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Abstract

Background: Machine learning (ML) risk prediction models, although much more accurate than traditional statistical methods,
are inconvenient to use in clinical practice due to their nontransparency and requirement of a large number of input variables.

Objective: We aimed to develop a precise, explainable, and flexible ML model to predict the risk of in-hospital mortality in
patients with ST-segment elevation myocardial infarction (STEMI).

Methods: This study recruited 18,744 patients enrolled in the 2013 China Acute Myocardial Infarction (CAMI) registry and
12,018 patients from the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective Acute
Myocardial Infarction Study. The Extreme Gradient Boosting (XGBoost) model was derived from 9616 patients in the CAMI
registry (2014, 89 variables) with 5-fold cross-validation and validated on both the 9125 patients in the CAMI registry (89
variables) and the independent China PEACE cohort (10 variables). The Shapley Additive Explanations (SHAP) approach was
employed to interpret the complex relationships embedded in the proposed model.

Results: In the XGBoost model for predicting all-cause in-hospital mortality, the variables with the top 8 most important scores
were age, left ventricular ejection fraction, Killip class, heart rate, creatinine, blood glucose, white blood cell count, and use of
angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs). The area under the curve (AUC)
on the CAMI validation set was 0.896 (95% CI 0.884-0.909), significantly higher than the previous models. The AUC for the
Global Registry of Acute Coronary Events (GRACE) model was 0.809 (95% CI 0.790-0.828), and for the TIMI model, it was
0.782 (95% CI 0.763-0.800). Despite the China PEACE validation set only having 10 available variables, the AUC reached 0.840
(0.829-0.852), showing a substantial improvement to the GRACE (0.762, 95% CI 0.748-0.776) and TIMI (0.789, 95% CI
0.776-0.803) scores. Several novel and nonlinear relationships were discovered between patients’ characteristics and in-hospital
mortality, including a U-shape pattern of high-density lipoprotein cholesterol (HDL-C).

Conclusions: The proposed ML risk prediction model was highly accurate in predicting in-hospital mortality. Its flexible and
explainable characteristics make the model convenient to use in clinical practice and could help guide patient management.

Trial Registration: ClinicalTrials.gov NCT01874691; https://clinicaltrials.gov/study/NCT01874691

(J Med Internet Res 2024;26:e50067) doi: 10.2196/50067
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Introduction

Acute myocardial infarction (AMI) is a major cause of
hospitalization and mortality in China, while ST-segment
elevation myocardial infarction (STEMI) accounts for over 80%
of myocardial infarctions [1-3]. It is critical to accurately predict
the risks of in-hospital mortality for patients with STEMI to
improve prognosis. Traditionally, most risk prediction models
have been based on generalized linear regression methods [4,5].
Although straightforward to understand and apply, these models
require parametric assumptions [6,7]. For example, using the
logistic regression (LR) method, the Global Registry in Acute
Coronary Events (GRACE) [4] and Thrombolysis in Myocardial
Infarction (TIMI) risk scores [5] oversimplified the complexity
of the real association among variables and outcome, resulting
in poor predictive accuracy [8,9]. Recently, machine learning
(ML) techniques have been increasingly used for predicting
different clinical events in cardiovascular disease [10-12] and
have achieved higher accuracy than traditional models.
However, ML models, often built on a large number of variables,
are difficult to use in clinical practice due to the need for
extensive input data and the challenge of identifying specific
therapeutic targets. The complexity and ambiguity of ML models
require a shift toward explainable artificial intelligence (XAI)
methods to guarantee that the model outputs are comprehensible
for end users [13]. Moreover, ML models tend to use a large
number of variables [14-16]. However, in clinical practice,
where many scenarios are unknown, a significant challenge is
how to apply the model more flexibly when some variables are
missing. Therefore, we aimed to develop an ML risk prediction
model for in-hospital mortality in patients with STEMI that is
not only highly accurate but also explainable and flexible with
the number of input variables (tolerant to the missing variables),
making it easy to use in clinical practice.

