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Abstract

Background: This study aimed to investigate the relationships between adiposity and circadian rhythm and compare the
measurement of circadian rhythm using both actigraphy and a smartphone app that tracks human-smartphone interactions.

Objective: We hypothesized that the app-based measurement may provide more comprehensive information, including
light-sensitive melatonin secretion and social rhythm, and have stronger correlations with adiposity indicators.

Methods: We enrolled a total of 78 participants (mean age 41.5, SD 9.9 years; 46/78, 59% women) from both an obesity
outpatient clinic and a workplace health promotion program. All participants (n=29 with obesity, n=16 overweight, and n=33
controls) were required to wear a wrist actigraphy device and install the Rhythm app for a minimum of 4 weeks, contributing to
a total of 2182 person-days of data collection. The Rhythm app estimates sleep and circadian rhythm indicators by tracking
human-smartphone interactions, which correspond to actigraphy. We examined the correlations between adiposity indices and
sleep and circadian rhythm indicators, including sleep time, chronotype, and regularity of circadian rhythm, while controlling for
physical activity level, age, and gender.

Results: Sleep onset and wake time measurements did not differ significantly between the app and actigraphy; however, wake
after sleep onset was longer (13.5, SD 19.5 minutes) with the app, resulting in a longer actigraphy-measured total sleep time
(TST) of 20.2 (SD 66.7) minutes. The obesity group had a significantly longer TST with both methods. App-measured circadian
rhythm indicators were significantly lower than their actigraphy-measured counterparts. The obesity group had significantly
lower interdaily stability (IS) than the control group with both methods. The multivariable-adjusted model revealed a negative
correlation between BMI and app-measured IS (P=.007). Body fat percentage (BF%) and visceral adipose tissue area (VAT)
showed significant correlations with both app-measured IS and actigraphy-measured IS. The app-measured midpoint of sleep
showed a positive correlation with both BF% and VAT. Actigraphy-measured TST exhibited a positive correlation with BMI,
VAT, and BF%, while no significant correlation was found between app-measured TST and either BMI, VAT, or BF%.
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Conclusions: Our findings suggest that IS is strongly correlated with various adiposity indicators. Further exploration of the
role of circadian rhythm, particularly measured through human-smartphone interactions, in obesity prevention could be warranted.

(J Med Internet Res 2024;26:e50149) doi: 10.2196/50149
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Introduction

The global obesity epidemic has become a major public health
concern in recent decades, and there is growing evidence to
suggest that disrupted circadian rhythms and sleep disturbances
are contributing factors [1,2]. Circadian rhythms are responsible
for regulating energy homeostasis and adipose tissue
metabolism, and disruptions to these rhythms have been
associated with an increased risk of obesity [3]. Several animal
studies [4], human studies with circadian gene variants [5,6],
and examinations of shift workers have established this link [7].
However, most studies linking circadian disruptions and obesity
have relied on self-reported questionnaires [8], which may be
prone to bias and limitations. For instance, social jet lag, which
is a well-known circadian rhythm indicator related to obesity,
is quantified through self-reported measures of the difference
in midsleep time between workdays and free days [8]. Accurate
detection of circadian disturbances in clinical settings often
necessitates continuous sleep-wake recordings or serial assays
of timed plasma melatonin levels [9], which are more invasive
and less commonly used.

Actigraphy, commonly used in research as a primary method
for measuring physical activity and sleep patterns, operates on
the principle that changes in body movements detected by an
accelerometer are indicative of sleep onset and wakefulness.
Traditionally, this approach has been seen as a “ground truth”
for assessing circadian activity rhythms, especially when more
invasive endogenous measurements like melatonin byproducts
or urine secretion analysis are not feasible [10]. Additionally,
recent studies have explored the effectiveness of consumer
sleep-tracking devices in circadian measurement. Notably,
devices such as the Fatigue Science Readiband (Fatigue
Science), Fitbit Alta HR (Fitbit Inc ), EarlySense Live
(EarlySense Ltd), ResMed S+ (ResMed Inc), and SleepScore
Max (SleepScore Labs) have shown comparable or superior
performance to actigraphy in certain sleep or wake measures
[10], underscoring their emerging relevance in circadian rhythm
research. While valuable as a proxy, capturing physical activity
patterns that hint at circadian activity rhythms, actigraphy
primarily reflects physical movement but not the entire spectrum
of circadian biological rhythms. Moreover, the advent of modern
technologies such as smartphones has challenged this traditional
paradigm. Although actigraphy efficiently records physical
motion, it falls short in capturing cognitive engagement that
may occur with minimal physical movement, such as during
smartphone use [11]. This limitation suggests a potential
disconnect between physical movement and cognitive
engagement, particularly in the context of contemporary
technology use. Cognitive activities, especially those involving
minimal physical movements like smartphone interactions, can

significantly impact the sleep-wake cycle. These
human-smartphone interactions not only reflect physical
movements but also include social engagements and digital
behaviors, thus offering a more comprehensive insight into an
individual’s circadian rhythm in the modern era. They indicate
social rhythms and present a broader spectrum of daily routines
that contribute to our understanding of modern circadian
rhythms. This approach challenges the traditional reliance on
actigraphy alone for sleep tracking, which primarily measures
physical activity. It underscores the need to reevaluate
conventional methods and acknowledge the broader implications
of cognitive and social dynamics on circadian activity rhythms.

