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Abstract

Background: The occupational burnout epidemic is a growing issue, and in the United States, up to 60% of medical students,
residents, physicians, and registered nurses experience symptoms. Wearable technologies may provide an opportunity to predict
the onset of burnout and other forms of distress using physiological markers.

Objective: This study aims to identify physiological biomarkers of burnout, and establish what gaps are currently present in
the use of wearable technologies for burnout prediction among health care professionals (HCPs).

Methods: A comprehensive search of several databases was performed on June 7, 2022. No date limits were set for the search.
The databases were Ovid: MEDLINE(R), Embase, Healthstar, APA PsycInfo, Cochrane Central Register of Controlled Trials,
Cochrane Database of Systematic Reviews, Web of Science Core Collection via Clarivate Analytics, Scopus via Elsevier,
EBSCOhost: Academic Search Premier, CINAHL with Full Text, and Business Source Premier. Studies observing anxiety,
burnout, stress, and depression using a wearable device worn by an HCP were included, with HCP defined as medical students,
residents, physicians, and nurses. Bias was assessed using the Newcastle Ottawa Quality Assessment Form for Cohort Studies.

Results: The initial search yielded 505 papers, from which 10 (1.95%) studies were included in this review. The majority (n=9)
used wrist-worn biosensors and described observational cohort studies (n=8), with a low risk of bias. While no physiological
measures were reliably associated with burnout or anxiety, step count and time in bed were associated with depressive symptoms,
and heart rate and heart rate variability were associated with acute stress. Studies were limited with long-term observations (eg,
≥12 months) and large sample sizes, with limited integration of wearable data with system-level information (eg, acuity) to predict
burnout. Reporting standards were also insufficient, particularly in device adherence and sampling frequency used for physiological
measurements.

Conclusions: With wearables offering promise for digital health assessments of human functioning, it is possible to see wearables
as a frontier for predicting burnout. Future digital health studies exploring the utility of wearable technologies for burnout prediction
should address the limitations of data standardization and strategies to improve adherence and inclusivity in study participation.
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Introduction

Burnout is an occupational syndrome characterized by emotional
exhaustion, depersonalization, and feelings of reduced personal
accomplishment caused by chronic, unmitigated high levels of
job-related stress [1]. Burnout is common among health care
professionals (HCPs, also referred to as health care workers),
impacting an estimated 35% to 54% of nurses and physicians,
and between 45% and 60% of medical students and resident
physicians in the United States [2]. Several studies also reveal
a high prevalence of depression and anxiety in HCPs that
preceded the coronavirus pandemic [3-9]. Data further suggests
that burnout and other forms of distress have increased among
HCPs as a result of the COVID-19 pandemic [10-12].

This is concerning because the well-being of HCPs impacts the
quality of patient care and patients’ access to care. Several
meta-analyses and systematic reviews have reported associations
between burnout and negative impacts on the quality of care
provided to patients, including increasing the risk of medical
errors [13], malpractice claims [14], nosocomial infections [15],
and mortality [16]. Additionally, other studies have found that
HCPs who report experiencing burnout are more likely to reduce
their time taking care of patients and quit, all of which
negatively impact patient’s access to care and add a burden to

the global health care system [2]. The impacts of burnout go
beyond the workplace, as HCPs with reported burnout are at
increased risk of cardiovascular diseases [17,18], suicidal
ideation [13,19], substance use disorders [20], uncontrolled
stress [21], car accidents [22], and quality of life [23].

