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Abstract

Digital twins have emerged as a groundbreaking concept in personalized medicine, offering immense potential to transform health
care delivery and improve patient outcomes. It is important to highlight the impact of digital twins on personalized medicine
across the understanding of patient health, risk assessment, clinical trials and drug development, and patient monitoring. By
mirroring individual health profiles, digital twins offer unparalleled insights into patient-specific conditions, enabling more
accurate risk assessments and tailored interventions. However, their application extends beyond clinical benefits, prompting
significant ethical debates over data privacy, consent, and potential biases in health care. The rapid evolution of this technology
necessitates a careful balancing act between innovation and ethical responsibility. As the field of personalized medicine continues
to evolve, digital twins hold tremendous promise in transforming health care delivery and revolutionizing patient care. While
challenges exist, the continued development and integration of digital twins hold the potential to revolutionize personalized
medicine, ushering in an era of tailored treatments and improved patient well-being. Digital twins can assist in recognizing trends
and indicators that might signal the presence of diseases or forecast the likelihood of developing specific medical conditions,
along with the progression of such diseases. Nevertheless, the use of human digital twins gives rise to ethical dilemmas related
to informed consent, data ownership, and the potential for discrimination based on health profiles. There is a critical need for
robust guidelines and regulations to navigate these challenges, ensuring that the pursuit of advanced health care solutions does
not compromise patient rights and well-being. This viewpoint aims to ignite a comprehensive dialogue on the responsible
integration of digital twins in medicine, advocating for a future where technology serves as a cornerstone for personalized, ethical,
and effective patient care.
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KEYWORDS

digital health; digital twin; personalized medicine; prevention; prediction; health care system

Introduction

Digital twins have emerged as a groundbreaking concept in the
field of personalized medicine, offering immense potential to
transform health care delivery and improve patient outcomes
[1-3]. By creating digital replicas of individuals and leveraging
advanced technologies, digital twins enable health care
professionals to gain a comprehensive understanding of patients’
health, personalize treatment plans, and make data-driven
decisions [4,5]. In this era of rapid technological advancements,
digital twins have proven to be instrumental in enhancing the

understanding of patient health, predictive modeling, risk
assessment, digital clinical trials, remote patient monitoring,
and telemedicine [6,7].

One of the key advantages of digital twins is their ability to
integrate and analyze diverse data sets, including electronic
health records (EHRs), wearable devices, genetic information,
and patient-reported data [8]. This comprehensive data
integration empowers health care providers to have a holistic
view of a patient’s health status, identifying patterns,
correlations, and potential health risks that might go unnoticed
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with isolated data sources. Through real-time monitoring and
feedback, digital twins enable continuous assessment of a
patient’s health, allowing for timely interventions and
adjustments to treatment plans when necessary [1,6].

Digital twins also have a major role in predictive modeling and
risk assessment [9]. By leveraging artificial intelligence (AI)
algorithms and machine learning techniques, digital twins can
simulate disease progression [10], predict treatment responses
[11,12], and conduct personalized risk assessments [13]. This
personalized approach considers factors such as genetics,
lifestyle choices, and environmental influences, enabling health
care providers to offer targeted preventive measures, early
detection strategies, and personalized interventions to mitigate
identified risks [14,15].

Moreover, digital twins have the potential to revolutionize digital
clinical trials and drug development [2]. By creating digital
patient populations and simulating treatment effects, digital
twins streamline the drug discovery process, optimize trial
design, and reduce costs and timelines [16,17]. They enable
researchers to assess the efficacy and safety of drug candidates
before conducting traditional trials, accelerating the availability
of new treatments to patients [16].

Moreover, digital twins contribute significantly to remote patient
monitoring and telemedicine [18]. By leveraging wearable
sensors, Internet of Things (IoT) devices, and remote data
transmission, digital twins facilitate continuous monitoring of
patient health parameters, personalized interventions, and remote
consultations [13]. This approach improves patient access to
health care services, reduces hospitalizations, and empowers
individuals to actively participate in their own health care
management [19].