In recent years, digital footprints, such as human-smartphone
interactions, have emerged as a new way to observe human
circadian rhythms [11,12]. Real-time, passively collected data
from these interactions can provide long-term recordings of
circadian rhythms in a natural setting, potentially offering an
alternative to actigraphy. However, while some mobile apps
can estimate sleep time based on human-smartphone interactions
[11,12], no research has yet used these patterns to determine
key circadian rhythm indicators like interdaily stability (IS) and
intradaily variability (IV), which have been well established
through actigraphy-based analysis [13]. Additionally, previous
research [11,12] has only focused on healthy participants and
has not been validated in patients with sleep disturbances or
disrupted circadian rhythms, which are common comorbidities
in obese individuals in clinical settings [14].

In this cross-sectional study, our primary goal was to investigate
the relationship between adiposity and key indicators of sleep
and circadian rhythm. We measured sleep-wake cycles using
wrist-worn actigraphy, a well-established method in the field.
In contrast, we also collected data on human-smartphone
interaction patterns through our app, Rhythm, which
automatically records smartphone use data and uses an algorithm
similar to actigraphy to calculate the circadian rhythm of these
interactions [13,15]. Our hypothesis was that the app-based
measurements might offer insights differing from those provided
by traditional actigraphy, potentially revealing unique
associations with adiposity indicators.

The core objective of this study was to examine and compare
the associations between various adiposity indices and sleep
and circadian variables as measured by 2 different methods:
traditional actigraphy and our novel app-based approach.
Adiposity was indicated by BMI, visceral adipose tissue (VAT)
area, and body fat percentage (BF%), while the sleep variables
included total sleep time, sleep timing (chronotype), and the
regularity of circadian rhythm. We aimed to assess how these
relationships vary when circadian rhythms are measured through
actigraphy as opposed to human-smartphone interactions. This
comparative analysis was crucial for understanding the relative
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effectiveness of traditional and novel methods in reflecting the
complex relationships between obesity, sleep, and circadian
rhythms.

Methods

Study Population
A total of 78 participants (mean age 41.5, SD 9.9 years, 46/78,
59% women) were recruited from an obesity outpatient clinic
and a workplace health promotion program at 7 hospitals in
northern Taiwan for the study period between September 2021
and February 2023. The participants from the obesity outpatient
clinics were assessed at baseline before commencing any weight
reduction treatments. This is a crucial detail, as it implies that
these patients have not yet started any therapeutic interventions
that could potentially interfere with their adiposity or sleep,
such as medications or other treatment modalities. This baseline
assessment ensured that the data collected reflected their
unaltered adiposity as well as their natural sleep and circadian
rhythms without the influence of any treatments. Upon giving
informed consent, all participants were asked to install the
Rhythm app and wear a wrist actigraphy device for a minimum
of 4 weeks, resulting in a total of 2182 person-days of data
collection. Only participants with Android-operated smartphones
were eligible to participate, with the condition that their phones
were to be exclusively used by them during the study period.
While participants were instructed to wear their actigraphy
devices continuously, there was no specific guidance on the
placement of their smartphones.

In determining the optimal sample size for this study, we focused
on 2 key objectives. The primary objective was to explore the
correlations between various adiposity indices, sleep, and
circadian variables. The secondary objective involved comparing
app-defined circadian rhythm and sleep indicators with
actigraphy-derived measures across groups of individuals
categorized as obese, overweight, and healthy controls. This
required a detailed analysis at the level of person days.

We referred to a recent study [16] to guide our determination
of sample size. That study used a similar methodology with 66
participants, including 33 patients with insomnia and 33 healthy
controls, over a minimum duration of 4 weeks. This previous
study [16] generated a comprehensive data set encompassing
2097 person-days and aimed to investigate the correlations
between specific indicators and self-reported depressive
symptoms, as well as sleep quality. It also sought to compare
app-defined circadian rhythm and sleep indicators with
actigraphy-derived measures.

This study consists of a total sample size of 78 participants,
divided into 3 groups: obesity (n=29), overweight (n=16), and
controls (n=33). The adequacy of our sample size is supported
by sample size estimations for different outcome measures:
When considering BMI as the main outcome and applying an
F test with a fixed effect, omnibus, 1-way ANOVA model, with
an α error probability of .05 and a statistical power of 0.90 for
3 groups, the total required sample size is 9. Similarly, if BF%
is the main outcome, the same F test and ANOVA model, with
the same α error probability and power, indicate a total required

sample size of 15 for 3 groups. Additionally, when VAT serves
as the main outcome, the sample size estimation under identical
conditions indicates a total required sample size of 9 for 3
groups. Therefore, our current sample size for assessing
adiposity-related outcomes is considered sufficient, as the effect
sizes fall within the range of 0.44 to 2.59 and our statistical
power exceeds 90%. This provides ample support for the
suitability of this research study.