Contributors of burnout in HCPs are multifactorial and complex.
While most factors contributing to burnout originate from
system-level factors within the work environment, some risk
factors originate from the personal domain or challenges in the
personal-professional interface, such as work-home conflict
(Figure 1). Due to the complexity of the factors involved, no
model exists for predicting when an individual HCP or group
of HCPs are at risk for developing burnout or other forms of
distress. In response to the negative outcomes of burnout for
HCPs and patients, the National Academies of Science,
Engineering, and Medicine recommends health care
organizations monitor (through frequent surveys) and respond
to burnout. This approach is retrospective, as the time required
for health care organizations to administer surveys, HCPs to
complete them, and the additional time needed to analyze and
interpret results all delay any response to burnout. A better
approach would be a proactive one, where organizations or
individual HCPs could predict and respond to high levels of job
stress before the manifestation of burnout and associated
personal and professional consequences result.

Figure 1. Wearable-augmented burnout management capturing the interplay of physiological and workplace factors.

Previous studies and reviews suggest heart rate (HR) [24], heart
rate variability (HRV) [24], sleep [25], and skin temperature
[26] vary in response to stress. Additionally, sleep or fatigue
also relates to the risk of burnout [27], depression [28], and
other related conditions [29]. These types of data can be
collected passively from wearable devices. Over the past 5 years,
the adoption of wearable devices worldwide has more than
doubled [30]. Therefore, data collected passively from wearable

devices could potentially provide an avenue for detecting
individuals at risk for high job stress, burnout, depression, and
other related conditions. If predictive, such real-time information
obtained passively from wearable devices could dramatically
shift the current reactive paradigm to a proactive one, potentially
leading to meaningful intervention before patients and HCPs
experience adverse health consequences of burnout.

J Med Internet Res 2024 | vol. 26 | e50253 | p. 2https://www.jmir.org/2024/1/e50253
(page number not for citation purposes)

Barac et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/50253
http://www.w3.org/Style/XSL
http://www.renderx.com/


Previous systematic reviews suggest wearable devices may have
some utility in predicting depression severity and stress levels
[31]. To our knowledge, there is no review that investigates this
relationship among HCPs or explores the ability of wearable
devices to detect burnout risk. Hence, a scoping review was
conducted to identify and summarize studies exploring
associations between burnout, anxiety, depression, and stress,
with data obtained from wearable devices in cohorts of HCPs.

Methods

Data Sources and Search Strategy
A comprehensive search of several databases was performed
on June 7, 2022. No date limits were set for the search. The
databases (and their coverage periods) were Ovid: MEDLINE
(1946 to Present and Epub Ahead of Print, In-Process and Other
Non-Indexed Citations and Daily), Embase (1974+), Healthstar
(1966+), APA PsycInfo (1987+), Cochrane Central Register of
Controlled Trials (1991+), Cochrane Database of Systematic
Reviews (2005+), Web of Science Core Collection via Clarivate
Analytics (1975+), Scopus via Elsevier (1788+), EBSCOhost:
Academic Search Premier, CINAHL with Full Text (1981+),
and Business Source Premier.

The search strategy was designed and conducted by a medical
librarian (LCH) with input from the study’s investigators (APA
and LND). Controlled vocabulary supplemented with keywords
was used. The actual strategies listing all search terms used and

how they are combined are available in the Multimedia
Appendix 1.

Review Strategy
The initial search yielded 505 papers. Two reviewers (MB and
SS) independently identified and screened the titles and abstracts
of potentially eligible papers. The inclusion criteria of the initial
round of screening were as follows: the study must include a
validated measure of burnout, stress, anxiety, or depression and
the study must include only data from a wearable device worn
by an HCP. For this work, we defined HCP as being a medical
student, resident, practicing physician, or registered nurse in a
hospital or outpatient clinical setting. The full-text reviews of
the papers that resulted from the initial screening, data
extraction, and quality assessment were also performed
independently and in pairs by 2 reviewers (MB and SS). Papers
were not excluded due to their calculated quality score. During
this process, 475 papers were omitted because they did not
satisfy the inclusion criteria (n=472) or were duplicates (n=3).
After the initial screening, the full text of 30 papers was assessed
for eligibility. Any disagreement was resolved by consensus
with other senior reviewers (APA and LND) and the final source
list was created, with senior reviewers blinded to reviews of
each other and primary reviewers (MB and SS). The study
selection process is illustrated in Figure 2. Tables 1 and 2
provide descriptions of the final 10 papers published from April
2017 to December 2021 included in this review.

Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram.
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Table 1. Summary of included studies.

Other measure includedValidated anxiety, burnout,
stress, or depression measures

Wearable-derived mea-
surements

Sample characteristicsAuthor

Positive and Negative Affect Sched-
ule, Satisfaction with Life Scale,
Pittsburgh Sleep Quality Index, Af-

fect EMAd, Big Five Inventory-2, and

Anxiety and Stress EMAe

STAIcHRa, Sleep, and STCb113 NursesFeng et al [32]

Mood EMAPHQ-9fHR, Sleep, and STC775 ResidentsAdler et al [33]

—jMBI-AbbreviatedHRVg, RHRh, RRi, and
Sleep

21 Resident and Physi-
cians

Jevsevar et al [34]

—PSS-4kHR and HRV83 Medical students (19
had complete data)

Silva et al [35]

Short-Form Health Survey, Epworth
Sleepiness Scale, Satisfaction with
Medicine Scale, and International
Physical Activity Questionnaire

MBI-HSSlSleep and STC59 ResidentsMendelsohn et al [36]

—Single-item burnout measureRHR, Sleep, and STC28 ResidentsMarek et al [37]

—MBI-HSS, PROMIS-29m

(Depression and Anxiety)

Sleep21 PhysiciansSochacki et al [38]

Functional Assessment of Chronic
Illness Therapy-Fatigue, Penn State
Worry Questionnaire, Revised Life
Orientation Test, Interpersonal Reac-
tivity Index Perspective-Taking sub-
scale, Measure of Current Status-Part
A, and Cognitive Affective Mindful-
ness Scale

MBI–HSS, PSS-10, and
PHQ-9

Activity level and Sleep75 Residents (26 had
complete data)

Chaukos et al [39]

—MBI–HSS (modified Dutch
version)

SCn114 Nursesde Looff et al [40]

—STAI-short versionHR and HRV20 Residents and Physi-
cians

Weenk et al [41]

aHR: heart rate.
bSTC: step count.
cSTAI: State-Trait Anxiety Inventory.
dEDA: electrodermal activity.
eEMA: ecological momentary assessment.
fPHQ-9: Patient Health Questionnaire.
gHRV: heart rate variability.
hRHR: resting heart rate.
iRR: respiratory rate.
jNot available.
kPSS: Perceived Stress Scale.
lMBI-HSS: Maslach Burnout Inventory–Human Services Survey.
mPROMIS: Performance of the Patient-Reported Outcomes.
nSC: skin conductance.
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Table 2. Primary findings and bias in studies using wearable devices in health care professionals.

Newcastle Ot-
tawa Scale Score

Primary findingsLength of data
collection

DeviceAuthor

8Baseline STAIa score did not relate to sensor-measured physical
activity or sleep over the ensuing 10 weeks.

10 weeksFitbit Charge 2Feng et al [32]

7Quarterly measurements of change in depressive symptoms related

to measured STCb, sleep, and HRc.

14 monthsFitbit Charge 2Adler et al [33]

8Being in the operating room related to the next day HRVd. Device
reported sleep related to next-day HRV. Relationship between
baseline burnout score and device measurements not reported.

12 weeksWHOOPJevsevar et al [34]

8Stress and HRV were both significantly different between the
baseline and stress condition

2 weeksMicrosoft Smart
Band 2

Silva et al [35]

7Baseline burnout score did not relate to average daily sleep or STC
over the ensuing 14 days.

14 daysFitbit ChargeMendelsohn et al [36]

8Average daily sleep and activity level over a 2-4–week period did
not relate to single-item burnout measure score. Average daily resting
HR over a 2-4–week period was higher among residents with burnout
versus those without burnout

16 weeksFitbit Charge HRMarek et al [37]

8No significant association between weekly burnout score and device-
measured hours of sleep over 4 weeks.