As the field of personalized medicine continues to evolve, digital
twins hold tremendous promise in transforming health care
delivery and revolutionizing patient care [20]. By harnessing
the power of data integration, predictive modeling, digital
simulations, and remote monitoring, digital twins enhance the
understanding of patient health, optimize treatment strategies,
and pave the way for a more personalized and efficient health
care system [1]. Digital twins are enhancing health care by
providing health care professionals with a deeper understanding
of patients’ health, enabling personalized care, and optimizing
treatment strategies. They also hold immense potential in
advancing drug development and making health care more
accessible through remote monitoring and telemedicine.
Personalized medicine is at a crossroads, and digital twins
represent a path toward a more precise and patient-centric health
care paradigm. Drawing from years of research and clinical
observations, it is important to argue that the integration of
digital twins is not just an advancement but a necessity for
modern health care. Thus, this viewpoint critically examines
the role of digital twins on personalized medicine across (1) the
understanding of patient health, (2) risk assessment, (3) clinical
trials and drug development, and (4) patient monitoring.

Digital Twin

In recent years, the concept of digital twins has been receiving
increasing attention from both researchers and engineers. As
research in the field of digital twins progresses, carried out by
both industry and academia, the boundaries between digital
twins and other related concepts have started to blur. Initially,
the scope of the digital twin included physical and digital
products along with their interconnections [21]. This concept
has evolved due to the rapid advancements in communication
technology, sensor technology, big data analysis, IoTs, and
simulation technology [22]. This growth has led to significant
research into digital twins, even if digital twins remain
theoretical applications.

Subsequently, the digital twin was redefined as a digital
replication of living or nonliving physical entities, opening
applications in areas such as health and well-being [23]. As a
dynamic concept, the digital twin represents a digital replica of
human organs, tissues, cells, or microenvironments that
continuously adapts to real-time data variations and predicts
corresponding future scenarios [24]. However, the digital twin
goes beyond being just a digital model linked to its real-life
counterpart through emerging technologies. It emerges as a
sentient, intelligent, and evolving model capable of optimizing
processes and continually forecasting future states, such as
defects, damages, and failures, through a closed-loop interaction
between the digital twin and its surrounding environment.

Broadly, the technologies crucial for the digital twin can be
categorized into 2 groups as follows: one involves a data-driven
statistical model, while the other integrates multiscale
knowledge and data into a mechanical model [25]. The
numerical model calculates structural performance, while the
analytical model facilitates structural analysis. An AI model,
trained with samples and numerical data, derives real-time
structural insights from sensor data.

The impact of the digital twin is profoundly reshaping industries
and has been adopted by major corporations to enhance
efficiency and identify issues. This transformative technology
is also making its way into the health care sector. In this context,
the digital twin can treat patients as digitalized stand-alone
assets applicable to various health care scenarios [26]. This
potential holds significant promise for improving treatment and
diagnostics within hospitals and for individual patients.

A digital twin represents a digital replica of a tangible entity or
process, such as a patient, their anatomical structure, or the
setting of a hospital. Currently, digital twins are designed to
dynamically mirror various data sources, including disease
registries, “-omics” data (such as genomics, biomics, proteomics,
or metabolomics data), as well as physical indicators,
demographic information, and lifestyle data pertaining to an
individual’s progression over time [27]. The evolution of
foundational technologies like the IoTs and AI, coupled with
the availability of an expanding array of accurate and accessible
data types (ranging from biometric and behavioral data to
emotional, cognitive, and psychological insights), has sparked
increased interest and exploration in the research and potential
applications of digital twins within the health care domain [27].
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Enhanced Understanding of Patient
Health

Digital twins have a major role in providing health care
professionals with an in-depth and comprehensive understanding
of an individual’s health status [28]. By integrating and
analyzing data from various sources, digital twins offer a holistic
view of a patient’s physiological parameters, lifestyle patterns,
and genetic predispositions [21,29]. This enhanced
understanding enables health care providers to personalize
treatment plans and interventions according to an individual’s
unique needs, ultimately improving patient outcomes [30].