Surpassing the participant number [16] in the study we
referenced, our larger sample size granted us the necessary
statistical power to delve into the intricate relationships between
multiple variables within our analytical framework.
Additionally, the varied composition of our participant groups
significantly strengthened the validity and applicability of our
results. For the investigation of clinical correlations, we
considered adiposity indices as dependent variables and
identified several critical independent variables, including the
(1) regularity of circadian rhythm, (2) physical activity level,
(3) total sleep time, (4) sleep timing (chronotype), (5) age, and
(6) gender. Adhering to the “1 in 10 rule,” which serves as a
guideline for the number of predictor parameters in regression
analysis [15], our sample size of 78 is adequately equipped to
accommodate up to 6 independent variables as required by our
analytical framework. This approach is validated by the principle
that a sample size exceeding 60 is necessary for such analyses,
confirming the adequacy of our chosen sample size.

Sleep and Circadian Rhythm Measures: the Use of the
Rhythm Mobile App and Actigraphy

Actigraphy Measurement
The participants were instructed to wear a research-grade wrist
actigraphy device (MiCorTM A100, MiTAC Inc) on their
nondominant wrist for a minimum of 4 weeks. The actigraphy
device gathered acceleration data along 3 axes, sampled at 30
Hz, and calculated the Euclidean distance of the deviations from
0. The data was then bandpass filtered from 0.5-3 Hz, and 0
values above a predefined threshold were integrated within 2
seconds. From there, activity counts were derived by averaging
the integrated segments over 1 minute [17,18]. For long-term
recordings, we used a predefined threshold to identify
“off-wrist” periods when the wristwatch might have been
removed for activities like charging or showering. These
“off-wrist” epochs were excluded from the analysis to mitigate
potential impacts on rest-activity patterns caused by varying
wearing habits. Any daily actigraphy data containing more than
6 hours of “off-wrist” time was discarded before further analysis.

The standard Cole-Kripke algorithm [17] was applied to the
activity count data with slight modifications to determine the
putative sleep and wake times. The algorithm categorizes data
into rest and active states based on a weighted sum of the current
minute and contiguous minutes, to minimize the impact of
sudden changes in activity levels that could compromise the
categorization. The algorithm was run on MATLAB software
(MathWorks) and used preexisting codes.
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Human-Smartphone Interaction Data Collection and
Analysis
The app, Rhythm, was specifically designed to collect data on
smartphone use by tracking 3 key variables: screen on or off
events, notifications, and the app being used [12,19]. The data
were collected in the background without interfering with the
smartphone’s operation or significantly affecting battery life
(less than 1%). To accurately capture app use behaviors in
real-life scenarios and consider instances where users might
temporarily leave their smartphones during activities like work
or charging, we introduced the “app-count” method. This
approach involves using longer durations to represent app use
behaviors. Specifically, the “app-count” was defined as the sum
of minute-by-minute use counts within nonoverlapping 5-minute
epochs (288 epochs per day). By using these longer durations,
we aimed to encompass the overall engagement with the
smartphone, accounting for both periods of active use and
temporary disengagement. Consequently, the number of apps
used per minute was aggregated into these 5-minute epochs that
did not overlap to eliminate excessive zero-count segments.
These data were then used to mimic the activity data obtained
from the wrist actigraphy device, estimate the near-24-hour
cycle of the circadian rhythm, including the active and inactive
phases, and determine sleep time during the inactive phase based
on a threshold of app-counts.

Circadian Rhythm and Sleep Indicators
The acti-counts and app-counts generated from actigraphy, and
smartphone use data were processed to determine 5 sleep
indicators and 2 circadian rhythm indicators (Figure 1). The
daily sleep indicators included sleep onset, wake time, midpoint
of sleep, wake after sleep onset (WASO), and total sleep time
(TST). The data were filtered to extract approximately 16 to 24
hour-long cycles, and putative sleep was assumed to occur at
the half-cycle with nadir. Sleep onset was defined as a period
of 8 consecutive epochs with a zero app-count, while wake time
was defined as a period of 6 consecutive epochs with a nonzero
app-count.

The nonparametric method was used to calculate 2 circadian
rhythm indicators, IS and IV (Figure 2). IS quantified the
stability of the rhythms between days, that is, the coupling
strength of the rhythms to the supposedly stable environmental

factors. It could vary between 0 and 1, with higher values
indicating more stable daily rhythms. IV indicated the
fragmentation of the rhythms, that is, the frequency and extent
of transitions between rest and activity. It could vary roughly
between 0 and 2, with higher values indicating higher
fragmentations [13].

The formula for IS is as follows:

in which N is the total amount of data, p is the number of data
point per day; xh is the hourly means, xi represents the individual

data points, and represents the mean of all days.

In this study, we chose the nonparametric method over cosinor
analysis for several key reasons. First, cosinor analysis is
typically applied to physical activity data under the assumption
of relatively stable circadian rhythms. However, our research
focused primarily on the association between disrupted circadian
rhythms and adiposity. In this context, many of our participants
likely exhibited disrupted circadian rhythms, under which even
the data collected through actigraphy might not conform to the
norms expected in cosinor analysis. Recent studies exploring
circadian rhythm as a marker for various diseases have
increasingly favored nonparametric or extended-cosine methods
over traditional cosinor analysis in similar scenarios [20,21].