4 weeksWHOOPSochacki et al [38]

6No association between baseline depressive symptoms or stress
levels and device-measured sleep or activity levels over 30 or 90
days of the study. No association between chronic burnout (burnout
at 2 time points), never burned out, new burnout (burnout at 2nd but
not 1st time point), and unknown burnout status (survey not complet-
ed) and devise measured sleep or activity level aggregated over first
30 days.

6 monthsBasis Health
Tracker

Chaukos et al [39]

8Skin conductance collected over 1 shift among nursing staff did not
correlate with burnout scores collected on questionnaires completed
within 2 days of wearing the device (mean 2.4, SD 10 days; range
0-44 days).

1 day or night
shift

Empatica E4de Looff et al [40]

8Stress measured by the patch increased during surgery, more so for
less experienced trainees, but did not correlate with change in STAI
score before or after surgery, perhaps due to small sample size or
lack of sensitivity to change.

Up to 3 days
(at least 2)

HealthPatchWeenk et al [41]

aSTAI: State-Trait Anxiety Inventory.
bSTC: step count.
cHR: heart rate.
dHRV: heart rate variability.

Extraction Strategy
Data extraction was mostly completed by a single researcher
(MB). Other researchers (APA and SS) helped refine data
extraction and review the tables. The following information
was extracted from the papers and is included in Tables 1 and
2: sample population (size and occupation), anxiety, burnout,
stress or depression assessment instrument, additional
measurements used, wearable device used, measured
physiological variable, study duration, primary findings, and
the author-determined quality assessment score.

Quality Assessment
The methodological quality of nonrandomized or observational
studies was assessed by 2 reviewers (MB and SS) using the
Newcastle Ottawa Quality Assessment Form for Cohort Studies
[42]. The Newcastle-Ottawa Scale is a validated scale of 8 items
in 3 domains: selection, comparability, and outcome. Studies

are rated from 0 to 9, with those studies rating 0-2 (poor quality),
3-5 (fair quality), and 6-9 (good or high quality). All 10 studies
received a Newcastle-Ottawa Scale rating of good or high
quality.

Results

Roles of Participating Health Care Professionals
Among the 10 reviewed studies, 8 were conducted in the United
States, 1 study was conducted in Portugal [35], and another one
was conducted in Canada [36]. Seven studies recruited either
resident physicians (postgraduate medical trainees), practicing
physicians, or a combination of both, primarily within the same
specialty (eg, orthopedic surgery and emergency medicine).
Two studies recruited registered nurses [32,40] and 1 study
recruited medical students [35]. Sample sizes ranged from 20
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to 775 participants per study (see Table 1). Only 3 studies had
more than 100 participants [32,33,40].

Wearable Devices, Physiological Variables Collected,
and Duration of Observation
Table 1 summarizes the sample population, sample size,
physiological variables collected from wearable devices, and
psychometrics used in the 10 studies. The devices used, length
of data collection, and primary findings are listed in Table 2.
Out of the 10 studies, 9 used wrist-worn biosensors, such as the
Fitbit Charge (n=4) [32,33,35,40] WHOOP (n=2) [34,38], Basis
B1 (n=1) [35], Empatica E4 (n=1) [40], and the Microsoft Smart
Band 2 (n=1) [35]. Sensors embedded within wrist-worn
biosensors included optical heart sensors, electrical heart
sensors, accelerometers, and skin temperature sensors. The other
device used was a HealthPatch, an adhesive patch with 2 ECG
electrodes used to measure HR and HRV. A variety of
physiological variables were collected, with sleep being the
most common, measured in 7 studies. Studies ranged in length
of data collection, from a single 12-hour shift to a 14-month
period. Only 5 studies collected data for more than 10 weeks
[32-34,37,39].