Digital twins integrate data from multiple sources, including
EHRs [5], wearable devices [24], genetic information [31], and
patient-reported data [2]. This comprehensive data integration
allows health care professionals to gain a more complete picture
of a patient’s health. By aggregating and analyzing diverse data
sets, digital twins can identify patterns, correlations, and
potential health risks that might not be evident through isolated
data sources [32].

Digital twins enable continuous real-time monitoring of patient
data, providing health care providers with up-to-date information
on vital signs, biomarkers, medication adherence, and other

relevant parameters [33]. This real-time feedback allows for
immediate assessment of a patient’s health status and the ability
to make timely interventions or adjustments to treatment plans
when necessary [34]. Real-time data can be provided by IoT
solutions, and large data flows may be managed and secured
by robust digital infrastructures [6]. For example, a hospital’s
digital transformation team has put forth a plan to create an
advanced decision support model that uses real-time data from
various health care systems and devices. This model facilitated
the evaluation of the effectiveness of current health care delivery
systems and the assessment of the potential impact of service
modifications, all while seamlessly integrating with the
hospital’s day-to-day operations. It offered the ability to predict
the outcomes of proposed model changes before implementing
them in practice [35].

By leveraging AI algorithms and machine learning techniques,
digital twins can analyze patient data to assess an individual’s
risk factors for specific diseases or health conditions with high
levels of performance [31,36] (Table 1). This personalized risk
assessment considers a patient’s genetic profile, lifestyle choices,
environmental factors, and other relevant data [37,38]. With
this information, health care providers can offer targeted
preventive measures, early detection strategies, and personalized
interventions to mitigate the identified risks.
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Table 1. Models and accuracies of digital twins in research.

ReferenceAccuracyDatabaseModelingApplicationsYear

[39]In validation population: 93.8% for
lung cancer, 92.5% for liver cancer,
and 96.1% for adrenal cancer with term
frequency-inverse document frequency
ensemble model; 96.8% for lung, 99%
for liver, and 99.7% for adrenal with
augmented CNN.

Computed tomography
scans (2009-2021)

Natural language processing

labeling with CNNa, recurrent
neural network models, term
frequency-inverse document
frequency ensemble model

Cancer analyses progres-
sion and specific organ
identification

2022

[40]99.9% with gradient boosting, 98.6%
with decision tree classifier, 99.7%
with k-nearest neighbor, and 99.6%
with RF

EEG imagesAutomatic detection of emotion

from EEGb signals with gradi-
ent boosting, k-nearest neigh-

bor, and RFc models

Personal health care
improvement with
emotion recognition

2022

[41]82.7% of accuracy for biochemical re-
currence and 83.9% for seminal vesicle

Clinical data warehouse
with patients with cancer

Machine learning methods with
support vector machine, RF,
NN, recurrent neural network,
and long short-term memory
models

Prostate cancer progres-
sion with biochemical
recurrence and seminal
vesicle

2022

[42]99.91% for detection and 97.79% for
severity

Digital patient’s data setInverse analysis with CNN and
long short-term memory mod-
els

Abdominal aortic
aneurysm severity detec-
tion

2021

[43]76% accuracy and 0.84 for perfor-
mance

EEG data setSupport vector machinePrevention of stroke
and treatment of post-
stroke

2021

[44]98% for accuracy with DFDD and
91.5% with deep-neural network

Digital patient’s data setDeep neural network model
with deep-neural network and

deep transfer learning (DFDDd)

Fault diagnosis pattern2019

[45]85.8% for the implemented modelPulmonary tuberculosis
diagnostic electrocardio-
gram database

Deep neural modelIschemic heart disease
detection

2019

aCNN: convolutional neural network.
bEEG: Electroencephalography.
cRF: random forest.
dDFDD: fault diagnosis method using deep transfer learning.

Digital twins can simulate and predict the progression of
diseases based on real-time patient data [2]. By using historical
patient data and integrating it with the current health parameters,
digital twins can generate predictive models that help anticipate
disease progression, identify potential complications, and
estimate treatment outcomes [46]. This predictive modeling
enables health care professionals to make informed decisions
and develop personalized treatment plans that maximize efficacy
and minimize risks.

