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Abstract

Background: Previous work suggests that Google searches could be useful in identifying conjunctivitis epidemics. Content-based
assessment of social media content may provide additional value in serving as early indicators of conjunctivitis and other systemic
infectious diseases.

Objective: We investigated whether large language models, specifically GPT-3.5 and GPT-4 (OpenAI), can provide probabilistic
assessments of whether social media posts about conjunctivitis could indicate a regional outbreak.

Methods: A total of 12,194 conjunctivitis-related tweets were obtained using a targeted Boolean search in multiple languages
from India, Guam (United States), Martinique (France), the Philippines, American Samoa (United States), Fiji, Costa Rica, Haiti,
and the Bahamas, covering the time frame from January 1, 2012, to March 13, 2023. By providing these tweets via prompts to
GPT-3.5 and GPT-4, we obtained probabilistic assessments that were validated by 2 human raters. We then calculated Pearson
correlations of these time series with tweet volume and the occurrence of known outbreaks in these 9 locations, with time series
bootstrap used to compute CIs.

Results: Probabilistic assessments derived from GPT-3.5 showed correlations of 0.60 (95% CI 0.47-0.70) and 0.53 (95% CI
0.40-0.65) with the 2 human raters, with higher results for GPT-4. The weekly averages of GPT-3.5 probabilities showed substantial
correlations with weekly tweet volume for 44% (4/9) of the countries, with correlations ranging from 0.10 (95% CI 0.0-0.29) to
0.53 (95% CI 0.39-0.89), with larger correlations for GPT-4. More modest correlations were found for correlation with known
epidemics, with substantial correlation only in American Samoa (0.40, 95% CI 0.16-0.81).

Conclusions: These findings suggest that GPT prompting can efficiently assess the content of social media posts and indicate
possible disease outbreaks to a degree of accuracy comparable to that of humans. Furthermore, we found that automated content
analysis of tweets is related to tweet volume for conjunctivitis-related posts in some locations and to the occurrence of actual
epidemics. Future work may improve the sensitivity and specificity of these methods for disease outbreak detection.
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Introduction

Background
Conjunctivitis, while usually self-limiting, results in substantial
societal costs [1,2] and can give rise to large outbreaks [2-7].
The detection of conjunctivitis epidemics can help reduce
societal burden, prevent impacts on eye health, and act as a
warning sign for emerging outbreaks of higher-risk systemic
infectious diseases such as COVID-19. Recently, a study of a
COVID-19 variant identified in 2023 that caused febrile illness
and respiratory symptoms in children found conjunctivitis in
42.8% of the individuals who were affected [8,9].

The usual process of monitoring conjunctivitis outbreaks through
individual case identification is costly; moreover, conjunctivitis
is not, in general, a reportable disease in the United States
(although gonococcal cause is reportable [10]). Low-cost digital
approaches using public search and social media big data for
surveillance could help fill this and other information gaps in
eye health [11] by providing real-time information [11-13].
Previously, we found that an analysis of Google time series for
relative search volume for conjunctivitis can identify outbreaks
of conjunctivitis with differing ability based on the keywords,
the country, and the size of the outbreak [14]; we also found
that social media posts have been correlated with the clinical
occurrence of conjunctivitis [15] and have reflected the seasonal
occurrence of allergic and infectious conjunctivitis [16]. This
suggested that a future system based on an analysis of web-based
search frequency could be automated, reporting potential
outbreaks worldwide.

By analyzing the content of social media posts during these
detected candidate epidemics, we have observed that spikes in
conjunctivitis-related search data can be caused by many factors
besides outbreaks. These causes include media coverage,
celebrity affliction, movie titles, artist names, and other factors
not specific to infectious conjunctivitis. Any automated system
aiming to detect, and alert about, potential epidemics based on
search data would still require the monitoring of content during
any suspected epidemic period to improve specificity. Previous
research has suggested that web-based content can be useful in
infectious disease surveillance [12,13,17-29]. Unfortunately,
manual content analysis can be time-consuming, but available
generative large language models (LLMs) could be assessed

for their potential to assist with such a task in an automated
fashion.