Methodological Wearable Data Reporting
Only 2 studies explicitly stated the sampling frequency used
when processing data from the wearable device [33,39]. Four
of the studies discussed how the data were processed; however,
the level of detail varied [32,33,35,40]. Three of the studies
indicated the cutoff values for physiological variables or
explained how outliers were addressed [32,33,40]. Only 4
studies explicitly stated how much raw data were retrieved from
the devices [32-34,36].

Reported Relationships Among Burnout, Depressive
Symptoms, Stress, and Anxiety With Data Obtained
From Wearable Devices

Burnout
Of the 10 included studies, 6 included a measure of burnout
(Table 1) [34,36-40]. Four of these 6 studies used the Maslach
Burnout Inventory–Human Services Survey (MBI-HSS) [43].
In a cross-sectional study of 114 nurses, no relationship was
found between MBI-HSS score and skin conductance, a measure
of autonomic nervous activity, collected through an Empatica
E4, for 1 shift [40]. Another study investigated the relationship
between MBI-HSS score, self-reported work hours, physical
activity, and sleep, as measured by a Fitbit, in a cohort of 59
residents [36]. No relationship was found between the change
in burnout score and data collected from the Fitbit over 2 weeks.
In the third study, no relationship was found between MBI-HSS
score and sleep, as measured by a WHOOP, over the course of
4 weeks [38]. Last, in a study of 75 medicine and psychiatry
residents, no relationship was found between burnout score and
sleep or activity levels, as measured by Basis B1 health-tracking
device, during their first 6 months of residency [39].

Two studies measured burnout using scales other than the
22-item MBI-HSS (widely considered the gold standard)
[34,37]. In a study of 21 orthopedic residents and surgeons, no
association was found between baseline abbreviated MBI scores

and WHOOP measures collected over 12 weeks [34]. The final
study investigated the association between burnout, as measured
by a commonly used single-item measure, and sleep and activity
level, as measured by a Fitbit. In this study, of 28 emergency
medicine residents, there was no association between burnout
scores and sleep or activity levels over the course of the 16-week
study [37].

Depressive Symptoms, Stress, and Anxiety
A 14-month study of 775 medical residents found a relationship
between depressive symptoms, as measured by the 9-item
Patient Health Questionnaire [44], and step count (STC) and
sleep as measured by a Fitbit Charge 2 [33]. Medical residents
whose depressive symptoms worsened over the period of the
study had a significantly higher skew in their hourly STC
distributions and spent less time in bed than those whose
symptoms did not worsen. In a study of 83 medical students,
Perceived Stress Scale-4 scores related to HR and HRV, were
measured by a Microsoft Smartband 2, at baseline and during
an examination [35].

In a 10-week study of 113 nurses led by Feng et al [32], no
relationship was found between the level of anxiety, as measured
by the State-Trait Anxiety Inventory (STAI) [45], and wearable
sensor data (eg, sleep and HR) collected using Fitbit Charge 2
smartwatch. Weenk et al [41] conducted a study of 20 surgeons
and surgical residents who completed an abbreviated version
of the STAI before and after performing surgery, and wore a
HealthPatch. This adhesive patch calculates stress using an HR
and HRV-dependent algorithm for 48 to 72 hours [41]. There
was no correlation found between the STAI score and
HealthPatch data.

Device Use Compliance and Experience
Seven studies reported data on participant adherence or
experience with wearable devices. Chaukos et al [39] reported
that 25 (40%) of their participants wore their device for more
than 50% of the time for the first 3 months of the study, while
another 13 (21%) participants wore the device for more than
75% of the time for the first 3 months. Other studies, such as
one conducted by Sochacki et al [38] reported that of the 26
participants, 5 did not complete the minimum WHOOP
compliance (4 weeks). Surgeons involved in a study by Jevsevar
et al [34] reported a high percentage of device compliance at
83.2% of the total collection window, similar to the 93%
compliance rate reported by Mendelsohn et al [36] and Sochacki
et al [38]. Weenk et al [41] reported that 6 of 20 individuals
experienced problems with their HealthPatch, similar to Marek
et al [37] who reported 1 of 30 participants dropped out due to
fitness tracker intolerance. Problems included connection failure
(n=2), loss of skin contact (n=2), and skin irritation (n=2). Feng
et al [32] noted similar compliance between day-shift
participants and night-shift participants (number of recordings
day-shift: mean 44.6, SD 3.1 sessions; night-shift: mean 45, SD
20.2 sessions).