Moreover, digital twins facilitate longitudinal tracking of patient
health data, allowing health care providers to analyze trends
and changes over time. This longitudinal view provides insights
into disease progression, response to treatments, and the impact
of lifestyle modifications on overall health outcomes [47,48].
Thus, by identifying the patterns and trends, digital twins can
help health care professionals identify personalized interventions
and adjustments to optimize patient care [1].

Predictive Modeling and Risk Assessment

Digital twins can leverage advanced algorithms and machine
learning techniques to perform predictive modeling and risk
assessment in the field of personalized medicine [49]. By

analyzing real-time patient data and historical records, digital
twins enable health care professionals to anticipate disease
progression, identify potential risks, and optimize treatment
strategies [2].

Digital twins can simulate and predict the progression of
diseases based on patient-specific data [19]. By integrating
various data sources such as genetic information, biomarkers,
lifestyle factors, and treatment history, digital twins create digital
replicas of patients and model the progression of diseases over
time [5]. This modeling allows health care professionals to
forecast potential outcomes, anticipate complications, and adjust
treatment plans accordingly.

Digital twins enable health care providers to predict how
individual patients will respond to different treatment options
[21,50]. By analyzing data from similar patient cases and
incorporating real-time patient data, digital twins can generate
predictive models, taking into consideration uncertainty and
confidence intervals, that estimate treatment outcomes [46,51].
This information helps health care professionals make informed
decisions about the most effective treatments for individual
patients, increasing treatment success rates and reducing trial
and error [52,53].
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Digital twins assess individual patients’ risks for specific
diseases or health conditions by analyzing their genetic profiles,
lifestyle choices, environmental factors, and other relevant data
[1,28]. By integrating this information and leveraging machine
learning algorithms, digital twins can identify personalized risk
factors and quantify the likelihood of developing certain
conditions [54]. This personalized risk assessment enables health
care providers to implement preventive measures, early detection
strategies, and targeted interventions to mitigate risks [55].

Furthermore, digital twins can serve as early warning systems
by continuously monitoring patient data and identifying potential
health risks or deviations from normal patterns [56,57]. By
establishing baseline parameters for each patient, digital twins
can detect anomalies or warning signs that may indicate the
onset of a disease or adverse health event [58]. This early
detection allows for timely interventions, proactive health care
management, and prevention of complications [1]. By
considering individual patient characteristics, such as genetics,
lifestyle, and response to previous treatments, digital twins can
recommend tailored treatment plans that maximize efficacy and
minimize side effects [5,21]. This personalized approach helps
health care professionals select the most suitable treatments,
dosages, and interventions for each patient, leading to improved
outcomes.

The use of digital twins for predictive modeling and risk
assessment presents several ethical considerations that should
be carefully examined and addressed [59]. The collection and
storage of data should be done with a strong focus on privacy
and data security and ensuring that personal or sensitive
information is adequately protected is paramount [57].
Moreover, individuals whose data are used in digital twin
models should provide informed consent. They should be aware
of how their data are being used and could opt out if they choose
[21]. Furthermore, there should be transparency in how digital
twins are created and used. Clear explanations of the modeling
process and the factors influencing predictions should be
provided to stakeholders, including regulators and the public
[59].

Digital Clinical Trials and Drug
Development

Digital twins are poised to revolutionize the landscape of clinical
trials and drug development, offering significant advantages
over traditional approaches [60]. By simulating digital patient
populations and leveraging advanced technologies, digital twins
streamline the drug discovery process, accelerate clinical trials,
and enhance the efficacy and safety of new treatments [60].