The Aim of This Study
In this study, we investigated whether the analysis of geolocated
time-series social media content [30] using LLMs could be used
to accurately summarize the content of posts regarding
conjunctivitis in general. To help refine our assessment of
potential conjunctivitis outbreaks detected from search data in
an automated fashion, we also investigated whether LLMs could
assign a useful probability that a post’s content is specifically
about a conjunctivitis outbreak [31]. We obtained tweets from
9 of the countries assessed in our previous study [14] and
presented these to GPT-3.5 and GPT-4 (OpenAI) [32], which
are transformers-based LLMs. We tested the hypotheses that
automated content analysis using these models can yield a time
series of elicited outbreak probabilities and that these
probabilities are correlated with tweet frequency and the
occurrence of known epidemics.

Methods

Data Collection
On the basis of our previous analysis [14], we chose 9 countries
for which we knew the dates of conjunctivitis epidemics. We
chose these to include both small countries and island territories
as well as large countries; results for no other countries were
analyzed. For these countries, we collected tweets from the
Twitter microblogging service (subsequently rebranded as X)
using the Brandwatch interface. To obtain posts about
conjunctivitis, we used a Boolean query containing words in
multiple languages representing conjunctivitis (eg,
“conjuctivitis,” “conjuntivitis,” “conjuntivite,” and “pink eye”).
We tailored this to exclude irrelevant content, such as that
related to animals, and confounding content (such as celebrities
having pink eye).

The full Boolean query is provided in Multimedia Appendix 1.
Only tweets geolocated to each country were exported. The data
cutoff window began on January 1, 2012 (January 1, 2013, for
India), and ended on March 13, 2023. The data were exported
on March 13, 2023, and the counts are summarized in Table 1.
The corresponding epidemic start dates, presented in our
previous study [14], are also included in Table 1.
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Table 1. Summary of available tweets and known epidemics in the 9 study countries.

Epidemic start datesTweets, nLocation

August 9, 2012; July 25, 2013; November 15, 2013; September
4, 2014; and April 9, 2017

4999India

May 15, 2014282Guam (United States)

May 14, 2017336Martinique (France)

August 27, 20153976Philippines

April 1, 201468American Samoa (United States)

March 15, 2016142Fiji

June 30, 20171494Costa Rica

May 15, 2017512Haiti

May 15, 2017385Bahamas

Data Analysis

Automated Content Analysis
We used the OpenAI LLMs GPT-3.5 (gpt-3.5-turbo-0301) and
GPT-4 (gpt-4-0314), accessed through the application
programming interface [33]. Another potentially comparable
LLM, Google Bard, was not available through an application
programming interface at the time we conducted our study.
GPT-4 was available in limited beta release and was only used
for prompt 1. We chose to use the less expensive GPT-3.5 as
well as the newer, potentially more advanced GPT-4.

First, for each tweet, we directly elicited a probability that the
tweet indicated a conjunctivitis outbreak. For this, we used
prompt 1:

How certain are you that the single Tweet provided
below is about a large multiperson outbreak of pink
eye occurring at the time the tweet was posted? A
single case with no other evidence of spread or other
infected people should correspond to a somewhat low
probability. Respond in the form of “Tweet: x%,” on
a scale of 0% to 100%, and then provide a brief
explanation of your answer. Given Tweet: <direct
quote>

Second, we asked the model to simply assess the occurrence of
an epidemic, based on the content of the tweet. This was prompt
2:

Answer if the tweet below is about a large multiperson
outbreak of conjunctivitis, occurring at the time the
tweet was made. A single case with no other evidence
of spread or other infected people should correspond
to a somewhat low probability. The response choices
are: NO, not conjunctivitis outbreak (the tweet is
irrelevant or indicates 0-1 cases of conjunctivitis max,
not spreading or not occurring at the time the tweet
was made); MAYBE conjunctivitis outbreak
(uncertain, the tweet indicates maybe 2 or more cases
of conjunctivitis, maybe spreading); YES
conjunctivitis outbreak (the tweet indicates more than
1 case of conjunctivitis and/or spreading, and
occurring at the time the tweet was made). For your
answer, respond first with one of the three choices

(NO, “not conjunctivitis outbreak,” MAYBE,
“conjunctivitis outbreak,” YES, “conjunctivitis
outbreak”) and then provide a brief explanation for
your choice, including the type of disease if you say
YES, “conjunctivitis outbreak.” Given Tweet: <direct
quote>

Although the use of a continuous variable (elicited probability)
from prompt 1 maximizes statistical power [34] compared with
dichotomized data, we also included the results of the
conceptually simpler prompt 2 along with the results of prompt
1 for comparison.

