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Abstract

Background: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases and is associated with a
high risk of in-hospital mortality. However, the current deep learning models for in-hospital mortality prediction lack
interpretability.

Objective: This study aims to establish an explainable deep learning model to provide individualized in-hospital mortality
prediction and risk factor assessment for patients with AMI.

Methods: In this retrospective multicenter study, we used data for consecutive patients hospitalized with AMI from the Chongqing
University Central Hospital between July 2016 and December 2022 and the Electronic Intensive Care Unit Collaborative Research
Database. These patients were randomly divided into training (7668/10,955, 70%) and internal test (3287/10,955, 30%) data sets.
In addition, data of patients with AMI from the Medical Information Mart for Intensive Care database were used for external
validation. Deep learning models were used to predict in-hospital mortality in patients with AMI, and they were compared with
linear and tree-based models. The Shapley Additive Explanations method was used to explain the model with the highest area
under the receiver operating characteristic curve in both the internal test and external validation data sets to quantify and visualize
the features that drive predictions.

Results: A total of 10,955 patients with AMI who were admitted to Chongqing University Central Hospital or included in the
Electronic Intensive Care Unit Collaborative Research Database were randomly divided into a training data set of 7668 (70%)
patients and an internal test data set of 3287 (30%) patients. A total of 9355 patients from the Medical Information Mart for
Intensive Care database were included for independent external validation. In-hospital mortality occurred in 8.74% (670/7668),
8.73% (287/3287), and 9.12% (853/9355) of the patients in the training, internal test, and external validation cohorts, respectively.
The Self-Attention and Intersample Attention Transformer model performed best in both the internal test data set and the external
validation data set among the 9 prediction models, with the highest area under the receiver operating characteristic curve of 0.86
(95% CI 0.84-0.88) and 0.85 (95% CI 0.84-0.87), respectively. Older age, high heart rate, and low body temperature were the 3
most important predictors of increased mortality, according to the explanations of the Self-Attention and Intersample Attention
Transformer model.

Conclusions: The explainable deep learning model that we developed could provide estimates of mortality and visual contribution
of the features to the prediction for a patient with AMI. The explanations suggested that older age, unstable vital signs, and
metabolic disorders may increase the risk of mortality in patients with AMI.
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Introduction

Background
Acute myocardial infarction (AMI) refers to myocardial
ischemia caused by acute blockage of coronary arteries, which
is one of the most common cardiovascular emergencies [1].
AMI remains a leading cause of mortality worldwide, and
patients with AMI have an estimated in-hospital mortality of
7% to 14% [2,3]. Therefore, the prediction of in-hospital
mortality and assessment of risk factors for patients with AMI
is of great interest to clinicians. Predicting the risk of mortality
and conducting an individualized analysis of the risk factors in
patients with AMI at initial diagnosis is critical for developing
targeted interventions and improving the prognosis [4].

A substantial effort has been devoted to developing models for
predicting mortality in patients with AMI [5]. In the past,
generalized linear models (eg, the logistic regression [LR] model
and Cox proportional hazard model) have been used to predict
mortality in patients with AMI [6-9]. However, the generalized
linear models fail to capture the nonlinear relations of the
massive, high-dimensional, and incomplete medical data, which
hinder the practical use and further clinical application of the
models [10]. With the rapid development of artificial
intelligence, tree-based machine learning models, such as
random forest (RF) [11] and extreme gradient boosting
(XGBoost) [12], were used to address problems related to the
prediction of mortality and achieved promising performance
[13-15]. Nevertheless, tree-based models tend to be ineffective
in the face of web-based learning and sparse classification
features. More importantly, tree-based models failed to develop
the model with powerful deep learning modules through the
backpropagation method, which limits the further improvement
of the model performance [16]. Deep learning is the most
advanced branch of artificial intelligence, which can
automatically learn feature representations from training data
and provide new prospects for solving the existing limitations in
tree-based models [17]. However, state-of-the-art deep learning
models specific to tabular data have not been applied to the
prediction of mortality in patients with AMI. In addition, while
a complex model may perform better than a simpler one, it could
lead to black-box problems, meaning that only the inputs and
outputs of the model can be seen and it is difficult to understand
how the inputs affect the predictions, which limit their clinical
acceptance and raise ethical and legal questions [18]. The
proposal of methods that could provide explanations for
black-box models might facilitate clinicians in understanding
predictions and making faster and more accurate treatment
decisions [9,19,20]. At present, there is a lack of tools to predict
in-hospital mortality of patients with AMI based on tabular
data–specific deep learning models, and the potential of
state-of-the-art deep learning models for predicting mortality
in AMI is unclear. In addition, most mortality prediction models
for patients with AMI proposed in previous studies are black-box

models, which makes it difficult for clinicians to understand
the predictions and use the models in clinical practice.