Methods

Data Description
The patients included in this study were from the China Acute
Myocardial Infarction (CAMI) registry [3], organized and
conducted by the Fuwai Hospital, National Center for
Cardiovascular Diseases, China, from January 2013 to
September 2014. The methodology of the CAMI registry
(NCT01874691) has been previously described [3]. In short,
the CAMI registry was a prospective, nationwide, multicenter
observational study for patients with AMI. The registry included
3 levels of hospitals (provincial, prefecture, and county),
reflecting the typical Chinese governmental and administrative
model and providing broad geographic representation across
all provinces and municipalities across mainland China. Patients
with AMI were consecutively enrolled, and data were collected
upon their arrival and throughout their hospital stay until
discharge. Data were collected, validated, and submitted by

trained clinical cardiologists or cardiovascular fellows to ensure
accuracy and reliability at each participating site. Patients
diagnosed as non-STEMI (NSTEMI) or lack of in-hospital
mortality status were excluded from the study.

The CAMI registry data were used for model derivation and
internal validation. Patients with STEMI hospitalized in 2014
(n=9616, 51.3%) were used to derive the model, while those
hospitalized in 2013 (n=9125, 48.7%) were used for internal
validation. An independent cohort of patients from the China
Patient-Centered Evaluative Assessment of Cardiac Events
(PEACE)-Retrospective Acute Myocardial Infarction Study [2],
another nationally representative sample of patients with STEMI
spanning from 2001 to 2011 (N=12,108), was also used to
externally validate the proposed risk prediction model. We only
selected 10 important variables to carry out the validation, with
the aim of assessing the proposed risk prediction model’s
flexibility when applied in daily clinical practice. The internal
validation set sampled at a different time point, along with the
independent external validation set, were both used to assess
the model’s reproducibility and generalizability to new and
different patients.

Ethical Considerations
Both study protocols conformed to the ethical guidelines of the
1975 Declaration of Helsinki and were approved by the ethics
review board committee of Fuwai Hospital (431) [2,3]. Written
informed consent was obtained from eligible patients before
registration. All data were anonymized.

Main Outcome
The main outcome was all-cause in-hospital mortality, defined
as death for any reason during hospitalization.

Predictor Variables
The patients with STEMI included in the CAMI cohort were
characterized by a total of 89 variables (Table S1 in Multimedia
Appendix 1), including social demographics, presentation
characteristics, laboratory tests, treatment, medical history, and
more [3]. The patients with STEMI included in the China
PEACE-Retrospective Acute Myocardial Infarction Study [2]
were characterized by 10 variables, including age, weight, Killip
class, heart rate, systolic blood pressure (SBP), glucose,
creatinine, white blood cell (WBC) count, high-density
lipoprotein cholesterol (HDL-C), and use of
angiotensin-converting enzyme inhibitors (ACEIs) or
angiotensin II receptor blockers (ARBs).

Explainable ML Analysis

Model Construction
The predictive model was developed using the Extreme Gradient
Boosting (XGBoost) [17] approach based on the CAMI
derivation set. XGBoost ensembles [18] a series of relatively
weak base classifiers (typically decision trees) into a stronger
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one sequentially and has achieved state-of-the-art results in
many clinical challenges [10,19]. Apart from its highly
competitive and accurate predictive performance, we chose the
XGBoost method for its ability to handle missing data
automatically [17]. Users do not need to impute the missing
values when deriving, validating, and applying the XGBoost
model. XGBoost provides the importance score of each variable,
representing the frequency that a variable is used across all trees.
The hyperparameters in the XGBoost model were tuned by
5-fold cross-validation on the derivation set.

Model Interpretation
The Shapley Additive Explanations (SHAP) method [20] was
used to interpret the derived XGBoost model. It offers
explanations on how the XGBoost model makes predictions
and interprets the complex nonlinear relationship among the
predictors and outcomes [19]. This method has been applied
recently in other clinical studies [10,19]. SHAP represents the
predicted risk as a cumulative effect of contributing variables
for each prediction. The variable impact values that SHAP
computes essentially represent the change in the predicted risk
of the XGBoost model when we observe a feature (such as the
weight of a patient) versus when we do not observe the feature
(such as not knowing a patient’s weight).