For both prompts 1 and 2, we replaced <direct quote> with
each of the 12,194 tweets in turn, collecting all responses. For
all queries, we used a top_p of 0.9 (the default value) and a
temperature of 0.

To provide illustrative examples, we divided the tweets into
groups with GPT-3.5–derived percentages of 0%, between 0%
and 70% (exclusive), and >70% and randomly selected 3 tweets
from each group. We removed specific identifying information
from each tweet and lightly edited them to reduce discoverability
[35]; we note that these tweets were public. Samples of these
redacted tweets and LLM responses to prompt 1 for them were
prepared solely for the illustration of LLM replies to the 2
prompts. Only replies to the original unredacted tweets were
used in all analyses presented in this study.

Human Rater Validation of GPT Classification and
Scoring
To validate the resulting conjunctivitis epidemic probabilities
and classifications by GPT-3.5 and GPT-4 of the tweets, 2
human raters participated in a modified Delphi session. During
the session, the raters manually reviewed a random sample of
tweets, classified them into the same categories as the GPT
models (“NO,” “YES,” and “MAYBE” conjunctivitis outbreak),
and assigned a conjunctivitis epidemic probability score
(0%-100%) to each. The human and GPT categorizations and
scores were then compared.

We asked the 2 human raters to independently read each tweet,
using the same prompts that were provided to the LLMs. For
the testing set used, a random selection of tweets was stratified
by country and by the elicited probabilities from GPT-3.5 to
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ensure that as close to a maximum of 7 tweets that scored >50%
and 7 tweets that scored <50% were included from each country
(126 tweets in total). The sample size was chosen to provide a
CI half-width of approximately 0.05 for estimated proportions
near 0.5. Similarly, separate training sets of independent tweets
were generated (18 per set). Only English-language tweets were
used in validation. Training and testing sets were used as
described in the following paragraph.

The raters first trained together on the first training set, assigning
classification and probability scores via a Qualtrics survey
(Qualtrics International Inc). A facilitated group discussion for
the raters then followed, to reconcile disagreements in the
categorization and scores as well as to gain familiarity with the
discussion on Twitter (ie, to become aware of the language and
components, such as hashtags and sarcasm, used in these posts).
The raters subsequently completed a second iteration of the
training with the second training set, followed by a similar brief
discussion as before so that a general agreement was reached.
We then provided the testing set in a separate Qualtrics survey
(excluding any tweets used in training the raters) to the raters.
Each rater assigned classification and probability scores to each
post in the testing set, masked to the results of other raters and
that of the machine and without any discussion.

Statistical Analysis
In time-series data of tweet volume about a disease, we expect
an increase in the weekly count of posts about the disease during
an epidemic compared with nonepidemic periods [36].
Therefore, as an assessment of the ability of the GPT models
to assign higher probabilities to tweets in weeks where there
may be more likely to be an epidemic (higher counts of total
tweets per week) as well as to assign lower probabilities to
weeks less likely to have an epidemic (low total counts of tweets
per week), we asked whether the weekly count of posts about
pink eye correlated with the scores assigned to that week by the
LLMs. To calculate weekly values from the elicited probabilities
from each of the GPT models, we first removed highly repetitive
tweets as follows: we removed usernames beginning with @
from the content and then removed all tweets with duplicated
content. From the remaining tweets, we averaged all those values
for each week. Weeks with no tweets at all were scored as
having a mean of 0. Elicited percentages were treated as
continuous variables in statistical analyses [34]. We converted
prompt 2 results to numerical values (to allow for correlation

analysis) by assigning values: 0=“NO,” 1=“MAYBE,” and
2=“YES.”