Risk of Bias
A risk of bias of assessment was completed for the 8 cohort
studies and 1 cross-sectional study (Figure 3). While the risk
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of bias was generally low across the studies, none included a comparison group of participants who did not wear a device.

Figure 3. Risk of bias assessment for observational cohort studies.

Discussion

To our knowledge, this is the first scoping review to investigate
the use of wearable technologies for the prediction of burnout,
anxiety, depression, and stress in HCPs. Among the 10 studies
identified, a range of wearables collected data on HR, HRV,
respiratory rate, skin temperature, sleep, and activity levels from
a single shift of work and up to 14 months of data collection in
relatively small samples of physicians, medical students, and
nurses. In these studies, no relationships were found between
collected physiological data from wearables and burnout or
anxiety. One study reported a relationship between STC, time
in bed, and depressive symptoms, and another between HR,
HRV, and acute stress (during an examination). Identified
studies had methodological limitations, including short duration
which limits the capture of naturalistic variations in the
workplace stressors.

In this review, 3 studies measured HRV [34,35,41] and only 1
found a significant relationship between HRV and acute stress.
A previous systematic review involving non-HCPs identified
2 studies demonstrating relationships between HRV and acute
stress-induced conditions and 1 study demonstrating a
relationship between HRV and stress levels measured by
catecholamine levels [31]. This previous systematic review also
identified 1 study where in a setting of laboratory-induced stress,
HRV parameters related to STAI score. These studies, however,

differed substantially from the ones included in this review. For
example, none of them collected physiological data longer than
24 minutes, stress was induced in a laboratory setting (vs
occurring naturally in a work setting), and only 1 study
compared physiological data with a self-reported stress measure
(ie, STAI score).

Given these early findings, further research focusing on the
following elements of rigor are warranted. First, the length of
observation should be long enough (at least 2 or 3 consecutive
quarters of a calendar year) to allow sufficient quanta of
wearable data to capture fluctuations in and chronicity of
workplace stress. Studies should systematically collect data
using validated instruments measuring burnout (eg, MBI-HSS
[43]), depression (eg, Center for Epidemiologic Studies
Depression Scale [46] and Patient Health Questionnaire-9 [44]),
and anxiety (eg, General Anxiety Disorder-7 [47]). Investigators
may also want to consider designing cohorts comprising groups
of HCPs defined by their type of medical specialty or practice
location. For example, it is possible that workplace stressors,
patient acuity, and job demand fluctuate between primary care
and surgical specialties and between outpatient practices and
hospital-based practices. Hence, the burnout biomarkers may
vary between practices. Considering that burnout is defined as
when job demands exceed job resources, it is possible that the
workplace (eg, patient acuity and hospital bed size) and related
staffing factors (eg, workload, shift length, and availability of
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support staff) impact physiological biomarkers collected from
wearables. Hence, future studies should consider collecting
organizational variables to better understand the systemic
contributors of burnout. Additionally, given the era of
decentralized health care practice (eg, nontraditional shift
days/hours and remote care with augmented reality), studies
engaging with HCPs may benefit from no-contact passive
monitoring and a digital app interface for survey collection (ie,
decentralized trail). Finally, there is a bioethics component to
understand how wearables can be successfully integrated into
workforces’ burnout management. Greater attention needs to
be paid to participant engagement, including addressing comfort
with wearing the device, resolving discrepancies in
wearable-derived data versus self-reported data, and
understanding factors that influence perceptions of fatigue but
not recorded sleep [37,48,49].