Model’s Flexibility in Application
XGBoost’s ability to handle missing values automatically makes
it a robust and flexible choice for dealing with input variables.
Users are free to input any number of available variables and
leave other unrecorded ones as “N/A” (not available) values.
Several experiments were conducted to assess the XGBoost
model’s flexibility. First, we retained the top 20, 15, and 10
most important variables and replaced the others with “N/A”
values on the CAMI derivation set. Second, we randomly
reduced the number of available variables from 89 to 10 in the
CAMI validation set (Multimedia Appendix 1). Third, we
included 10 variables from the independent China PEACE data
set for our analysis.

Statistical Analysis
Descriptive statistics were estimated as mean (SD) for the
continuous variables and frequency (percentage) for the
categorical ones. The missing rates for each variable were also
calculated. Missing values were imputed using the chained
equation method proposed in the Multiple Imputation by
Chained Equations (MICE) algorithm [21], as the models being
compared—namely, lasso LR, random forest, TIMI scores, and
GRACE scores—cannot handle missing data automatically.
The discrimination ability was estimated by the area under the
curve (AUC). Isotonic regression [22] was used downstream
of the XGBoost model to adjust the predictions [23,24]. The
calibration was assessed using the Hosmer-Lemeshow
goodness-of-fit test [25] on the CAMI derivation set.
Additionally, a decile plot of observed versus predicted risk
was used to visualize the calibration.

Results

Overview
The in-hospital mortality rate was 6.9% (n=663), 6.8% (n=621),
and 9.3% (n=1132) in the CAMI derivation, validation, and
China PEACE sets, respectively. The descriptive statistics of
the CAMI and China PEACE data set are illustrated in Table
S2 in Multimedia Appendix 1, while the missing rates are listed
in Table S3 in Multimedia Appendix 1.

Prediction of In-Hospital Mortality
Figure 1 illustrates the receiver operating characteristic (ROC)
curves of all the compared models. XGBoost produced the
highest discrimination performance for in-hospital mortality
with an AUC of 0.896 (95% CI 0.884-0.909; P<.05) on CAMI
validation set, better than the 2 compared ML methods: random
forest (AUC 0.861, 95% CI 0.845-0.876) and LR with lasso
penalty (0.850, 95% CI 0.834-0.866). The XGBoost model also
exhibited a significant improvement over the 2 well-established
models: GRACE score (AUC 0.809, 95% CI 0.790-0.828) and
TIMI score (AUC 0.782, 95% CI 0.763-0.800). All comparisons
were statistically significant when P<.05.
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Figure 1. Receiver operating characteristic (ROC) curve of different compared models on the China Acute Myocardial Infarction (CAMI) validation
set. GRACE: Global Registry in Acute Coronary Events; LR: logistic regression; TIMI: thrombolysis in myocardial infarction; XGBoost: Extreme
Gradient Boosting.

The Hosmer-Lemeshow statistic for the XGBoost model was
2.378 (P=.97), indicating a very good calibration result. The
decile plot further confirmed strong agreement between

XGBoost predicted probability and the observed in-hospital
mortality risk (Figure 2).

Figure 2. Calibration plot for the Extreme Gradient Boosting (XGBoost) model. The calibration plot shows the relationship between the observed and
predicted in-hospital mortality, grouped by deciles of predicted risk. The XGBoost model showed excellent calibration with the observed in-hospital
mortality.

The hyperparameters for XGBoost and random forest, tuned by
5-fold cross-validation, are listed in Tables S4 and S5 in
Multimedia Appendix 1.