Furthermore, our app-based measurements transformed screen
events from human-smartphone interactions into app-counts,
similar to actigraphy’s acti-counts. However, these app-counts
fundamentally differed in nature. Unlike acti-counts, which are
derived from physical activity and characterized by continuous
variations, app-counts did not inherently possess such continuity.
Coupled with the issue of disrupted circadian rhythms in this
study population, this complication made our data less suitable
for cosinor analysis. The noncomparable units of most cosinor
indicators and the unique, potentially nonstandard distribution
of app-counts based on human-smartphone interactions
reinforced our decision to opt for a nonparametric approach.
Additionally, we did not use relative amplitude due to the
unvaried nature of such measurements when derived from
human-smartphone interactions.
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Figure 1. Algorithm for app-measured circadian rhythm and sleep indicators. (A) Timestamps of smartphone events recorded by the Rhythm app. (B)
Deriving usage count from screen events. (C) Computing circadian rhythms and sleep patterns through smartphone. (D) Computing circadian rhythms
with app-count analysis.
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Figure 2. (A) The calculation of interdaily stability. (B) The hourly mean of the app count is calculated from the raw data and computed for each day
of the recording period. (C) The mean of all hourly means across days is calculated, resulting in the grand mean.

Physical Activity
Physical activity level was measured with an accelerometer to
quantify the daily movements of each participant. Key features
were calculated for each day, including the M10 and L5 values,
representing the 10 hours of a day when the participant was
most active and the 5 hours when they were least active,
respectively. These are widely recognized indicators of a

person’s circadian activity patterns [22,23]. To determine the
M10, a 10-hour moving average was used to estimate the period
of the day with the highest average acceleration, which was
considered to be the participant’s overall physical activity level.

Pittsburgh Sleep Quality Index
The Pittsburgh Sleep Quality Index (PSQI) was used to measure
the overall sleep quality of participants in one month. This index
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comprises 19 items, evaluating 7 components of sleep quality,
such as subjective sleep quality, sleep onset latency, total sleep
duration, sleep efficiency, sleep disturbance, use of sleep
medication, and daytime dysfunction. The sum of the 7
component scores yields one total score of subjective sleep
quality (range 0-21); higher scores represent poorer subjective
sleep quality. The cutoff score for PSQI-defined cases of poor
sleep quality is a 6 or greater [24]. A Taiwanese version of the
PSQI had been validated with adequate reliability [25].

Anthropometric Measurements and Weight Status
All participants had their weight (in kilograms) and height (in
centimeters) measured without shoes, following standard
protocols. The BMI was calculated by dividing the body weight
(in kilograms) by the square of the body height (in meters),

resulting in units of kg/m2. The BMI categories used were

overweight, defined as a BMI between 24 kg/m2 and less than

27kg/m2, and obesity, defined as a BMI equal to or greater than

27 kg/m2 [26].

Body Composition Measurements
A total of 2 techniques were used to gather body composition
measurements of the participants. For patients in the obesity
outpatient clinic, dual-energy fan-beam X-ray absorptiometry
(Hologic Horizon DXA system) was used with an array scan
mode, following the manufacturer’s protocol for body
composition measurements. The Hologic APEX software
(version 5.6.0.4) was used to assess the scans. Each participant
was placed according to the guidelines set by the International
Society for Clinical Densitometry to ensure accuracy and
consistency [27]. For individuals enrolled in the workplace
health promotion program, body composition was measured
using bio-electrical impedance analysis, which is based on the
differences in the conductivity of various components of the
human body. We used the IOI-353 BC analyzer (Jawon Medical)
to evaluate segmental multifrequency impedance values at 1,
5, 50, 250, 550, and 1000 kHz with a tetra-polar 8-point tactile
electrode system [28]. Measurements of BF%, total body fat,
total lean mass, and VAT area were obtained.

Statistical Analysis

The χ2 test and 1-way ANOVA were used to compare
demographic variables and sleep and circadian rhythm indicators
among the obesity, overweight, and control groups. Fisher least
significant difference was used for further post hoc tests. A
2-way ANOVA was used to compare the app-measured
circadian rhythm and sleep indicators with their actigraphy

counterparts. It was also used to compare these indicators among
participants with obesity, overweight, and healthy controls.

The relationship between obesity, sleep, and circadian rhythm
indicators was analyzed using a multivariable regression model.
This approach was chosen as the evening chronotype, shorter
total sleep time, and unstable circadian rhythm were found to
be interconnected due to potential shared underlying factors.
BMI, VAT, and BF% were used as the dependent variables,
while 3 circadian rhythm and sleep indicators were used as
independent variables, including (1) TST, (2) midpoint of sleep,
which served as a proxy for chronotype, and (3) IS, the circadian
rhythm indicator. The choice of these indicators was influenced
by previous research on obesity and circadian rhythm, which
has primarily focused on the concept of social jet lag. IS was
specifically selected as it is more closely related to social jet
lag, which is calculated from the midpoint of sleep on weekdays
and weekends. Other variables included in the multivariable
regression model were age, gender, and physical activity level
(M10).

