset of the AE

of interest
• Concomitant exposures, including other drugs and the

timing between their exposure and the onset of the AE of
interest

• The natural history of the disease and its relationship with
the AE of interest

• Prior medical history including other conditions and their
natural history and relationship with the AE of interest

• If available, information about dechallenge or rechallenge,
that is, if the AE stops when the drug is discontinued and
reoccurs when the drug is restarted, can support a
conclusion that the likelihood of a causal relationship is
increased
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Factors external to the information contained in an ICSR include
knowledge of the mechanism of action of the exposures and
their relationship with the AE of interest, including whether the
timing of exposure and onset of the AE of interest is
mechanistically feasible, and knowledge of whether the AE is
known to be caused by the exposures.

“Fit-for-purpose” data are data suitable to be used for
pharmacovigilance and are characterized by the following
properties:

• They are fit-for-purpose from a quality standpoint. Are the
data statistically sound to be used for the purpose of
identifying AEs?

• They are fit-for-purpose from a timing perspective. Are the
data current enough to form the basis for the safety question
of interest?

• They are fit-for purpose for regulatory action. Whatever is
discovered from the data needs to be understood to take
action.

• They are fit-for-purpose for representing the population
affected by the safety issue. For example, do the data pertain
to certain sex, race, age, ethnicity, or other important
categorization of the population affected?

The key to understanding the relationships between “rules of
inference” and “fit-for-purpose” data, as it relates to the use of
AI, is how different approaches manage uncertainty. The
pharmacovigilance setting is that of learning from data and, as
such, is inseparably connected to uncertainty. Decision-making
involves uncertainty. Some of the uncertainty concerns facts.
For example, how long does it take to develop anaphylaxis after
exposure to a drug that might initiate this event? Taking full
advantage of the scientific research dictates knowing its
associated uncertainty. Both extremes, that is, too much
confidence or too little confidence, are problematic. The first
extreme raises the possibility of facing unexpected problems,
such as missing important AEs potentially resulting in increased
morbidity and mortality. The second extreme raises the
possibility of missing opportunities while wasting time and
resources, such as unnecessarily conducting additional studies
to address a safety issue. In the context of pharmacovigilance,
substantially consequential decisions need to be taken with
reference to the modification of the drug product labeling of
certain medications or even removal of medicinal products from
the market. Thus, improving the understanding of sources of
uncertainty and their implications for the consequences of a
decision is a fundamental need when using AI.

At a high level, there are 2 types of uncertainty: aleatoric or
statistical uncertainty and epistemic uncertainty. Aleatoric
uncertainty expresses the inherent randomness associated with
an observed process, while epistemic uncertainty refers to the
uncertainty associated with limited knowledge, which can be
partially reduced by increasing knowledge. These uncertainties
are of different nature, with aleatoric being a stochastic
component in the data generation process and epistemic being
associated with the state of our knowledge about a phenomenon
of interest. An example of aleatoric uncertainty is coin flipping;
there is a stochastic component to the data generation process
that cannot be reduced by adding any type of information, while

epistemic uncertainty is reducible as more information becomes
available. Human performance in the evaluation of ICSRs is
assumed to have the minimum amount of irreducible epistemic
uncertainty, but in many situations, no baseline is available to
inform the threshold for minimum AI performance
characteristics. Senge et al [32] referred to the distinction
between the 2 types of uncertainties and proposed a
quantification that is illustrated in the context of medical
decision-making. Another recent work [33] discussed these
concepts in the context of ML. At this point, it is important to
emphasize that other sources of uncertainty may exist, for
example, measurement error, outliers, model uncertainty, or
incorrect model assumptions [34].

In the context of clinical trials, Figure 2 indicates the different
components associated with the aleatoric versus epistemic
uncertainty framework. Each stage of the trial has a clear role
in reducing aleatoric uncertainty. For example, the stage labeled
as processes is well defined, in that implementation and the
analysis of a clinical trial are executed by well-defined, a priori
developed protocols. The data collection follows appropriate
designs determined before the collection commences. In
addition, the entry criteria in the protocol define the population,
and randomization seeks to balance predetermined enrollment
criteria to ensure the validity of inference. Therefore, the
statistical or the irreducible part of the uncertainty is well
controlled. Data collected from clinical trials are experimental,
are generally carefully generated, and are subjected to many
controls.