Contribution
In this study, we chose 3 state-of-the-art deep learning models
to predict in-hospital mortality of patients with AMI and
compared their performance with linear and tree-based models.
In addition, we used an algorithm to interpret the
best-performing black-box prediction model to obtain a tool for
individualized mortality prediction and risk factor assessment
in patients with AMI.

Methods

Data Source
This retrospective study included consecutive patients
hospitalized with AMI from Chongqing University Central
Hospital between July 2016 and December 2022, the Medical
Information Mart for Intensive Care-IV (MIMIC-IV; version
2.2) database [21], and the Electronic Intensive Care Unit
Collaborative Research Database (eICU-CRD; version 2.0)
[22]. Chongqing University Central Hospital is a city-designated
emergency tertiary medical center in China with a permanent
population of >32 million. The MIMIC-IV database and
eICU-CRD are 2 large free public databases. The MIMIC-IV
database contains case information from 299,712 patients
admitted to the intensive care unit or the emergency department
at the Beth Israel Deaconess Medical Center from 2008 to 2019.
The eICU-CRD included information from 139,367 patients
from 208 hospitals in the United States between 2014 and 2015.

Ethical Considerations
Access to the MIMIC-IV database and eICU-CRD was approved
by the Massachusetts Institute of Technology (Cambridge,
Massachusetts) and Beth Israel Deaconess Medical Center
(Boston, Massachusetts), and consent was obtained for the data
collection. These databases are public, all patient data are
anonymized, and data extracted from the databases do not
require individual informed consent. PX attended a series of
courses offered by the National Institutes of Health and was
granted access to these databases after passing the required
assessment (record ID 51524821). The study was conducted
following the Declaration of Helsinki. Patient data obtained
from the Chongqing University Central Hospital were also
anonymized. Ethics approval was obtained from the Chongqing
University Central Hospital Ethics Committee, and informed
consent was waived.

Population
All patients diagnosed with AMI according to the ICD
(International Classification of Diseases) in the Chongqing
University Central Hospital between July 2016 and December
2022, MIMIC-IV database and eICU-CRD were included. ICD-9
(International Classification of Diseases, Ninth Revision) code
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410 and ICD-10 (International Statistical Classification of
Diseases, Tenth Revision) code I21 were used to identify the
patients with AMI. For patients with AMI admitted multiple
times during the study period, only the first admission was

included. Exclusion criteria were (1) patients aged <18 years,
(2) patients with unclear clinical outcome, and (3) patients with
>20% of missing data (Figure 1).

Figure 1. Study profile: (A) Inclusion and exclusion criteria for the training and internal test data set; and (B) Inclusion and exclusion criteria for the
external validation data set. AMI: acute myocardial infarction; eICU-CRD: Electronic Intensive Care Unit Collaborative Research Database; MIMIC-IV:
Medical Information Mart for Intensive Care-IV.

Data Extraction
Patient data at Chongqing University Central Hospital were
collected by reviewing electronic medical records. The data in
the MIMIC-IV database and eICU-CRD were obtained using
SQL. A total of 39 variables were incorporated into this study
to determine the prediction models, including demographics,
vital signs, laboratory parameters, comorbidities and drug use
data based on previous studies, and clinical relevance and
experience. All vital signs and laboratory data were the first
measurements after admission. Only variables with <30% of
missing values across the entire data set were considered for
inclusion. This inclusion criterion, unlike the exclusion criterion
for patients, was applicable to variables in the entire database.
The predetermined threshold was selected according to the
evidence from previous studies and experience [23,24]. The
missing values were filled by the K-nearest neighbors (KNN)
algorithm, and the hyperparameter K for KNN was determined
using a 5-fold cross-validation in the training data set. The KNN
model trained in the training data set was then used to fill in the
missing values in the internal test and external validation data
sets. In total, 24,004 missing data points were successfully filled
by the KNN model. The clinical outcome assessed in this study
was all-cause in-hospital mortality.

Statistical Analysis
Patients with AMI in the training data set were divided into a
survival group and a nonsurvival group according to the clinical
outcome. Shapiro-Wilk test was applied for the normality test.

Continuous variables were presented as medians (IQRs), and
categorical variables were presented as numbers and
percentages. To test the differences within the groups, the
2-tailed t test and Kruskal-Wallis test were used for normal and
nonnormal continuous variables, respectively. For categorical
variables, between-group differences were evaluated using the
chi-square test. P value <.05 was regarded as statistically
significant.

Model Development
The data of the Chongqing University Central Hospital and
eICU-CRD were merged and shuffled. The shuffled data set
was then randomly divided into the training data set and internal
test data set in a 7:3 ratio. The reason for this combination was
that the data of the eICU-CRD were collected from 208 hospitals
in the United States, and the generalization ability of the model
may be improved by combining the data of eICU-CRD with
the data from Chongqing University Central Hospital into a
larger multicenter training data set. Patient data in the
MIMIC-IV database were used for an independent external
validation, which is independent of the Chongqing University
Central Hospital and eICU-CRD data.