P<.05 was considered to be statistically significant. Data
arrangement and statistical analysis were performed using SPSS
Statistics (version 25; IBM Corp).

Ethical Considerations
The study was approved by the institutional review boards of
Chang-Gung Memorial Hospital (202002452A3 and
202100434B0A3) and was conducted in accordance with the
ethical principles outlined in the Declaration of Helsinki.
Informed consent was obtained from each participant. Data
were anonymized and stored with caution. Consent for
publication will be obtained using our institutional consent form.

Results

Description of the Cohort
Table 1 presents the characteristics of the study participants.
The 3 weight status groups differed significantly in BMI and
body composition, including BF%, total body fat, total lean
mass, and VAT area. The mean age of all participants was 41.5
(SD 9.9) years, and 59% (46/78) were women, with no
significant differences in age or gender across the groups. The
obesity group had significantly lower levels of physical activity
on average (M10) than the overweight and healthy control
groups. Both the obesity and overweight groups had average
scores on the PSQI questionnaire above the cutoff point of 6,
indicating poor sleep quality, whereas the healthy control group
had an average PSQI score below the cutoff point.
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Table 1. Demographic characteristics of participants in obesity, overweight, and control groups.

ComparisonEffect

Size

P

value

F test
(2)

Chi-
square (2)

Control (n=33)Overweight
(n=16)

Obesity (n=29)Characteristics

—aSex, n

—.66—0.83015710Male

————18919Female

——.132.104—39.4 (9.3)40.8 (10.4)44.4 (9.9)Age (years), mean (SD)

Obb>Owc>Cd2.59<.001169.951—21.5 (1.6)25.3 (0.8)30.8 (2.7)BMI (kg/m2), mean (SD)

Ob>Ow>C1.16<.00146.850—27.6 (4.9)34.4(2.8)40.4 (6.4)Body fat %, mean (SD)

Ob>Ow>C2.13<.00188.468—15,532.2 (3496.2)22,527.3 (2023.3)32,237.2 (7012.5)Total body fat (g), mean (SD)

Ob>C0.44.0027.047—40,324.1 (5555.2)42,914.4 (4047.8)45,804 (6636.6)Total lean mass (g), mean (SD)

Ob>Ow>C1.90<.00183.477—53.9 (23)84.6 (18.5)151.3 (40.2)VATe area (cm2), mean (SD)

Ob<Ow, C0.45.0017.332—77.37 (22.55)81.32 (17.71)57.96 (26.58)Physical activity (M10f), mean (SD)

Ow>C0.31.024.186—5.3 (2.7)8.4 (4.6)7.5 (4.2)PSQIg score

aNot applicable.
bOb: obesity group.
cOw: overweight group.
dC: control group.
eVAT: visceral adipose tissue.
fM10: the maximum 10 hours of physical activity within a 24-hour period (derived from actigraphy data).
gPSQI: Pittsburgh Sleep Quality Index.

Differences Between App and Actigraphy
Table 2 presents a comparison of app-measured and
actigraphy-measured circadian rhythm and sleep indicators.
Results showed no significant difference between app-measured
and actigraphy-measured sleep onset and wake time, as well as
the midpoint of sleep. However, the app-measured WASO was
found to be longer (13.5, SD 19.5 minutes) than the
actigraphy-measured WASO, resulting in a longer
actigraphy-measured TST of 20.2 (SD 66.7) minutes compared
to the app-measured TST. The obesity group had a significantly
longer TST than the overweight and control groups, regardless
of the measurement method. App-measured circadian rhythm
indicators, including IS and IV, were significantly lower than
their actigraphy-measured counterparts. The obesity group also
had significantly lower IS than the control group, whether
measured by app or actigraphy.

In addition, the multivariable-adjusted model revealed a negative
correlation between BMI and app-measured IS (P=.007), and
a borderline significant negative correlation between BMI and
actigraphy-measured IS (P=.06). BF% and VAT showed
significant correlations with both app-measured IS and
actigraphy-measured IS (Table 3). However, when IS was
replaced with social jet lag in the model, there was no significant
relationship between BMI, BF%, VAT, and either app-measured
or actigraphy-measured social jet lag (Table 4). The
app-measured midpoint of sleep showed a positive correlation
with both BF% and VAT, whereas the actigraphy-measured
midpoint did not demonstrate a significant correlation with
either variable. Actigraphy-measured TST exhibited a positive
correlation with BMI, VAT, and BF%, while no significant
correlation was found between app-measured TST and either
BMI, VAT, or BF%.
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Table 2. Comparison of app-measured and actigraphy-measured circadian rhythm and sleep indicators in participants across obesity, overweight, and
control groups.