In contrast, a parallel framework for the use of the ML
algorithms in pharmacovigilance does not currently exist.
Recognizing that randomized controlled trials are for causal
inference at population levels and ML is used for predicting
outcomes for individuals, the lessons learned from randomized
controlled trials about how well-defined processes can reduce
and control statistical uncertainty can facilitate the development
of a framework appropriate for ML that, in turn, contributes
toward trusting AI systems. We discuss this in the rest of this
section. In the context of ML, data are not collected according
to any predesigned experiment; these are observational data.
The self-controlled case series method uses only cases to study
the association between adverse health outcomes and medical
products [35,36]. This method can be applied to
population-based databases and has been used in vaccine safety
studies. However, the use of these designs for the analysis of
data that reside in population-based databases has well-known
limitations, including the strong assumptions made for the
analysis to be possible [35]. ML methods are used to predict
outcomes using different data sources. The uncertainty in
predictions can then be assessed to provide a measure of
trustworthiness of the results.

ML algorithms are not well understood or easily comprehended
by their users, as evidenced by the experiences of the safety
reviewers discussed earlier. These algorithms depend on data;
to identify the circumstances under which they operate implies
that the analyst must know and understand the data with which
the algorithm works. In addition, many of these algorithms
depend upon their hyperparameter setting (ie, a configuration
that is external to the model used; they are often set or tuned
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by the users of the model for the specific problem for which
they are applied) to have good performance. The definition of
“good performance” itself is subject to discussion (eg, whether
to emphasize precision or recall) and depends upon the context
of use. Returning to the context of hyperparameters, an
algorithm’s performance depends on the setting of these
parameters or tuning, an action that requires the definition of a
search space [37,38]. This is indeed a serious limitation of these
methods. Currently, the FDA is applying ML algorithms to
separate out reports that are highly unlikely to contain
information that can be used by a safety reviewer to establish
causality (ie, likely not useful data) [22].

A proper representation of algorithmic uncertainty is, therefore,
an important prerequisite for the acceptance of AI methods and
ML algorithms in pharmacovigilance. Quantifying algorithmic
uncertainty is a current active research area, with authors
attempting to propose measures that reflect aleatoric and
epistemic uncertainty [32]. The field of statistical sciences has
contributed to the quantification of aleatoric uncertainty;
examples include methods that measure the variance of
resampling estimates (ie, cross-validation or bootstrap) of the
generalization error of computer algorithms [39-42]. Informally
speaking, the generalization error is the error an ML algorithm
makes on cases that it has not seen previously and indicates the
algorithm’s predictive ability. Relatively recent work proposes
the construction of CIs for the generalization error [43-45].

An important consideration is the training of the algorithm and
the FDA safety reviewers, that is, the individuals who will be
using the algorithm. The training of ML algorithms to identify
cases that represent AEs requires large amounts of data, which
may be a limitation for rare or extremely rare AEs. In the case
of training safety reviewers to use ML or rule-based algorithms,
trust in the algorithm can be developed by educating end users,
such as safety reviewers, about the algorithm. The training
should include the features used, how they operate, what their

strengths and limitations are, and how the algorithms can be
applied to relevant tasks. The more comfortable the reviewers
are with the algorithms, the more likely they will be to actually
use them.

Algorithms are models and, as such, are imperfect. Box [46]
stated that “All models are wrong, some are useful,” essentially
stating that the real test of knowledge is not truth but utility.
How can one then make decisions with imperfect models? What
steps should we take to make decisions?