Model Interpretation
Figure 3 illustrates the variable importance score in the XGBoost
model, reflecting the frequency with which a variable was used

across all trees. Age was the most important predictor of
in-hospital mortality, followed by left ventricular ejection
fraction (LVEF), Killip class, heart rate, creatinine, and blood
glucose.
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Figure 3. Variable importance score in the Extreme Gradient Boosting (XGBoost) model. A total of 48 variables with importance scores over 0 are
illustrated. The color of the bar represents the variable category. ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin II receptor blocker;
AWI: anterior wall infarction; CCB: calcium channel blocker; CKMB: creatine kinase Mb isoenzyme; GRAN: neutrophilic granulocyte; HCT: Hematocrit;
HDL-C: high-density lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; LVEDd: left ventricular end diastolic diameter; LVEF: left
ventricular ejection fraction; PCI: percutaneous coronary intervention; SBP: systolic blood pressure; TC: total cholesterol; TCM: traditional Chinese
medicine; TG: triglyceride; WBC: white blood cell.

Figure 4 explains the rationale behind the model’s prediction
of an individual’s risk. It displays the relative contributions of
all features toward the predicted risk of in-hospital mortality.
For instance, a predicted risk value of 0.01 for illustrated patient
A was influenced by variables such as Killip class, LVEF, age,

weight, and use of ACEI/ARB, among others. The red bars in
Figure 3 indicate variables that increase the risk (pushing to the
right), while the blue bars indicate variables that decrease the
risk (pushing to the left). The length of each bar corresponds to
the magnitude of its effect.
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Figure 4. Sample of predicted risk of in-hospital mortality for a selected patient. ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin
II receptor blocker; HR: heart rate; Glu: glucose, LVEF: left ventricular ejection fraction; PCI: percutaneous coronary intervention; SBP: systolic blood
pressure; WBC: white blood cell.

Figure 5 shows important novel and nonlinear relationships
between individual variables and in-hospital mortality risk
captured by the XGBoost model. For example, when age was
less than 56 years, its attribution to in-hospital mortality was
consistent and increased linearly after age was higher than 56
(J-shaped relationship). The heart rate variable displayed an
S-shaped relationship with in-hospital mortality risk. The risk
increased linearly after the heart rate was higher than 73 bpm
and almost doubled until it reached 125 bpm. LVEF followed
an inverted S-shaped pattern. Creatinine increased linearly until

26 and became constant after that (inverted J-shaped
relationship), similar to WBC. Higher blood glucose reflected
an increased in-hospital mortality risk. Variables like total
cholesterol, SBP, and weight showed an L-shaped pattern. An
N-shaped relationship was shown for neutrophilic granulocytes.
Patients with neutrophilic granulocytes between 77% and 90%
were predicted to have a higher in-hospital mortality risk.
HDL-C displayed a U-shaped pattern. For potassium, a value
between 4.13 and 4.49 mmol/L predicted the lowest in-hospital
mortality risk.
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Figure 5. Effect of varying individual variable values on the in-hospital mortality. These partial dependence plots show the change in in-hospital
mortality risk for all values of a given feature. The grey histograms on each plot show the distribution of values for that variable in the derivation data
set. Each point in red was obtained from one prediction. The green lines were fitted from the points by smoothed conditional means. HDL-C: high-density
lipoprotein cholesterol; LVEF: left ventricular ejection fraction; SBP: systolic blood pressure; WBC: white blood cell.

Flexibility of the Predictive Model
When we retained the top 20, 15, and 10 most important
variables (Figure 2) and replaced others as “N/A” values in the
CAMI validation set, the XGBoost model still achieved an AUC
of 0.892 (95% CI 0.879-0.905), 0.885(95% CI 0.872-0.899),
and 0.877(95% CI: 0.862 0.891), respectively. When the number

of retained variables was reduced randomly from 89 to 10, the
AUC decreased from 0.896 to 0.825 (SD 0.020) (20 available
variables) to 0.810 (SD 0.011) (10 available variables) (Figure
S1 in Multimedia Appendix 1). When the XGBoost model was
validated on the China PEACE data set with the top 10 available
variables (Figure 2), it achieved an AUC of 0.840 (95% CI
0.829-0.852). For comparison, the TIMI score and GRACE
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score applied to the China PEACE data set gained AUCs of
0.762 (95% CI 0.748-0.776) and 0.789 (95% CI 0.776-0.803).
The XGBoost model still significantly outperformed the
conventional TIMI and GRACE risk score models.