ComparisonP value differencesControl,
mean (SD)

Overweight,
mean (SD)

Obesity,
mean (SD)

Indicators

InteractioncMeasurementbGroupa

Sleep indicators

Obe, Cf<Owg.09.06.002Sleep onsetd

23.66 (0.83)24.35 (1.14)23.74 (1.01)App

23.75 (0.85)24 (1.08)23.11 (0.73)Actigraphy

—h.68.50.04Wake timed

6.91 (0.8)7.23 (1.05)7.37 (1.27)App

6.74 (0.89)7.34 (1.18)7.08 (0.99)Actigraphy

—.39.17.04Midpoint of sleepd

3.28 (0.69)3.79 (1.05)3.56 (1.09)App

3.24 (0.82)3.67 (1.05)3.1 (0.7)Actigraphy

—.78<.001.76Wake after sleep onset (minutes)

14.7 (14.7)18.4 (16.4)17.5 (27)App

3.1 (3.1)4 (4.7)2.4 (2.2)Actigraphy

Ob>Ow, C.03.003<.001Total sleep time (minutes)

420.5 (48.3)394.3 (35.2)440 (52.3)App

416.4 (36.4)436.5 (51.1)475.8 (63)Actigraphy

Circadian rhythm indicators

Ob<C.95<.001.001Interdaily stability

0.25 (0.09)0.22 (0.11)0.17 (0.11)App

0.44 (0.11)0.42 (0.12)0.37 (0.12)Actigraphy

—.23<.001.54Intradaily variability

1.22 (0.23)1.28 (0.26)1.3 (0.3)App

0.92 (0.25)0.81 (0.22)0.91 (0.18)Actigraphy

aThe effect of health controls versus overweight versus obesity.
bThe effect of app versus actigraphy.
cThe interaction of group and measurement.
dTime are in day decimal time, for example, 23.50=23:30 PM.
eOb: obesity group.
fC: control group.
gOw: overweight group.
hNot applicable.
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Table 3. Results of a multivariate linear regression analysis for ISa on weight status and body composition indicators.

Adjusted R2GenderAgeM10dTSTcMidpointbIS

BMI

0.213App

0.029 (0.111)0.196 (0.108)–0.282 (0.108)–0.119 (0.119)0.188 (0.109)–0.342 (0.123)β (SE)

.79.07.01.33.09.007P value

0.262Actigraphy

0.004 (0.096)0.285 (0.107)0.081 (0.135)0.458 (0.124)0.012 (0.107)–0.225 (0.118)β (SE)

.97.009.56<.001.91.06P value

Body fat %

0.408App

–0.158 (0.095)0.296 (0.093)–0.252 (0.095)0.024 (0.096)0.278 (0.094)–0.293 (0.106)β (SE)

>.99.002.009.82.004.008P value

0.410Actigraphy

–0.206 (0.093)0.367 (0.121)0.101 (0.121)0.417 (0.112)0.011 (0.099)–0.292 (0.105)β (SE)

.03<.001.41<.001.91.02P value

Estimate visceral adipose tissue area

0.421App

0.087 (0.093)0.458 (0.091)–0.364 (0.093)–0.128 (0.104)0.188 (0.093)–0.305 (0.105)β (SE)

.36<.001<.001.22.05.005P value

0.437Actigraphy

0.062 (0.091)0.536 (0.093)–0.039 (0.117)0.335 (0.106)0.015 (0.098)–0.268 (0.103)β (SE)

.49<.001.74.002.88.01P value

aIS: interdaily stability.
bMidpoint of sleep.
cTST: total sleep time.
dM10: the maximum 10 hours of physical activity within a 24-hour period (derived from actigraphy data).
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Table 4. Results of a multivariate linear regression analysis for social jet lag on weight status and body composition indicators.

Adjusted R2GenderAgeM10cTSTbMidpointaSocial jet lag

BMI

0.139App

–0.026 (0.111)0.238 (0.109)–0.272 (0.114)0.031 (0.103)0.238 (0.113)–0.111 (0.102)β (SE)

.82.04.02.78.04.32P value

0.247Actigraphy

0.023 (0.106)0.264 (0.107)–0.040 (0.131)0.452 (0.122)0.048 (0.109)–0.152 (0.099)β (SE)

.83.02.75<.001.66.14P value

Body fat %

0.361App

–0.206 (0.097)0.332 (0.096)–0.238 (0.098)0.153 (0.100)0.314 (0.097)–0.127 (0.095)β (SE)

.04.001.02.12.002.19P value

0.379Actigraphy

–0.185 (0.097)0.338 (0.097)–0.055 (0.110)0.411 (0.112)0.057 (0.099)–0.181 (0.093)β (SE)

.06.001.63<.001.57.05P value

Estimate visceral adipose tissue area

0.370App

0.037 (0.097)0.497 (0.095)–0.349 (0.099)0.006 (0.102)0.225 (0.097)–0.135 (0.094)β (SE)

.70<.001.001.95.02.16P value

0.405Actigraphy

0.078 (0.094)0.508 (0.095)–0.182 (0.110)0.331 (0.109)0.057 (0.096)–0.147 (0.090)β (SE)

.41<.001.10.003.56.11P value

aMidpoint of sleep.
bTST: total sleep time.
cM10: the maximum 10 hours of physical activity within a 24-hour period (derived from actigraphy data).