For each country in Table 1, we constructed an indicator
variable, which was 1 for any week an epidemic was believed
to have started and for 3 weeks after. We then calculated the
Pearson correlation between the number of tweets per week and
the mean LLM-derived conjunctivitis outbreak probability score
(prompt 1) or outbreak classification (prompt 2) for each week.
We used time-series bootstrap [37] with a width of 4 to calculate
CIs. We also correlated the weekly epidemic indicator variable
with the mean elicited percentages obtained from GPT-3.5 and
GPT-4 in response to prompt 1; we note that because we have
no complete listing of all epidemics, the correlation will
unavoidably underestimate the true relation between the
occurrence of an epidemic and any content analysis measure.
In addition, we included the volume of tweets matching our
query as an outcome variable when comparing with epidemic
indicator variables. As a sensitivity analysis, we conducted
analysis without removing duplicates and without considering
weeks with 0 tweets as having a mean of 0. Estimated Pearson
correlations for the time series were compared between GPT-3.5
and GPT-4 by subtracting the estimates for each country and
conducting the Wilcoxon signed rank test.

Ethical Considerations
The work carried out for this study was conducted after
receiving approval from the University of California San
Francisco Institutional Review Board (14-14743).

Results

Descriptive Summary of GPT Model Responses
The overall ability of the 2 LLMs to respond in the format that
we desired was high. For prompt 1, GPT-3.5 provided usable
responses 99.66% (12,153/12,194) of the time, whereas GPT-4
provided usable responses 100% (12,194/12,194) of the time.
For prompt 2, GPT-3.5 provided usable responses 98.67%
(12,032/12,194) of the time. We observed that the ability to
summarize the content of the tweets seemed quite reliable and
surprisingly nuanced; selected examples of prompt 1 responses,
based on the redacted tweets described previously, are provided
in Table 2. For comparison, prompt 2 responses to these same
tweets are provided in Table S1 in Multimedia Appendix 1.
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Table 2. Selected actual GPT-3.5 and GPT-4 responses to prompt 1 for typical tweets from our data set (for this table, actual usernames, locations, and
other identifiers were modified to avoid presenting identifying information).

GPT-4 responseGPT-3.5 responseTweet

All undergrads under me got
conjunctivitis. So not allowing
to theatre and class. Some who
r nt effected also act like they
got. Managing class all alone.
Im jealous seeing them enjoy-
ing.

•• Tweet: 60%Tweet: 70%
• •Explanation: The tweet mentions that “All undergrads

under me got conjunctivitis” which suggests a large
multiperson outbreak. Additionally, the author men-
tions not allowing them to attend class or theater,
which implies that the outbreak is significant enough
to warrant such measures. However, there is no men-
tion of any official reports or confirmation of the
outbreak, so there is still some uncertainty.

Explanation: The tweet suggests that multiple un-
dergraduates have contracted conjunctivitis (pink
eye), which indicates a possible outbreak. However,
the tweet also mentions that some students are
pretending to have the condition, which makes it
difficult to determine the true extent of the out-
break. Additionally, this is just one tweet and not
enough to confirm a large multiperson outbreak.

Pharmacies ran out of eye drops
for conjunctivitis as those infect-
ed continue to go to work,
school, gatherings, and so on.
They affect others–urgh!

•• Tweet: 80%Tweet: 80%
• •Explanation: The tweet suggests that there is a short-

age of eye drops for conjunctivitis, which implies that
there is a high demand for them. The fact that those
infected continue to go to work, school, and gatherings
suggests that there is a high likelihood of transmission
to others, leading to a large multiperson outbreak.
However, without additional information, it is difficult
to determine the exact size of the outbreak, hence the
probability of 80%.

Explanation: The tweet suggests a higher probabil-
ity of a large multiperson outbreak of pink eye, as
it mentions pharmacies running out of eye drops
for conjunctivitis and infected individuals continu-
ing to attend work, school, and gatherings, which
could lead to the spread of the infection. However,
without further information or confirmation, there
is still some uncertainty.

@user conjunctivitis?? •• Tweet: 10%Tweet: 50%
• •Explanation: The tweet alone does not provide enough

information to determine the certainty of a large mul-
tiperson outbreak of pink eye. The tweet only men-
tions one case of conjunctivitis and does not provide
any additional information about the spread or other
infected people. Therefore, there is a moderate proba-
bility of a large multiperson outbreak of pink eye oc-
curring at the time the tweet was posted.