The creation of digital patient populations that closely resemble
real-world patient demographics is now possible with the future
development of digital twins [61-63]. These digital populations
can be customized to reflect diverse characteristics, such as age,
sex, genetics, and comorbidities [30]. By generating digital
patients with varying profiles, digital twins provide a
comprehensive representation of the population under study,
improving the generalizability of trial results [64]. Indeed, digital
twins could simulate the effects of potential treatments on digital

patients, considering individual patient characteristics and
treatment responses [51]. This allows researchers to assess the
efficacy and safety of drug candidates before conducting costly
and time-consuming clinical trials. Digital twins assist in
optimizing the design of clinical trials by providing insights
into patient recruitment, trial end points, sample size
determination, and treatment protocols [12,27]. By analyzing
digital patient populations, digital twins can predict the likely
response rates, treatment effects, and potential adverse events,
helping researchers tailor trial parameters for maximum
efficiency and statistical power [65,66]. Digital clinical trials
conducted through digital twins offer substantial cost and time
savings [51]. By replacing or supplementing traditional trials,
which often involve extensive site visits and patient recruitment,
digital twins streamline the data collection process. Additionally,
digital trials eliminate the need for physical infrastructure,
reduce administrative burdens, and enable remote patient
monitoring [67]. These efficiencies translate into reduced trial
costs and shorter timelines, expediting the availability of new
treatments to patients in need [60].

The contribution of such tools can improve patient safety in
drug development [16]. By using digital patient data, digital
twins can assess the potential risks and side effects of new
treatments, enabling researchers to optimize dosages and identify
vulnerable patient subgroups [16]. This approach minimizes
the exposure of actual patients to experimental treatments,
ensuring ethical considerations and protecting patient well-being
[57,68].

The facilitation of real-time monitoring of digital patients by
digital twins can allow researchers to collect and analyze data
continuously [69-71]. This capability enables adaptive trial
designs, where trial parameters can be modified based on
ongoing analysis of digital patient responses [72,73]. Adaptive
trials enhance the efficiency of clinical research by reducing
the number of patients required, optimizing treatment regimens,
and maximizing the chances of success [74].

Clinical drug development is an intricate and time-intensive
journey, spanning roughly 6-15 years [75,76]. The financial
commitment for shepherding a novel drug from its conceptual
infancy through the labyrinth of research, development, and
eventual market approval teeters at an astounding sum of
approximately US $2.6 billion [77]. Shockingly, approximately
85% of potential therapies stumble in the early stages of clinical
development, and of the fortunate few that reach phase 3, only
half earn the coveted stamp of approval [78]. Another daunting
statistic reveals that nearly 80% of trials falter in their attempts
to meet their initial enrollment goals and prescribed timelines,
which translates into a staggering daily revenue loss of up to
US $8 million for pharmaceutical behemoths [75]. Furthermore,
an annual expenditure nearing US $6 billion is dedicated to the
pursuit of patient recruitment. Remarkably, merely 2% of the
eligible population in the United States partakes in these clinical
odysseys and those brave souls who do so endure an average
of 11 visits to the trial site within the span of 6 months [79].

From an economic standpoint, there looms the tantalizing
prospect of savings entwined with digital clinical trials. This
progressive approach is geared toward streamlining the study
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duration, curtailing the recruitment period, and accelerating the
data collection process. Furthermore, it obliterates the
conventional need for numerous physical study sites, offering
an alluring window into substantial capital savings, with
estimated costs of managing a solitary digital clinical trials study
site fluctuating between US $1500 and US $2500 per month
[75]. Additionally, the demand to reimburse patients for their
travel-related expenses dwindles, providing an enticing financial
incentive. However, it is imperative to acknowledge that this
paradigm shift is contingent upon robust technological support,
which is the cornerstone upon which these cost-saving benefits
are built.

The creation of digital populations brings forth a fresh
perspective, coupled with inventive techniques and
methodologies. Over recent years, the concept of generating
digital populations through data augmentation of existing data
sets has been steadily gaining traction. One notable example is
the Synthea project [80], which simulates EHR data based on
the fundamental demographics of the Massachusetts population
and specific disease models. In a similar vein, endeavors have
been made to craft digital patients with precise measurements,
such as glucose levels, either through mathematical models [62]
or by incorporating highly specific attributes [81]. A digital
patient data set is constructed by leveraging real-world data,
including demographics, laboratory findings, and anatomical
features. Subsequently, using patient-specific disease
progression models, diverse vascular models can be generated
and explored [82].