Data preprocessing tasks were performed before training the
prediction models. The KNN algorithm and z score were used
to fill in missing values and normalize continuous variables,
respectively.
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A total of 9 models were used to predict in-hospital mortality
in patients with AMI, including state-of-the-art deep learning
models (eg, Self-Attention and Intersample Attention
Transformer [SAINT] [25], TabTransformer [26], and TabNet
[27]), a basic deep learning model (eg, multilayer perceptron
[MLP] [28]), tree-based machine learning models (eg, RF [11],
XGBoost [12], light gradient boosting machine [29], and
categorical boosting [30]), and a linear model (LR [31]). An
optimization procedure based on nested 5-fold cross-validation
Bayesian optimization was used for each model with 100
iterations to determine the hyperparameters. Additional details
on hyperparameters setting are provided in Tables S1-S8 in
Multimedia Appendix 1. The complete training data set was
then used to train the final models with the optimal
hyperparameters. Code for model development is publicly
available [32].

Model Evaluation
The area under the receiver operating characteristic curve (AUC)
was used to assess the performance of the prediction models in
the internal test data set and external validation data set. The
cutoff thresholds were determined according to the Youden
index, and 5 metrics were further calculated, including balanced
accuracy, sensitivity, specificity, precision, and F1-score. CIs
were calculated using 1000 bootstrap samples. The calibration
curve and Brier score were used to evaluate the reliability of
probability estimates of the prediction models; decision curve
analysis was used to evaluate the clinical utility of the models.

Model Explanation
The Shapley Additive Explanations (SHAP) algorithm was used
to interpret the predictions to obtain global and local influences
of the relevant features on the predictions. With a set of feature
values of a patient, a SHAP value represents how much a single
feature’s value influences the difference between the actual
prediction and the average prediction of the model in interaction
with other features. Briefly, the mean prediction of the model

plus the sum of the SHAP values of a sample is equal to the
prediction of that sample [33,34].

We first used the SHAP algorithm to visualize the global relative
importance of features to the predictions. The rationality of the
abovementioned results was then verified by statistical methods.
Patients in the training data set were further divided into a
survival group and a nonsurvival group. Statistical test was used
to evaluate the differences in features between the groups, and
the test results were compared with those obtained by the SHAP
algorithm. Finally, we linearly mapped the SHAP value to the
probability of driving an increase or decrease in predicted
mortality, quantifying and visualizing the contribution of each
feature to the prediction in individuals.

Results

Statistical Analysis Results
A total of 2428 consecutive patients with AMI who were
admitted to Chongqing University Central Hospital between
July 2016 and December 2022 and 8527 patients with AMI
from the eICU-CRD were included in the analysis. A total of
10,955 patients were randomly divided into a training data set
of 7668 (70%) patients and an internal test data set of 3287
(30%) patients. The median age of patients in the training and
internal test data sets was 66 (IQR 56-76) years, with 65.6%
(5030/7668) and 68.09% (2238/3287) of male participants,
respectively. In total, 8.74% (670/7668) of the patients each in
the training data set and 8.73% (287/3287) of the patients in the
internal test data set died during their hospital stay (Table 1).

A total of 9355 patients with AMI from the MIMIC-IV database
were included for independent external validation. The median
age of patients in the external validation group was 72 (IQR
62-82) years, higher than that in the training or internal test data
set. In total, 61.17% (5722/9355) of the patients were male
participants, and 9.12% (853/9355) of the patients died during
the hospitalization (Table 1).
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Table 1. Baseline characteristics of patients with acute myocardial infarction included in the models (N=10,955).

External validation data set (n=9355)Internal test data set (n=3287)Training data set (n=7668)Variables

Demographic data

72 (62-82)66 (56-76)66 (56-76)Age (years), median (IQR)

3633 (38.8)1049 (31.9)2638 (34.4)Female participants, n (%)

Vital signs, median (IQR)

83 (72-96)81 (70-95)81 (70-96)Heart rate (beats/minute)

18 (16-20)20 (17-21)20 (17-21)Respiratory rate (minute−1)

126 (109-145)129 (112-148)129 (111-149)Systolic blood pressure (mm Hg)

69 (58-82)76 (64-88)76 (64-88)Diastolic blood pressure (mm Hg)

36.7 (36.4-37)36.6 (36.4-36.8)36.6 (36.4-36.8)Temperature (°C)

Laboratory data, median (IQR)

0.32 (0.11-1.01)0.69 (0.10-4.93)0.74 (0.10-4.85)Troponin T or I (ng/mL)

9.30 (7.1-12.4)10.7 (8.3-13.7)10.6 (8.2-13.6)White blood cell (k/µ)