Discussion

This study found that among all the circadian rhythm and sleep
indicators, IS, measured by either actigraphy or
human-smartphone interaction, presented with the most
correlations with adiposity indicators, such as BMI, VAT, and
BF%. These correlations remained significant even after
adjusting for confounding factors, including TST, chronotype,
physical activity level, age, and gender. These findings were
consistent with previous studies that have examined the
relationship between circadian rhythm, chronotype, and
adiposity simultaneously, with circadian rhythm being the most
significant indicator [29-31]. Some studies have measured the
correlation between adiposity and circadian rhythm using IS
measured through actigraphy [29,32,33], while others have
relied on self-reported measures of social jet lag [8].

IS is a concept similar to social jet lag [33], but it provides a
more comprehensive understanding of a person’s sleep patterns
compared to social jet lag (Figure 2). Unlike social jet lag, which
simply calculates the difference between sleep midpoint on
workdays and days off [8], IS considers the regularity of sleep
and wake times within a 24-hour period for a minimum of 7
days, including both workdays and days off. IS uses the variance

method to quantify the consistency of a person’s sleep and wake
times, while social jet lag is determined through questionnaires
that reflect its limited scope. Accurately computing IS requires
continuous 24-hour monitoring for at least 7 days [13], which
can be done through methods such as actigraphy or mobile app
use, as seen in this study. However, social jet lag can be
evaluated through a questionnaire because it only requires
limited information.

Although the data used to determine IS can also be used to
calculate social jet lag, the reverse is not necessarily true. This
study revealed that IS recorded through a mobile app had several
significant correlations with the obesity index, whereas social
jet lag did not, and its results were similar to those obtained
through actigraphy. While the small sample size in the study
may not reflect the correlation between social jet lag and obesity
found in previous large-scale epidemiological studies, it
highlights that when it comes to personalized and precise weight
management, IS is a more precise and sensitive indicator than
social jet lag.

In this study, we compared app-based measurements of circadian
rhythm and sleep indicators with those obtained through
actigraphy. Our findings align with previous research, showing
typical results for app-based measurements [29,32-39].

J Med Internet Res 2024 | vol. 26 | e50149 | p. 11https://www.jmir.org/2024/1/e50149
(page number not for citation purposes)

Chuang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


However, actigraphy measurements diverged, either failing to
demonstrate similar results (Table 3) or presenting inconsistent
findings with established patterns in previous studies. This
highlights the potential superiority of the app in capturing
circadian rhythms more accurately, especially considering its
consistency with established research and ability to track broader
circadian dynamics.

Notably, this study revealed several key differences between
the 2 methods. First, the app’s internal sleep measurements
showed a significant correlation with BMI, while actigraphy’s
IS correlation with BMI was only marginally significant (P=.06).
Second, the app identified an association between the evening
chronotype (measured by sleep midpoint) and both BF% and
VAT, a connection not found with actigraphy. Third, TST
measured through actigraphy positively correlated with BMI,
VAT, and BF%, contrary to app measurements and previous
studies suggesting that sufficient sleep time is generally linked
with lower obesity rates [40-42]. Interestingly, this study’s
average sleep time was 7 hours, fitting within the substantial
evidence that sleeping less than 7 hours a night can lead to
adverse health consequences, including obesity [43].

Addressing concerns that the app might overestimate sleep time
compared to actigraphy, our results showed no significant
differences in sleep onset, wake time, or sleep midpoint between
the 2 methods. The primary variance was in the WASO duration,
leading to a longer TST as measured by actigraphy. However,
this discrepancy had a minimal impact on circadian rhythm
evaluation, as we adjusted for TST in our regression models to
mitigate its influence on the association between circadian
rhythm indicators and adiposity markers.

Intriguingly, while the actigraphy-measured TST was positively
correlated with BMI, VAT, and BF%, the app-measured TST
was not, indicating a complex relationship between sleep
parameters and adiposity. Additionally, extensive research,
including meta-analyses [44-46], suggests a complicated link
between longer sleep duration and higher obesity risk in adults,
influenced by age and other factors. Given that most sleep
duration data in research is self-reported [44-46], adding another
layer of complexity, our findings emphasize the importance of
considering these nuances and the variability of the sleep
duration-BMI relationship across different age groups and study
methodologies.

The study’s results reveal a significant correlation between the
app-measured midpoint of sleep and both BF% and VAT, but
not BMI. This correlation aligns with previous research that
recognizes the role of evening chronotype and circadian
disruption in excessive body fat accumulation. Our data suggest
that this negative effect may be observable in the early stages
of obesity development, when weight status (measured by BMI)
remains unchanged, but body composition (measured by BF%
and VAT) is already deteriorating. The growing body of
evidence suggests that the relationship between circadian
disruption and obesity is driven by alterations in the hormonal
rhythmicity of melatonin, leptin, and glucocorticoids, leading
to disruptions in energy homeostasis [47]. Late mealtimes, which
often result from circadian misalignment [48], have also been
linked to weight gain and obesity [49], with potential underlying