For practical convenience, we embedded the XGBoost
prediction model in a web-based calculator that required only
the top 10 most important variables as inputs [19].

Discussion

In this study, we proposed a risk model that predicted in-hospital
mortality for patients with STEMI by incorporating the ML
method XGBoost and the model interpretation approach SHAP.
The model we constructed had excellent performance in terms
of high predictive accuracy, high tolerance to missing values
(flexibility), and good clinical interpretability. Importantly, we
identified the top 7 clinical factors affecting in-hospital mortality
as age, LVEF, Killip class, heart rate, creatinine, glucose, and
WBC. Among these, LVEF, glucose, and WBC were not
included in the current traditional predictive models. Although
creatinine is also included in the GRACE score, its relationship
with mortality is not a simple linear one. The predictive value
of glucose and WBC exceeds that of other variables in
traditional predictive models, such as blood pressure, weight,
and medical history (hypertension, diabetes, and angina). We
believe that these findings can help doctors understand the value
of ML models and uncover the pathophysiological significance
of certain clinical variables in myocardial infarction.

While traditional statistical models such as TIMI and GRACE,
as recommended by current guidelines [26], are useful and
user-friendly, their overly simplified nature may result in
inadequate predictive accuracy for risk classification and
decision-making [8]. First, these models are developed based
on a limited number of variables and may not encompass
comprehensive information. Second, the LR method used by
these models requires strong assumptions, including a linear
relationship under the logit function, independence of
observations, and no multicollinearity among variables
[7,8,25,27]. This results in underestimating the complexity of
the real association among variables and outcomes.

In contrast, ML methods can handle a larger number of
variables, require no parametric assumptions, and can learn the
complex relationships hidden in the data automatically [9]. The
XGBoost method overcomes these limitations by generating a
series of classification and regression trees (CARTs) with each
one learning the residuals of its predecessors. The boosting
mechanism gives the model a strong predictive power. As
observed, the XGBoost model achieved an impressive AUC of
0.896 (95% CI 0.884-0.909) on the CAMI validation set,
outperforming the other methods and proving to be a more
powerful and effective tool for clinical risk prediction.

The XGBoost model’s ability to tolerate missing values makes
it well-suited for clinical applications, where incomplete
variables are frequent [28-30]. While most ML methods achieve
accuracy and precision by learning from a large number of
variables, they often lose practicality because it is usually
difficult to collect all the predictors used in the model in clinical

practice. In such cases, missing values must be imputed if
clinicians still want to apply the model. The proposed XGBoost
model overcomes this weakness thanks to its ability to deal with
missing values. We demonstrated that the XGBoost model’s
performance is relatively robust when faced with incomplete
data compared to the traditional LR model. Even with only the
top 10 important variables, the XGBoost model achieved an
AUC of 0.877(95% CI 0.862-0.891) on the CAMI validation
set. On the independent China PEACE set with only the top 10
important variables available, XGBoost gained an AUC of 0.840
(95% CI 0.829-0.852) compared to TIMI 0.762 (95% CI
0.748-0.776) and GRACE 0.789 (95% CI 0.776-0.803). These
results demonstrated the XGBoost model’s flexibility and
generalization ability, which could alleviate concerns about the
feasibility of applying complex ML models in clinical practice.

Another concern about the complex ML approaches applied in
clinical practice is their lack of transparency. Unlike the widely
employed LR method, whose coefficients clearly indicate the
effect of predictive factors on the outcome, the black-box nature
of complex ML algorithms applied in medical tasks has been
seriously criticized and doubted in recent years [8,9]. To address
this issue, our study used SHAP to interpret how the predicted
risk was determined for individual patients and uncover the
complex relationship between predictors and outcomes
embedded in the XGBoost model.