Explanation: The tweet only mentions “conjunctivi-
tis” with a question mark, which provides very little
information about the context or any potential
outbreak. There is no mention of multiple people
being affected or any indication of a large-scale
event. Therefore, the certainty of this tweet being
about a large multiperson outbreak of pink eye is
quite low.

１日家にいたーひさびさの
ひきこもりやっぱ結膜炎気
になって つきっきりして
たー だいぶ寝たー

•• Tweet: 10%Tweet: 10%
• •Explanation: The tweet is in Japanese, but based on

the use of the word “結膜炎” (conjunctivitis or pink
eye) and the fact that the person stayed at home all
day and rested, it is possible that they had a case of
pink eye. However, there is no mention of other people
being infected or any indication that this is a large
multiperson outbreak. Therefore, the probability of
this tweet being about a large multiperson outbreak
of pink eye is relatively low at 10%.

Explanation: The tweet is in Japanese and translates
to “I stayed home all day. It’s been a while since
I’ve been a shut-in. I was worried about conjunc-
tivitis (pink eye) and stayed close. I slept a lot.”
This tweet only mentions a single case of pink eye
and does not provide any information about a large
multiperson outbreak. Therefore, the probability
is low at 10%.

do i have pink eye or could it
be my allergies again?

•• Tweet: 5%Tweet: 0%
• •Explanation: The given tweet does not provide any

evidence of a large multiperson outbreak of pink eye.
The tweet only mentions a personal experience of the
individual and does not suggest any spread or other
infected people. Therefore, the probability of the tweet
being about a large multiperson outbreak of pink eye
is very low, at 0%.

Explanation: The tweet only mentions the possibil-
ity of the user having pink eye or allergies, but
there is no mention of a large multiperson outbreak
or any other infected people. Therefore, the proba-
bility is very low.

Did you know that the first case
of viral conjunctivitis was
found in 1902? It is 2020 and
“science” still has no “cure” for
it!

•• Tweet: 0%Tweet: 0%
• •Explanation: The given tweet does not provide any

evidence or mention of a large multiperson outbreak
of pink eye occurring at the time the tweet was posted.
It only talks about the history of viral conjunctivitis
and the lack of a cure for it. Therefore, the probability
of the tweet being about a large multiperson outbreak
of pink eye is very low, at 0%.

Explanation: The tweet provided does not mention
any current outbreak of pink eye or any indication
of multiple infected people. It only discusses the
first case of viral conjunctivitis found in 1902 and
the lack of a cure in 2020.
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Human Rater Validations of GPT-Assigned Scores
and Classifications That a Tweet Was About
Conjunctivitis Outbreaks
We found that, overall, the LLMs were less likely than the
human raters to assign the extreme values of 0% or 100%.
Moreover, GPT-3.5 chose larger values than GPT-4 for the
validation sample. A descriptive summary of the validation
sample is presented in Table 3.

Next, we computed correlations between the elicited percentages
of the 2 human raters and the responses of GPT-3.5 and GPT-4
to prompt 1. Overall, the percentages derived from the replies

of both GPT-3.5 and GPT-4 had a correlation coefficient of at
least 0.6 with those of the human raters, although the responses
of GPT-4 were more correlated with those of the human raters
than those of GPT-3.5. The correlation of the percentages of
GPT-4 were roughly as correlated with those of the human raters
as the results of the human raters were with each other. These
validation set results are summarized in Table 4. As a measure
of interrater reliability for prompt 2, the estimated unweighted
Cohen κ value was 0.64 (P<.001) for a comparison of the 2
human raters. The Cohen κ value for a comparison of the results
of rater 1 with those of GPT-3.5 for prompt 2 was 0.51 (P<.001),
and for a comparison of the results of rater 2 with those of
GPT-3.5 for prompt 2, the Cohen κ value was 0.48 (P<.001).

Table 3. Validation with human raters: summary of grading. The proportion of the total corpus of validation testing set tweets (n=126) assigned by
human raters and the GPT models to 0% and 100% probability that a tweet is about an outbreak is shown, along with the median (IQR) percentage
assigned.