3.88 (3.34-4.41)4.43 (3.91-4.87)4.42 (3.89-4.87)Red blood cell (m/µ)

11.6 (9.9-13.2)13.4 (11.8-14.9)13.5 (11.7-14.8)Hemoglobin (g/dL)

35.2 (30.5-39.6)40.2 (35.7-44)40.1 (35.4-43.9)Hematocrit (%)

208 (164-262)217 (174-268)215 (173-265)Platelet (k/µ)

12.9 (11.8-14.7)13.3 (12.3-14.5)13.3 (12.3-14.5)Prothrombin time (seconds)

1.2 (1.1-1.3)1.05 (1-1.2)1.06 (1-1.2)International normalized ratio

139 (137-141)138 (136-140)138 (136-140)Sodium (mEq/L)

4.2 (3.8-4.5)4 (3.7-4.4)4.00 (3.70-4.37)Potassium (mEq/L)

103 (100-106)103.4 (100-106)103.3 (100-106)Chloride (mEq/L)

8.7 (8.3-9.1)8.9 (8.41-9.3)8.90 (8.5-9.3)Calcium (mg/dL)

2 (1.8-2.2)1.99 (1.77-2.19)1.99 (1.8-2.2)Magnesium (mg/dL)

1.1 (0.8-1.6)1.03 (0.82-1.40)1.04 (0.84-1.38)Creatinine (mg/dL)

21 (15-35)19 (14-28)19 (14- 28)Blood urea nitrogen (mg/dL)

Comorbidities, n (%)

3962 (42.4)1965 (59.8)4616 (60.2)Hypertension

4940 (52.8)397 (12.1)820 (10.7)Hyperlipidemia

3813 (40.8)1087 (33.1)2516 (32.8)Diabetes

4298 (45.9)854 (26)1987 (25.9)Heart failure

4446 (47.5)760 (23.1)1648 (21.5)Renal failure

1106 (11.8)348 (10.6)788 (10.3)Cerebral vascular disease

1324 (14.2)439 (13.4)1062 (13.8)Peripheral vascular disease

688 (7.4)386 (11.7)864 (11.3)Chronic obstructive pulmonary disease

Operations, n (%)

2839 (30)1663 (50.6)3855 (50.3)Coronary arteriography

2954 (31.6)1359 (41.3)3083 (40.2)Percutaneous coronary intervention

Drugs, n (%)

8534 (91.2)2126 (64.7)4941 (64.4)Aspirin

4385 (46.9)872 (26.5)2070 (27)Clopidogrel

622 (6.6)629 (19.1)1491 (19.4)Ticagrelor

4001 (42.8)765 (23.3)1827 (23.8)Angiotensin-converting enzyme inhibitor
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External validation data set (n=9355)Internal test data set (n=3287)Training data set (n=7668)Variables

1158 (12.4)118 (3.6)240 (3.1)Angiotensin receptor blockers

8276 (88.5)1596 (48.6)3728 (48.6)Statins

7625 (81.5)1555 (47.3)3565 (46.5)β-Blockers

Clinical outcome

853 (9.1)287 (8.7)670 (8.7)All-cause in-hospital mortality, n (%)

5.33 (2.80-9.85)4.95 (2.42-9.51)4.98 (2.50-9.25)Length of hospital stay (days), median (IQR)

Model Performance
The AUCs of 9 models in the internal test data set and external
validation data set are shown in Figures 2A and 2B (AUC=1

indicates perfect prediction and AUC=0.5 indicates random
prediction), and the other 5 evaluation metrics, including
balanced accuracy, sensitivity, specificity, precision, and
F1-score are listed in Tables 2 and 3.

Figure 2. Performance of the models in predicting in-hospital mortality of patients with acute myocardial infarction in the internal test set and external
validation set: (A) and (B), AUCs of the models; (C) and (D), calibration plots of the models; and (E) and (F), decision curves of the models. AUC:
area under the receiver operating characteristic curve; CatBoost: categorical boosting; LightGBM: light gradient boosting machine; LR: logistic regression;
MLP: multilayer perceptron; RF: random forest; SAINT: Self-Attention and Intersample Attention Transformer; XGBoost: extreme gradient boosting.
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Table 2. Values of the evaluation metrics of the models in the internal test data set.