In situations where an extensive patient data set is available,
clinical trial simulations necessitate the careful selection of a
representative subset from the original pool. However, when
dealing with limited data sets, the imperative arises to augment
the existing data. This process, which introduces digital patients
into the original data set, serves as an invaluable technique. Its
reliability shines through, particularly in data sets characterized
by non-Gaussian distributions of covariates [83].

Conventional clinical trial designs often overlook the intricate
patient diversity and intricacies. The inherent heterogeneity of
patients enrolled in clinical trials manifests as a correspondingly
wide spectrum of responses to stent implantation. Enter the era
of digital populations applied to the realm of novel stent design,
poised to enhance patient safety, slash the costs of clinical trials,
and ultimately usher in a new era of clinical practice [84]. Thus,
highly efficient stents with minimized side effects, promise a
brighter future for patients.

Remote Patient Monitoring and
Telemedicine

Digital twins can enable remote patient monitoring and
telemedicine, revolutionizing the way health care is delivered
and accessed [21,85]. By leveraging wearable sensors, IoT
devices, and advanced technologies, digital twins enable health
care providers to remotely monitor patients, offer timely
interventions, and enhance the quality of care [86-88]. Thus,
digital twins facilitate continuous monitoring of patient health
parameters, regardless of the patient’s location. By integrating

data from wearable devices, sensors, and other IoT-enabled
devices, digital twins collect real-time information on vital signs,
medication adherence, and other relevant health data. This
continuous monitoring enables health care providers to stay
informed about a patient’s condition, detect anomalies, and
intervene promptly when necessary [6,89].

Digital twins enable the seamless transmission of patient data
from remote locations to health care providers [23]. Through
secure data channels, patient information is sent to the digital
twin, which can analyze and interpret the data in real time [90].
This remote data analysis provides health care professionals
with valuable insights into a patient’s health status, allowing
for remote assessment and decision-making [64,91]. By
analyzing the data collected through remote monitoring, digital
twins can also identify trends, patterns, and potential health
risks specific to an individual patient [28,68]. This information
enables health care professionals to tailor interventions, adjust
treatment plans, and provide personalized guidance to patients,
enhancing the effectiveness and efficiency of care delivery.

Remote patient monitoring and telemedicine facilitated by digital
twins can help reduce hospitalizations and readmissions [92,93].
By closely monitoring patients’ health at home or in nonacute
care settings, health care providers can detect early signs of
deterioration or complications. Timely interventions can then
be initiated, preventing the need for hospitalization, or reducing
the length of hospital stays. This approach also supports the
transition from hospital to home, ensuring continuity of care
and reducing the likelihood of readmissions [5,6].

The promotion of patient engagement and self-management
could be enhanced by digital twins by empowering individuals
to take an active role in their own health care. By providing
access to their own health data, patients can monitor their
progress, track their vital signs, and gain insights into their
health conditions [2,27,85]. Digital twins can also deliver
personalized recommendations, reminders, and educational
materials to patients, supporting self-care and adherence to
treatment plans [21,24]. Through videoconferencing, secure
messaging platforms, and real-time data sharing, digital twins
can facilitate digital visits, allowing patients to consult with
health care professionals from the comfort of their homes [51].
This remote access to health care services improves convenience
and accessibility, and reduces the need for physical
appointments, particularly for patients in rural or underserved
areas.

Digital twins support long-term disease management by
providing continuous monitoring and personalized interventions
[56,64]. For patients with chronic conditions, digital twins
enable health care providers to remotely track disease
progression, assess treatment effectiveness, and adjust therapies
as needed. This proactive approach helps patients maintain
optimal health, prevent complications, and reduce the burden
of frequent hospital visits.

Conversely, a pivotal challenge in the implementation of digital
twins lies in the absence of seamless connectivity among various
systems and medical devices within the Digital Health Twin
framework. The solution to this quandary lies in the widespread
adoption of standardized data representation and exchange
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protocols. These protocols serve as the linchpin for facilitating
smooth communication and the harmonious integration of EHRs,
medical devices, and assorted health care systems [94]. This
newfound interoperability, in turn, fosters the exchange of
patient-specific information, elevating the precision and
comprehensiveness of the DHT model [95].