Our results showed that HDL-C displayed a U-shaped
relationship with in-hospital mortality among patients with
STEMI. In the previous studies, Madsen et al [31] reported a
U-shaped association between HDL-C and mortality, using data
from 52,268 men and 64,240 women enrolled in 2 prospective
population-based studies. Similarly, Bowe et al [32] found a
U-shaped relationship between HDL-C and the risk of all-cause
mortality in patients with kidney disease. For the variable
potassium, our result showed that the patients with STEMI with
potassium levels ranging from 4.13 to 4.49 mmol/L had the
lowest in-hospital mortality risk, while levels greater than 4.5
mmol/L increased the mortality risk. Clinical practice guidelines
recommend maintaining serum potassium levels between 4.0
and 5.0 mmol/L in patients with acute myocardial infarction
(AMI) [33,34]. However, recent studies have challenged these
guidelines, reporting that potassium levels greater than 4.5
mmol/L are associated with increased mortality [35-37]. Our
study found that creatinine >1.1mg/dl (94.5/L) contributed to
a higher in-hospital mortality risk. A previous study [38]
reported that an elevated serum creatinine level (defined as
creatinine ≥1.2 mg/dl) predicted a higher long-term mortality
risk in patients with AMI.

For the variable blood glucose, our results showed that levels
less than 8.15 mmol/L were safer for patients with STEMI.
Another study reported that the best cutoff values for 30-day
mortality among patients with STEMI were 149 mg/dL (8.27
mmol/L) for those without diabetes, 231 mg/dL (12.82 mmol/L)
for those with diabetes, and 169 mg/dL (9.38 mmol/L) for all
patients [39]. For the variable WBC, our result showed that a
higher WBC count was associated with higher in-hospital
mortality risk, with a safer threshold being less than 10.77/L.
Cannon et al [40] reported that mortality at 30 days showed a
curvilinear increase with increasing WBC count, with mortality
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rising in patients with WBC count >10,000 /dL (P<.0001).
Previous studies often investigated this relationship by
categorizing or binning continuous variables and regressing the
outcome on the categorical variables. However, this approach
is heavily influenced by predefined cutoffs and cannot provide
a continuous picture of the relationship. In contrast, our model
offered more thorough and quantitative insights into the exact
change in risk induced by specific patient characteristics. By
interpreting how each variable contributed to in-hospital
mortality, our study could help clinicians identify specific
therapeutic targets and further guide patient management.

Our research has a certain guiding significance for clinical
implementation. First, the new model is significantly superior
to traditional GRACE and TIMI models, helping doctors predict
patient prognosis. Second, ML has identified several variables
not included in past models, which may serve as potential targets
for clinical intervention or provide further understanding of the
pathophysiology of disease development, such as WBC and
blood glucose. Third, while clinicians often find it difficult to
understand the variables selected by ML, adopting the XGBoost
model and model interpretation approach SHAP further
increases accuracy by capturing nonlinear relationships among
the predictors and outcomes. This offers a clear explanation for

why ML can improve predictive efficiency, thus enhancing
clinicians’ understanding of the performance improvement of
ML. Methodologically, we used internal validation and a large
sample size of independent external validation, all leading to
consistent conclusions.

However, despite the superior performance of the proposed
XGBoost model, several limitations still exist. First, the
proposed XGBoost model was derived and validated on the
Chinese STEMI patient cohort. Further validation is needed to
confirm its efficiency on more general cohorts. Second, the
study was designed prospectively, but this research is a
retrospective analysis, so the variables recruited in our study
may be limited. The model may be more powerful if more
informative variables were added.

In conclusion, the proposed ML model in our paper
demonstrated strong advantages in predictive ability, flexibility,
and interpretability. Although some results need further study
and verification, we have shown the benefits of complex models
in the field of disease predictions. We offered a web calculator
for convenient application, and we hope our study can help
augment and extend the effectiveness of cardiologists to improve
patient care and promote incorporating ML into daily practice.
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