mechanisms including decreased energy expenditure during
rest and after eating and increased insulin resistance [50]. The
fasting-feeding cycle plays a role in synchronizing peripheral
circadian rhythms with the central clock [51], while shifting
mealtimes can result in or worsen circadian disruption by
uncoupling peripheral and central clocks. Recent studies suggest
that circadian misalignment can cause imbalances in the gut
microbiota, which plays a crucial role in energy homeostasis
[52]. This misalignment, represented by lower IS in this study,
can result in changes to diurnal fluctuations in the gut microbiota
and lead to glucose intolerance and obesity [53]. Additionally,
misaligned circadian rhythm has been linked to later mealtimes,
higher consumption of calories and saturated fat [54], reduced
intake of Mediterranean diet components, and ultimately, a
higher BMI [55]. Compared to the actigraphy-measured
midpoint of sleep, the app-measured midpoint was found to be
12.7 (SD 43.2) minutes later without statistical significance
(P=.17). Despite this relatively small difference, it resulted in
variations in the relationship between VAT, BF%, and the
midpoint of sleep measured by app and actigraphy. This study
suggested that the app-measured midpoint of sleep is more
clinically sensitive in reflecting obesity indicators, as it is based
on human-smartphone interactions and associated smartphone
use, which affects melatonin secretion through exposure to
smartphone light. Our results suggested that an app-measured
chronotype, including sleep and wake times and midpoint of
sleep, may provide a more representative measurement of
melatonin secretion trends compared to actigraphy, which only
captures physical activity. The method used in this study, which
incorporates both physical activity and smartphone use, provides
a measurement that is closer to melatonin secretion, considered
the gold standard in measuring circadian rhythm.

This study has several limitations that should be considered
when interpreting the results. First, the cross-sectional design
of the study precludes the ability to make causal inferences
about the relationship between rest-activity rhythm and health
outcomes. Longitudinal studies are needed to further explore
these associations and identify the potential mechanisms
involved. Second, the methods used to measure sleep duration
and circadian rhythm in this study, which are based on
human-smartphone interactions, have not been validated against
the gold standard measures of polysomnography and melatonin
secretion, respectively. However, previous research has found
that rest-activity rhythms measured by actigraphy, and mobile
apps are associated with the timing of light exposure, the
strongest zeitgeber of the circadian system, and the amplitude
of melatonin secretion, a classic circadian phase marker [19,56].
This suggests that altered rest-activity rhythms, to some extent,
reflect circadian disruption and can serve as a relevant biological
marker for circadian function. Third, it should also be noted
that this study did not record participants’ timing and energy
intake from food, as well as other well-known risk factors for
obesity. Fourth, a diagnosis of obstructive sleep apnea (OSA)
was found in 5 of the participants in the obesity group. Despite
controlling OSA as a confounding factor, our results remained
consistent. However, it is critical to acknowledge that OSA is
a prevalent comorbidity of obesity and is frequently
accompanied by sleep disruption and circadian rhythm
misalignment [57]. Further research using larger study
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populations is necessary to further clarify the role and underlying
mechanisms of OSA in the relationship between obesity and
circadian rhythm. Fourth, while this study demonstrated that
sleep onset and wake times calculated using the Rhythm app
did not significantly differ from those recorded by actigraphy,
there remained a potential for misjudgment of sleep onset. This
scenario could have occurred if an individual fell asleep while
using their smartphone, for example, while watching Netflix.
In our algorithm, we introduced the “app-count” method, where
“app-count” was defined as the sum of minute-by-minute use
counts within nonoverlapping 5-minute epochs. Sleep onset
was determined as a period of 8 consecutive epochs with a zero
app-count, whereas wake time was identified as a period of 6
consecutive epochs with a nonzero app-count. Indeed, this study
found that the WASO recorded by the app was longer than that
recorded by actigraphy. In future research, it may be necessary
to adjust the threshold of zero app-count to achieve more
accurate recordings. Finally, we faced potential interruptions
in data collection from both the wrist-worn actigraphy device
and the smartphone app, primarily due to issues such as low
battery power or temporary nonuse by participants. To enhance
the robustness and continuity of our data in future research, we

plan to synergistically integrate the app with actigraphy. This
integration strategy aims to mitigate the challenges associated
with individual data collection methods. By using dual recording
modes, we anticipate a reduction in the likelihood of concurrent
data interruptions. The synergy between these 2 distinct data
sources is expected to provide a more comprehensive and
nuanced understanding of patient behaviors and circadian
rhythms, offering a more holistic perspective in our future
studies.

In conclusion, our results reveal that disruptions in the circadian
rhythms are linked to higher levels of BMI, VAT, and BF%.
These associations appear to hold even when taking into account
factors such as sleep duration and levels of daytime motor
activity. The strongest associations with obesity were seen in
metrics of IS and circadian rhythm regularity, as measured by
either a mobile app or actigraphy. These findings suggest that
regularity in the circadian rhythm may be a promising target
for obesity prevention and body weight management
interventions. Future studies should further explore the
mechanisms underlying these relationships and develop
strategies to improve the regularity of circadian rhythms.
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