The successful implementation of digital twins necessitates a
tapestry of expertise, a multidisciplinary symphony where
physicians, radiologists, image processing virtuosos, molecular
biologists, geneticists, bioinformaticians, computer scientists,
data wizards, and engineers converge. Their collective efforts
are pivotal in confronting the intricate challenges inherent in
crafting a digital counterpart that is both accurate and
dependable [96].

Challenges for Digital Twin
Implementation

The digital twin market faces formidable challenges that could
impede its growth (Table 2). These obstacles encompass the
high deployment costs, surging demands for power and storage,
integration issues with existing systems and proprietary
software, as well as the intricate nature of its architecture. The
implementation of digital twin solutions is a costly endeavor,

necessitating substantial investments in technology platforms
(comprising sensors and software), infrastructure development,
maintenance, data quality control, and security solutions. Digital
twin constantly collects, analyses, and accumulates data from
physical space to provide sufficient information for
decision-making. Thus, the challenge of data integrity and
security remains major. This includes measures like data
encryption, secure data storage, and regular backups for privacy
data used by digital twin models. By real-time data perception
of dynamic environment and high accuracy model, digital twin
should include regular control processes for performance
prediction. Moreover, the upkeep of the digital twin
infrastructure incurs significant operational expenses. The high
fixed costs and the complexity of digital twin architectures are
anticipated to decelerate the adoption of digital twin
technologies. Digital twins pose a formidable challenge in their
demand for rich, extensive data sets and innovative EHR designs
that facilitate data mining and the automated acquisition of
pristine data. Currently, one of the major impediments to human
digital twins is the glaring heterogeneity and operational
intricacies found in EHRs and health care information systems
[12]. Furthermore, these data often reside in an unstructured
format, necessitating either manual intervention or the
deployment of advanced automation through natural language
processing technologies to extract the required information.

Table 2. Challenges for digital twin implementation for personalized medicine.

DescriptionChallenge

Methodological hazards were a noted challenge to using artificial intelligence for inductive reasoning; for example, the general-
izability of findings necessitates external validation with new patient cohorts, or cohorts from different centers or different geo-
graphical locations, and across time.

Challenge 1

The Internet of Things as applied to health care presents challenges for devices with processor, memory, and energy limitations.Challenge 2

Transformational technologies present demands on digital twin software for confidentiality, reliability, safety, and secure coding,
with minimal requirements for patching.

Challenge 3

The credibility of digital patient models to predict disease risk and progression in a real patient, and the trust required of the
computational processes that deliver these, presents a potential barrier to their uptake into a routine workflow.

Challenge 4

Creating a digital twin of a patient for precision medicine raises considerable ethical questions around its legacy, privacy, and
identity; and its termination when the real twin dies.

Challenge 5

Potential regulatory and legal issues for a health digital twin are yet uncertain but are likely to be especially demanding for approval
of devices associated with medical cyber-physical systems that contain large amounts of embedded software for sensing and
monitoring people’s activities.

Challenge 6

The quality of the data plays a paramount role. Although sensors
are adept at efficiently collecting and transmitting data to human
digital twins, the processes involved in gathering hospital data
can be both expensive and time-consuming [96]. Presently,
many individual data are procured through blood tests, imaging
systems, and health scans. Consequently, these hospital data
collection procedures place a considerable burden on digital
twin processes. For instance, achieving top-tier image quality
in computerized tomography scans of cardiac patients is no
straightforward task, and the results often hinge on the expertise
of radiology personnel, especially those with limited experience.
Experts in the field argue that the future milestones in digital
twins will not revolve around the advancements in AI research
but rather focus on rectifying the issues associated with
small-scale, unorganized health care data [12].

While digital twin applications have been portrayed as fully
autonomous processes, there is an essential need for
interdisciplinary knowledge spanning fields such as biomedicine,
mathematics, bioengineering, and computer science, as well as
insights derived from people’s experiences, given the intricate
nature of human beings [96]. Moreover, digital twin software
developers should prioritize the creation of user-friendly
interfaces for digital twins to facilitate communication between
digital twin software, patients, and physicians. These interfaces
should enable discussions on optimal treatment based on
informed consent. Nevertheless, experts in the field have
identified a dearth of user-friendly software for digital twin
applications in the realm of health care [97].