The uncertainty associated with model imperfection has
implications for how much trust we put in the model’s outcome.
Constructing CIs for model uncertainty and observing short
lengths of these intervals can provide a measure that facilitates
model trust. Short (ie, narrow) CIs necessarily have small
magnitude of uncertainty because the length is small. However,
it is possible that the magnitude indicated by the length is not
acceptable for a given situation, such as, if we need magnitude
of <0.5 and we obtain magnitude of 1. Constructing CIs for
model uncertainty and observing short lengths of these intervals
can provide a measure of understanding the magnitude of the
uncertainty and enhancing model trust. Furthermore,
computational reproducibility and the existence of protocols
that facilitate computational reproducibility adds additional
components to model trust. The imperfection of the models
used has implications on how to specify, estimate, and evaluate
these models as well as for how we interpret the results we
obtain and the trust we put in their predictions. Evaluating
algorithmic uncertainty via the construction of associated
intervals (eg, intervals for assessing predictive uncertainty and
model uncertainty) contributes toward better understanding of
model performance. The development of a broad collection of
models and methods, potentially incorporating varying degrees
of uncertainty, provides an approach to decision-making in the
presence of imperfect models.

Figure 2. Main aspects of clinical trials and machine learning technologies. Text in parenthesis indicates how uncertainty is controlled. Controlled
clinical trials have well-developed protocols that define appropriate processes that aim to reduce statistical uncertainty. Analogous protocols should be
developed for machine learning applications.
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Discussion and Research Priorities
In this viewpoint, our aim is to describe the lessons learned
from the FDA’s experience of applying NLP ML to ICSR
assessment and the research needed to address both general
issues in case-based reasoning using AI and specific needs for
ICSR assessment. Looking through the lens of the Diffusion of
Innovations theory, we found that the AI algorithm for
deduplication successfully incorporated the key attributes of an
innovation, namely, relative advantage, trialability, and
observability. The key to the deduplication algorithm’s
acceptance is that the tool transparently implemented an
algorithm that closely paralleled existing pharmacovigilance
workflows and safety reviewers’ cognitive process for
deduplication. In contrast, 4 attributes of
innovation—compatibility, complexity, observability, and
trialability—provide possible explanations for the lack of
acceptance of the causality assessment algorithm. These
attributes are much more difficult to satisfactorily fulfill for
case-based reasoning. From this analysis, we conclude that the
lack of a basis for verification of the causality assessment
algorithm’s validity in a detailed exposition of a human safety
reviewer workflow suggests that developing a more complete
understanding of how inferences are made in case-based
reasoning for ICSR causality assessment is needed, including
improved methods for measuring and controlling of algorithmic
uncertainty and computational reproducibility.

It is widely recognized that there remains a gap between AI
algorithm development and deployment [1]. Approaches to
narrowing the gap are typically presented in the specific
technical context of AI algorithms. For example, according to
the FDA document on “Artificial Intelligence and Machine
Learning (AI/ML) Software as a Medical Device Action Plan,”
several factors must be considered when deciding whether an
AI algorithm might be ready for implementation. These factors
include algorithm performance (eg, validity, generalizability,
absence of bias, and robustness in real-world settings with
changing inputs), documentation, transparency, explainability
(ie, the reasons for an algorithm’s prediction), quality control
with real-world data collection and monitoring, and algorithm
change control (ie, a structured approach to updating an
algorithm using new data) [26]. While AI algorithms used for
ICSR processing submission and evaluation by drug companies
generally are not required to be submitted to the FDA for
approval, the FDA has seen an increase in regulatory
submissions with AI components in drug development more
generally, including for postmarketing safety monitoring in
epidemiological studies [47]. The FDA recently released a
discussion paper on AI in drug development to further engage
with stakeholders on defining an approach to regulating such
algorithms [48].

On the basis of the FDA’s experience of applying AI to ICSR
causality assessment, we propose that these factors alone might
be insufficient to address the AI development to deployment
gap for many case-based reasoning scenarios. Specifically, by
applying the Diffusion of Innovations theory, we identify the
need for an improved general theory of inference for case-based
reasoning as a critical step. In addition, creation of a map of the
cognitive framework used by safety reviewers for causality

assessment will be necessary for the application of AI to
pharmacovigilance.

In moving from these general observations to research priorities
to achieve these goals (Textbox 1), we asked ourselves 2 key
questions. First, how does the computer “learn” human
knowledge? Second, how can we be confident that the
knowledge is both correct and accurately captured in the
computer algorithms?