AUCa (95% CI)F1-score (95%
CI)

Precision (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Balanced accuracy
(95% CI)

Models

0.83 (0.81-0.85)0.32 (0.29-0.35)0.20 (0.17-0.22)0.67 (0.65-0.68)0.85 (0.81-0.89)0.76 (0.74-0.78)Logistic regression

0.85 (0.82-0.87)0.39 (0.35-0.43)0.30 (0.26-0.34)0.87 (0.86-0.88)0.58 (0.52-0.64)0.72 (0.69-0.75)Random forest

0.85 (0.83-0.87)0.35 (0.32-0.39)0.23 (0.21-0.26)0.77 (0.75-0.78)0.74 (0.69-0.78)0.75 (0.73-0.78)Extreme gradient boosting

0.85 (0.83-0.87)0.40 (0.35-0.44)0.32 (0.28-0.36)0.89 (0.88-0.91)0.52 (0.47-0.58)0.71 (0.68-0.73)Light gradient boosting machine

0.85 (0.83-0.87)0.37 (0.33-0.40)0.24 (0.21-0.27)0.78 (0.76-0.80)0.74 (0.69-0.79)0.76 (0.73-0.78)Categorical boosting

0.84 (0.82-0.86)0.32 (0.35-0.39)0.23 (0.20-0.25)0.74 (0.73-0.76)0.79 (0.75-0.84)0.77 (0.74-0.79)Multilayer perceptron

0.81 (0.79-0.84)0.31 (0.28-0.34)0.19 (0.17-0.21)0.65 (0.64-0.67)0.86 (0.82-0.90)0.76 (0.73-0.78)TabNet

0.84 (0.82-0.86)0.33 (0.30-0.37)0.21 (0.18-0.23)0.69 (0.67-0.71)0.85 (0.81-0.89)0.77 (0.75-0.79)TabTransformer

0.86 (0.84-0.88)0.36 (0.32-0.39)0.23 (0.21-0.26)0.77 (0.75-0.78)0.74 (0.69-0.79)0.76 (0.73-0.78)Self-Attention and Intersample Atten-
tion Transformer

aAUC: area under the receiver operating characteristic curve.

Table 3. Values of the evaluation metrics of the models in the external validation data set.

AUCa (95% CI)F1-score (95%
CI)

Precision (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Balanced accuracy
(95% CI)

Models

0.83 (0.82-0.85)0.30 (0.28-0.31)0.18 (0.17-0.19)0.58 (0.57-0.59)0.91 (0.89-0.93)0.73 (0.74-0.76)Logistic regression

0.84 (0.82-0.85)0.38 (0.36-0.40)0.26 (0.24-0.28)0.80 (0.79-0.81)0.70 (0.67-0.73)0.75 (0.73-0.77)Random forest

0.84 (0.83-0.85)0.33 (0.31-0.35)0.21 (0.19-0.22)0.69 (0.68-0.70)0.82 (0.79-0.84)0.75 (0.74-0.77)Extreme gradient boosting

0.85 (0.85-0.86)0.42 (0.40-0.45)0.34 (0.31-0.36)0.89 (0.88-0.89)0.57 (0.54-0.61)0.73 (0.71-0.75)Light gradient boosting machine

0.85 (0.83-0.86)0.35 (0.33-0.36)0.22 (0.21-0.23)0.71 (0.70-0.72)0.81 (0.78-0.84)0.76 (0.75-0.77)Categorical boosting

0.84 (0.82-0.85)0.31 (0.29-0.33)0.19 (0.18-0.20)0.62 (0.61-0.63)0.89 (0.86-0.91)0.75 (0.74-0.76)Multilayer perceptron

0.78 (0.77-0.80)0.25 (0.24-0.26)0.14 (0.14-0.15)0.45 (0.44-0.46)0.93 (0.91-0.94)0.69 (0.68-0.70)TabNet

0.83 (0.82-0.85)0.30 (0.28-0.31)0.18 (0.17-0.19)0.57 (0.57-0.59)0.92 (0.90-0.94)0.75 (0.74-0.76)TabTransformer

0.85 (0.84-0.87)0.34 (0.32-0.36)0.21 (0.20-0.22)0.67 (0.66-0.68)0.87 (0.85-0.90)0.77 (0.76-0.78)Self-Attention and Intersample Atten-
tion Transformer

aAUC: area under the receiver operating characteristic curve.

In general, the SAINT model performed best in both the internal
test data set and the external validation data set among the 9
prediction models, with an AUC of 0.86 (95% CI 0.84-0.88)
and 0.85 (95% CI 0.84-0.87), respectively. The corresponding
balanced accuracy of the internal test data set and external
validation data set were 0.76 (95% CI 0.73-0.78) and 0.77 (95%
CI 0.76-0.78), sensitivities were 0.74 (95% CI 0.69-0.79) and
0.87 (95% CI 0.85-0.90), specificities were 0.77 (95% CI
0.75-0.78) and 0.67 (95% CI 0.66-0.68), precision values were
0.23 (95% CI 0.21-0.26) and 0.21 (95% CI 0.20-0.22), and
F1-score were 0.36 (95% CI 0.32-0.39) and 0.34 (95% CI
0.32-0.36), respectively. The calibration curves demonstrated
good consistency between the predicted and observed
probabilities for the SAINT model with curves close to the 45°
line, and the Brier scores were 0.07 (95% CI 0.01-0.21) and
0.07 (95% CI 0.02-0.17) in the internal test data set and external
validation data set, respectively (Figures 2C and 2D). In
addition, the decision curve analysis (Figures 2E and 2F)
illustrated that the SAINT model was clinically beneficial in
both the internal test data set and external validation data set.