Physicians continue to harbor reservations about placing trust
in decisions derived from algorithms and big data, primarily
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because these predictions often lack a plausible or transparent
explanation. Recent research on the integration of AI systems
in the hospital environment reveals that many physicians remain
skeptical of AI due to the significant risk associated with
potential misdiagnoses and inappropriate treatment decisions.
The apprehension of clinicians being replaced may surface with
the broader use of digital twins in clinical tasks [12]. In certain
scenarios, digital twins may surpass clinicians in performance,
as it is highly improbable that a clinician could process all
patient data and provide a solution during a brief consultation.
Nonetheless, given the prevailing mistrust of digital twin
decision points and the current state of digital twin applications
in health care, digital twins will strive to adapt to the needs and
workflows of clinicians in the future. This adaptation aims to
enhance their capacity to efficiently consider the entire spectrum
of available information when making decisions.

Collaboration among researchers, health care providers, and
technology developers is essential for advancing the field of
digital twins in cardiovascular disease management. Data
sharing initiatives, research consortia, and interdisciplinary
collaborations can accelerate innovation, improve model
accuracy, and ensure the ethical and responsible use of digital
twin technology [46]. The use of digital twins in health gives
rise to ethical dilemmas that require several considerations.
Upholding principles such as informed consent, data ownership,
and patient autonomy is of utmost importance to guarantee the
responsible and ethical integration of digital twins. Establishing
well-defined directives and regulatory frameworks becomes
imperative for effectively addressing the ethical quandaries
stemming from the use of individuals’ personal health data for
digital twin modeling. Maintaining reverence for patients’ rights
and upholding transparency at all stages is crucial for cultivating
a bond of trust between health care providers and their patients.

To date, there has been no comprehensive approach to validating
digital twin models. Validating digital twins and simulation
models, in general, presents several formidable challenges.
While simulations can be validated using retrospective
longitudinal data, alternative scenarios are often absent from
the ground truth. To instill confidence in the simulation, it
becomes imperative to compare the simulated model averages
with a separate benchmark. The intricate interplay and diversity

within human physiology, disease progression, and individual
patient characteristics complicate the task of ensuring an
accurate representation of real-world patients. The pursuit of
dependable results from digital twins necessitates the
implementation of rigorous testing, validation methodologies,
and clinical studies. Continual refinement and validation of
these models against real-world patient data assume pivotal
roles in enhancing their predictive capabilities and expanding
their clinical utility [98]. Sensitivity analysis, which model
explanations are a subset of, enables the ascription of change
in parameters to the outcomes [99]. This empowers a domain
expert to identify the most influential factors affecting the
outcomes. Subsequently, the domain expert, in our case, the
hospital’s operational leadership team, can decide which levers
to use to optimize the results. Nevertheless, conducting
sensitivity analysis on large-scale simulations becomes
computationally challenging due to the numerous parameters
involved. [100]. By using machine learning models to train
simulated data, we can test the global sensitivity of the model
parameters through attribution.

Conclusions

Digital twins represent a groundbreaking approach to
personalized medicine, leveraging digital replicas of patients
to optimize diagnostics, treatment strategies, and health care
outcomes. Through enhanced understanding of patient health,
predictive modeling, digital clinical trials, and remote patient
monitoring, digital twins pave the way for more precise,
individualized health care interventions. While challenges exist,
the continued development and integration of digital twins hold
the potential to revolutionize personalized medicine, ushering
in an era of tailored treatments and improved patient well-being.
Nevertheless, the use of human digital twins gives rise to ethical
dilemmas related to informed consent, data ownership, and the
potential for discrimination based on health profiles. As we
stand on the brink of a new era in medicine, the integration of
digital twins offers both exhilarating possibilities and formidable
challenges. It is imperative that we, as a medical community,
proactively shape ethical guidelines and regulations to harness
their full potential while safeguarding patient welfare.
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