Most current approaches answer the first question through a
combination of rule-based algorithms, human data annotations,
and by using human intervention (ie, the human in the loop) in
dialogue with the algorithm to enable iterative learning in
machines. Rule-based algorithms are algorithms infused with
human knowledge in the form of “if-then” statements for
specific rules, and they are not as flexible as ML algorithms.
However, rule-based algorithms are used in NLP and are well
suited for low data volume and relatively simple rules. A very
critical point for developing algorithms of all types is acquiring
essential data and annotating them with human intervention.
The engagement of the safety reviewer with the computer
algorithm can help address the issue of incomplete features and
data sparseness, especially when training data are lacking. Thus,
the concept “human-in-the-loop” has been proposed to tackle
these challenges, by incorporating human knowledge into the
process (in this case the algorithmic model).

The answer to the second question is more challenging and
currently understudied. New AI technologies using large
language models to mimic human reasoning by identifying the
most likely sequence of words may become sufficiently robust
to superficially meet the Diffusion of Innovation theory’s
attributes, such as complexity and compatibility. One such
algorithm has already been reported to have passed the medical
board examinations and as a result is controversially being
proposed as potentially supporting clinical decision-making
[50]. In the context of application to case-based reasoning in
pharmacovigilance, large language models might be used to
summarize the narratives of ICSRs as part of a case series
evaluation and to provide a narrative description that has all the
hallmarks of a careful analysis but which might be riddled with
errors. For example, a large language model might construct a
sentence that follows the pattern observed in a narrative
describing the relationship between a drug and a clinical
outcome. The description, however, might be incorrect because
it does not incorporate the scientific and clinical knowledge
about the relationships among the various factors that a human
expert would likely include in their description. Large language
models will likely require that additional knowledge models be
incorporated into their workflows for a complete analysis of
case series and case-based reasoning more generally.

In conclusion, we need an improved understanding of causal
inference and the cognitive framework for determining the
causal relationship between a drug and an AE. While human
expert evaluation is the current gold standard, the cognitive
framework remains incompletely articulated [11,12]. Making
a computable cognitive framework trustworthy will not just
require its full articulation but also the application of a process
to measure and quantify uncertainty as well as computational
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reproducibility. Implementation should enable transparent
comparisons of the data used, the decisions being made by the
algorithm to the incorporated data, and decisions made by
human experts. Improved understanding of causal inference
and the cognitive framework for determining the causal

relationship between a drug and an AE will still be important
to optimize how such assessments are undertaken and the
decision-making process derived from ICSRs regarding the
benefits and risks of drugs.

Textbox 1. Research priorities for facilitating the use and trust of artificial intelligence (AI) tools in case-based assessments.

For the application of AI to case-based reasoning generally, future work is needed in the following aspects:

• Evaluate, understand, explain, and ultimately control uncertainty associated with algorithms for them to be useful, using alternative approaches
and models.

• Assess computational reproducibility, efficiency, and resource requirements.

• Develop methods that support the evaluation of rule-based algorithms and can measure the extent to which the constructed rules satisfy the
end-user’s requirements and that can determine whether the rule definitions are accurate.

For the application of AI to individual case safety report (ICSR) evaluation, future work is needed in the following aspects:

• Better understand and document the cognitive framework of safety reviewers, in particular, when and how decisions are made using information
external to the report itself, such as a case definition or known adverse effects.

• Empirically derive evidence by capturing the actual steps taken by a safety reviewer in real time and developing consensus on the detailed
requirements for a high-quality case.

• Develop “tunable” AI algorithms in which performance characteristics and even features such as gender or race used in the algorithm would be
selectable by the safety reviewer, consistent with the notion that computational reproducibility, operationalized as “what you can trust and what
you can check,” is a key component to the socialization of AI algorithms, which currently has limited formal underlying theory. If the supplied
algorithm does not have the flexibility to incorporate these variables and provides results that are different from what the safety reviewer would
expect, then the method decreases trust. Qualitative analysis performed by safety reviewers supplies additional variables to incorporate in the
revised iteration of the algorithm to improve its performance.

• Explore the relevance of N-of-1 trials in drug development as the closest example of the type of data integration and individualized inferential
approach that is needed for case-based reasoning, recognizing that the data limitations of ICSRs make this approach even more challenging.
N-of-1 trials are multiple crossover trials, usually randomized and often blinded, and conducted on a single patient. Thus, N-of-1 trials are
single-patient trials [49].
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