Moreover, we tried to train the model using different data sets
and evaluated the performance of the models in different
external validation data sets. The results showed that the SAINT
model performed better than other models (Figures S2 and S3
and Tables S9-S12 in Multimedia Appendix 1). Furthermore,
we evaluated the model’s predictive power using the
measurements obtained within the first 2 hours of patient
admission. This evaluation aimed to assess the predictive power
of the models for the early diagnostic stage of patients with
AMI. The results demonstrated that although the SAINT model
still outperformed the other models, there was a clear decrease
in the predictive power of all models, with an average decrease
of 0.06 (SD 0.02) in the AUC. (Figure S4 and Table S13 in
Multimedia Appendix 1).

Model Explanation Results
The relative importance and contribution of the top 20 features
to the SAINT model are shown in Figure 3A, which was
obtained by the SHAP algorithm interpreting the predictions of
the SAINT model. The importance and contribution of the full
features to the SAINT model are presented in Figure S1 in
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Multimedia Appendix 1. Age was ranked as the most important
feature for the prediction model, followed by heart rate,
temperature, white blood cell level, systolic blood pressure,
magnesium level, prothrombin time, calcium level, creatinine
level, and sodium level. Considering the impact of age on the
predictions as an example, advanced age was commonly
associated with a higher risk of mortality, and younger age
generally drove the predictions toward survival (red dots
represent a high value of the features, which on the right side
of the x-axis represents an increased risk of mortality). Similar
explanations can be applied to other features, and most
interpretations were consistent with clinical experience. It is
notable that features can drive predictions in different directions
(increasing or decreasing mortality predictions) for patients
with different features, unlike previous scoring systems (eg,
Global Registry of Acute Coronary Events risk score [35] and
Thrombolysis in Myocardial Infarction score [36]), where the
influence of a given feature value on the prediction is invariant.
The 9 most important features for the prediction models showed
a statistically significant difference between the survival group
and the nonsurvival group in the training data set (P<.05), which

further supports the rationality of the explanations of the features
(Table 4).

We further mapped the SHAP values to the probability of
driving an increase or decrease in mortality and visualized the
application of the method to 1 deceased patient and 1 surviving
patient in the external validation data set (Figures 3B and 3C).
In the case of the deceased patient, the patient was female and
aged 89 years with a history of heart failure and renal failure.
The model predicted that the risk of mortality of the patients
was 0.551. High levels of serum sodium (185 mEq/L) and serum
magnesium (3.2 mg/dL) drove a 0.29 and 0.21 increase in the
risk of mortality, respectively, whereas a high serum chloride
level was associated with a 0.17 reduction in the risk of
mortality. A similar explanation can be applied to other features.
The prediction was driven by 39 features used for model
training, and the sum of the SHAP values for all features plus
the baseline risk equaled the predicted risk of mortality. The
baseline risk score was obtained by calculating the average
predicted risk of mortality among all patients in the training
data set (0.079). Therefore, the SHAP algorithm made our model
explainable at both the global and individual levels.

Figure 3. The impact of the input features on predictions: (A) the effect of the input features on the model at the global level. Each dot represents the
influence of a feature on the prediction for a patient. Red dots indicate a higher value of the features, and blue dots indicate a lower value of the features.
A dot on the left side of the x-axis represents that the feature value decreased mortality prediction, and a dot on the right side of the x-axis represents
that the feature value increased mortality prediction, (B) an example of risk factor analysis for a patient in the external validation set (in-hospital death),
and (C) an example of risk factor analysis for a patient in the external validation set (survival at hospital discharge). SHAP: Shapley Additive Explanations.
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Table 4. Baseline characteristics of patients with acute myocardial infarction in the training data set by clinical outcomes (n=7668).

P valueaNonsurvival group (n=670)Survival group (n=6998)Variables

Demographic data

<.00175 (66-83)66 (56-75)Age (years), median (IQR)

<.001Sex, n (%)

369 (55.1)4661 (66.6)Male

301 (44.9)2337 (33.4)Female

Vital signs, median (IQR)

<.00192 (78-108)80 (69-94)Heart rate (beats/minute)

<.00120 (18-25)20 (17-21)Respiratory rate (minute−1)

<.001116 (98-142)130 (113-149)Systolic blood pressure (mm Hg)

<.00168 (57-81)77 (65-88)Diastolic blood pressure (mm Hg)

<.00136.5 (36.1-36.8)36.6 (36.4-36.8)Temperature (°C)

Laboratory data, median (IQR)

<.0011.77 (0.26-8.78)0.66 (0.10-4.47)Troponin T or I (ng/mL)