The use of wearables to detect the functioning states of human
beings is an active and rapidly evolving field. Several
wearable-based studies have been shown to aid in the detection
of mental health conditions or resilience in quality of life [50]
through mindfulness practices including physical activity [51]
and sleep [52-54] monitoring. Prior work has demonstrated that
aspects of physical functioning when combined with data during
the day could predict variations in aspects of QoL and mental
well-being [55-58]. Work by Campbell et al [59-64] has
demonstrated the ability of daily journaling, wearables, and
mobile assessments to detect depressive symptoms and mental
states in patients with schizophrenia. These prior efforts in the
field of mental health and the work summarized in this scoping
review demonstrate the promise of wearables in predicting states
of one’s functioning, including burnout. However, a consensus
is lacking on the best approaches to collecting, processing, and
reporting physiological data, much like CONSORT
(Consolidated Standards of Reporting Trials) [65] for reporting
randomized trials and STROBE (Strengthening the Reporting
of Observational Studies in Epidemiology) [66] guidelines for
reporting observational studies. Standardization of variables
should include the creation of a guideline for reporting the
sampling frequency, device adherence, and other information
regarding device parameters that impact data collection. Such
standardization would assist with generalizing findings,
validating predictive algorithms, informing meta-analysis, and
the use of data for retraining predictive models regardless of
the wearable’s make and model. Additionally, there needs to
be consensus around approaches to address bioethics, privacy,
and confidentiality concerns of participants [67,68]. Predictive
technologies, informed by personal biometric or physiologic
data, may help improve work conditions but could also place
individuals’ privacy or perhaps even their job security at risk.

This study has limitations. Only studies that included physicians,
resident physicians, medical students, and nurses and were
published in English were included. Following the 2019
pandemic, physicians identifying as 2 or more races experienced
the highest levels of burnout onset, according to a report by the
American Medical Association [69]. Furthermore, there are
known disparities in the access to, and the use of digital health
technologies in underrepresented minorities [70,71]. Therefore,
it is vital to understand the factors that cause burnout in these
groups of professionals and remove barriers to access to
personalized wellness technologies using wearables that may
help understand and mitigate burnout. In the context of the use
and access of digital health for burnout, 8 of the 10 studies
reported the gender breakdown of participants, and only 1 study
reported the race of their participants. With the urgent need to
broaden access to digital health solutions to study and
understand burnout, future efforts should (1) follow reporting
guidelines (eg, set by National Institutes of Health in the Human
Subjects sections) to report on participant characteristics by
ethnicity, race, and gender, and (2) innovate study procedures
(eg, decentralized protocols) that improve the recruitment and
engagement of underrepresented minorities in digital health
studies of burnout. Although we sought to include validated
measures of burnout, stress, depression, and anxiety, the
instruments used in the studies varied in their psychometric
strengths. Finally, most studies lacked power calculations,
making findings, effect sizes, or impact of dropouts difficult to
interpret from the perspective of the generalizability of
biomarkers.

Despite the popularity of wearable devices, only 10 studies were
identified that explored relationships between physiological
data and burnout, depressive symptoms, stress, or anxiety. Most
of these studies had substantial methodological limitations, and
nearly all reported limited data collection and processing
information, participant experience with the wearable device,
and device compliance. Standardizing study procedures,
common data elements, and reporting of wearable data are
needed to strengthen the rigor of digital health studies.
Addressing these limitations will result in improvements in
wearable device research, including data standardization and
reporting, that will validate their use in providing early
intervention for HCP wellness. Additional research is warranted
to explore the potential of wearable devices, perhaps augmented
with other system-level data (eg, work shift lengths and
absenteeism), to predict burnout and other forms of distress,
hopefully leading to meaningful action before it has an adverse
impact on HCPs and patient care.
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