<.00112.4 (9.1-16.8)10.4 (8.2-13.4)White blood cell (k/µ)

<.0014.05 (3.48-4.59)4.45 (3.94-4.88)Red blood cell (m/µ)

<.00112.1 (10.3-14)13.6 (11.8-14.9)Hemoglobin (g/dL)

<.00137 (32.1-42.4)40.4 (35.9-44)Hematocrit (%)

.06213 (153-270)215 (174-264)Platelet (k/µ)

<.00114.5 (13.2-17.2)13.2 (12.2-14.3)Prothrombin time (seconds)

<.0011.2 (1.08-1.49)1.04 (1-1.16)International normalized ratio

.06138 (135-141)138 (136-140)Sodium (mEq/L)

<.0014.2 (3.73-4.70)4 (3.7-4.3)Potassium (mEq/L)

<.001103 (98.5-106)103.6 (100.4-106)Chloride (mEq/L)

<.0018.6 (8.18-9.10)8.9 (8.5-9.3)Calcium (mg/dL)

<.0012 (1.71-2.30)1.99 (1.80-2.19)Magnesium (mg/dL)

<.0011.42 (1.06-2.14)1.01 (0.82-1.30)Creatinine (mg/dL)

<.00127 (18-41)19 (14-27)Blood urea nitrogen (mg/dL)

Comorbidities, n (%)

.76407 (60.7)4209 (60.1)Hypertension

.0253 (7.9)767 (11)Hyperlipidemia

<.001267 (39.9)2249 (32.1)Diabetes

<.001299 (44.6)1688 (24.1)Heart failure

<.001315 (47)1333 (19)Renal failure

<.001118 (17.6)670 (9.6)Cerebral vascular disease

.8391 (13.6)971 (13.9)Peripheral vascular disease

<.001115 (17.2)749 (10.7)Chronic obstructive pulmonary disease

Operations, n (%)

<.001185 (27.6)3670 (52.4)Coronary arteriography

<.001163 (24.3)2920 (41.7)Percutaneous coronary intervention

Drugs, n (%)

<.001358 (53.4)4583 (65.5)Aspirin
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P valueaNonsurvival group (n=670)Survival group (n=6998)Variables

<.001127 (19)1943 (27.8)Clopidogrel

<.00178 (11.6)1413 (20.2)Ticagrelor

<.00150 (7.5)1777 (25.4)Angiotensin-converting enzyme inhibitor

.0017 (1)233 (3.3)Angiotensin receptor blocker

<.001216 (32.2)3512 (50.2)Statins

<.001196 (29.3)3369 (48.1)β-Blockers

Clinical outcome, median (IQR)

<.0013.71 (1.23-8.27)5.15 (2.59-9.34)Length of hospital stay (days)

aItalicized P values (<.05) were considered statistically significant.

Discussion

Principal Findings
In this multicenter, retrospective study, we trained 3
state-of-the-art deep learning models on patients with AMI from
Chongqing University Central Hospital and patient data from
the eICU-CRD and compared their performance with 4 advanced
tree-based models, an LR model, and an MLP. We performed
both internal and external validation (MIMIC-IV database) to
confirm the predictive ability of the models and ensure the
reliability of the results. In addition, the SHAP algorithm was
used to interpret the predictions of the best-performing model
(SAINT) to quantify and visualize the impact of the features on
the predicted mortality at global and individual levels.

The models developed in this study had similar AUC in the
internal test data set and the external validation data set, which
demonstrated a good generalization ability of the models. The
training data set we used was collected from 209 centers in Asia
and the United States, and the multicenter data contributed to
improving the performance of the model, especially in terms
of generalization ability. However, although the specificities of
the models in the internal test data set were generally higher
and the sensitivities were lower than that in the external
validation, the models tended to overestimate patient mortality
in the external validation data set, leading to false positive
results. The SAINT model is a hybrid deep learning–based
approach specifically designed to solve tabular data problems
and outperforms tree-based models over a variety of benchmark
tasks [25]. In this study, the SAINT model performed best in
both the internal test data set and the external validation data
set among the 9 prediction models, with the highest AUC and
lowest Brier score. In addition, the decision curve analysis
indicated that the SAINT model could provide net benefits
across an extensive range of threshold values. The SAINT model
attained the highest balanced accuracy during evaluation on the
external validation data set, indicating that the model had strong
classification ability. Nevertheless, it is worth noting that both
precision and specificity metrics associated with the SAINT
model did not exhibit high values, implying a proclivity of the
model to overestimate the mortality risk among patients with
AMI. According to these results, state-of-the-art deep learning
methods have greater potential in accurately predicting mortality
in patients with AMI than linear, MLP, and tree-based models.

The SHAP algorithm was used to obtain an interpretation of
the predictions of the SAINT model, and the impact of most
features on the predictions is consistent with clinical practice
and previous evidence. For instance, advanced age, unstable
vital signs, presence of infection, metabolic disorders, and
coagulation disorders lead to increased predicted mortality. The
results of the model interpretation indicated that advanced age
was ranked as the most important risk factor for mortality. In
addition, as patients age, their physical function and resistance
decline, which may increase their risk of mortality [37,38].
Unstable vital signs (eg, elevated heart rate and respiratory rate
and decreased levels of systolic blood pressure and temperature)
usually indicate that the patient is in a critical condition, and
such patients tend to have a worse prognosis [39,40]. Similarly,
the presence of infection (eg, elevated levels of white blood
cells) may impair physical function and reduce the effectiveness
of treatment [41]. In addition, metabolic and coagulation
disorders (eg, elevated levels of magnesium and sodium and
increased prothrombin time) are associated with an increased
risk of mortality [42].

LR models and Cox proportional hazard models are commonly
used tools for predicting the mortality of patients with AMI [6].
However, the rapid development of medical information
technology brings massive, nonlinear, and high-dimensional
data, which challenge the generalized linear model [43].
Tree-based machine learning models (eg, RF, XGBoost, and
light gradient boosting machine) achieved substantial gains in
the predictive accuracy of tabular data [4,13,14]. Nevertheless,
tree-based models were developed directly using the information
entropy of data without calculating the loss function and
performing backpropagation, which limits the model from taking
advantage of powerful deep learning modules and conducting
web-based learning [29,30]. Recently, deep learning models
have received extensive attention in the screening, diagnosis,
and prognosis prediction of diseases, and their performance
even outperformed that of clinicians in some aspects [44]. A
recent, large population-based study by Mohammad et al [45]
revealed the tremendous potential of deep learning models to
identify the risk of adverse outcomes in patients with AMI.
However, the prediction model used in this study is the most
basic deep learning model (MLP), and the ability of
state-of-the-art deep learning models to predict the mortality of
patients with AMI remains unclear. In addition, the model used
in the study by Mohammad et al [45] is regarded as a black-box
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model due to the complex internal calculation process, that is,
we can only see the input and final predictions of the model but
cannot understand how the model makes decisions. We used
the SHAP algorithm to quantify and visualize the features that
drive the predictions, which combines the advantages of
complex deep learning models and simple linear models to solve
the problem of insufficient predictive ability of the linear model
and black-box model of the complex deep learning model. The
effect of each feature on the prediction is not isolated but derived
from the interaction with the other features, which makes it
superior to the fixed feature weight in the linear models [33].
Furthermore, the SHAP algorithm not only provides the impact
of the features on the model but also provides the interpretation
at an individual level. Such a patient-level interpretable model
allows clinicians to combine the predictions and explanations
with their empirical knowledge to facilitate decision-making
[19].

Limitations
This study has several limitations. First, to enable the models
to learn more comprehensive information and improve
performance, up to 39 features were used to develop the model.
Nevertheless, the variables included in the study were limited
by the retrospective design and the use of publicly available
databases. Second, there were missing values in the raw data;
although the KNN algorithm was used to complete them, the

real data could provide more valuable information. This
limitation was particularly significant during the early stages
of patient hospital admission when the available predictors were
limited. Even with the application of the KNN algorithm to
complete the missing values, the predictive power of the model
could be compromised. Third, although the SHAP algorithm
was used to obtain the explanations of the models, the impact
of features on the predictions is not equal to the association in
the causal chain. In addition, features such as age and sex, while
influencing predictions, were not subject to human intervention.
However, the explanations of the relationship between features
and predictions may guide us in examining causation.

Conclusions
In conclusion, in this multicenter study, we developed and
externally validated 9 prediction models for in-hospital mortality
in patients with AMI. Our results indicate that state-of-the-art
deep learning models may provide a promising alternative
solution to further improve the predictive ability of mortality
in patients with AMI. The explanations of the model suggest
that older age, unstable vital signs, and metabolic disorders may
increase the risk of mortality in patients with AMI. Transparent
and explainable models are expected to support clinical practice,
trial design, and future research. However, future prospective
studies are needed to confirm the findings.
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Abbreviations
AMI: acute myocardial infarction
AUC: area under the receiver operating characteristic curve
eICU-CRD: Electronic Intensive Care Unit Collaborative Research Database
ICD: International Classification of Diseases
ICD-9: International Classification of Diseases, Ninth Revision
ICD-10: International Statistical Classification of Diseases, Tenth Revision
KNN: K-nearest neighbors
LR: logistic regression
MIMIC-IV: Medical Information Mart for Intensive Care-IV
MLP: multilayer perceptron
RF: random forest
SAINT: Self-Attention and Intersample Attention Transformer
SHAP: Shapley Additive Explanations
XGBoost: extreme gradient boosting
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