GPT-4, prompt 1GPT-3.5, prompt 1Rater 2Rater 1Measurement

0 (0)1 (0.1)5 (0.4)4 (0.3)Ratings of 0%, n (%)

10 (10-30)55 (10-70)10 (0-100)30 (0-90)Rating (%), median (IQR)

0 (0)0 (0)4 (0.3)3 (0.2)Ratings of 100%, n (%)

Table 4. Validation with human raters: correlation (Pearson r). Correlation matrix of elicited percentages from human raters and GPT models using
prompt 1, based on the validation set (n=126).

GPT-4, prompt 1GPT-3.5, prompt 1Human 2Human 1Variable

0.73 (0.64-0.80)0.60 (0.47-0.70)0.77 (0.68-0.83)1Human 1, r (95% CI)

0.77 (0.68-0.83)0.53 (0.40-0.65)10.77 (0.68-0.83)Human 2, r (95% CI)

0.77 (0.68-0.83)10.53 (0.40-0.65)0.60 (0.47-0.70)GPT-3.5, prompt 1, r (95% CI)

10.77 (0.68-0.83)0.77 (0.68-0.83)0.73 (0.64-0.80)GPT-4, prompt 1, r (95% CI)

Descriptive Summaries of GPT-3.5 and GPT-4
Probabilities and Classifications
For each of the 9 countries, summaries of the elicited
percentages for the full set of tweets using GPT-3.5 and GPT-4
are shown in Figure 1 and Figure 2, respectively. The models
provided low percentages (≤20%) for most of the tweets
(7922/12194, 65.0% for GPT-3.5; 11070/12194, 90.8% for
GPT-4) in all countries. Of the 12,194 tweets, 677 (5.55%) were
removed because they were highly repetitive. From the
remaining 11,517 tweets, the overall mean percentage elicited
was 21%, with a median percentage of 10% (IQR: 5-50%). For
prompt 1, neither GPT-3.5 nor GPT-4 provided any elicited

percentages of 100%. Both showed profound final digit
preference; in only 1 case did GPT-3.5 provide a percentage
that did not end in 0 or 5, and all from GPT-4 ended in 0 or 5.

In response to prompt 2, where we simply asked the LLM to
classify each tweet as “YES,” “NO,” or “MAYBE” regarding
an outbreak of conjunctivitis, the distribution of classifications
assigned to each tweet by GPT-3.5 is shown in Figure 3. Of
note, in 162 (1.41%) of the 11,517 tweets, the LLM’s response
did not begin with 1 of the 3 requested words, and we treated
these as missing (although in all cases, the LLM responded with
an explanation of why it was difficult to be sure of the answer
and therefore did not choose 1 of the 3 response options).
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Figure 1. Distributions of elicited epidemic probability assigned to tweets by GPT-3.5 for each country (12,194 tweets in total) using prompt 1. Light
blue: 0% to 20%, green: 21% to 40%, yellow: 41% to 60%, orange: 61% to 80%, and red: 81% to 100%. The total count is placed at the top of each
bar.
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Figure 2. Distributions of elicited epidemic probability assigned to tweets by GPT-4 for each country (12,194 tweets in total) using prompt 1. Light
blue: 0% to 20%, green: 21% to 40%, yellow: 41% to 60%, orange: 61% to 80%, and red: 81% to 100%. The total count is placed at the top of each
bar.

J Med Internet Res 2024 | vol. 26 | e49139 | p. 8https://www.jmir.org/2024/1/e49139
(page number not for citation purposes)

Deiner et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Distributions of elicited epidemic classifications assigned to tweets for GPT-3.5 for each country (12,194 tweets in total) using prompt 2.
Light blue: "NO," yellow: "MAYBE," red: "YES," white: "missing." The total count is placed at the top of each bar.

Correlation of Results for Tweets Between Models and
Between Prompt 1 and Prompt 2
At the level of individual tweets, the probabilities assigned by
GPT-3.5 and GPT-4 based on prompt 1 were highly correlated,
with a Pearson r value of 0.42 (95% CI 0.41-0.44). To compare
the results elicited from GPT-3.5 for prompts 1 and 2 per tweet,
we converted the elicitations from prompt 2 to numerical values.
Specifically, we assigned the following values: 0=“NO,”
1=“MAYBE, and 2=“YES.” We found a correlation of 0.45
(95% CI 0.43-0.46) between the prompt 1–elicited probabilities
and the prompt 2–elicited classifications.

Comparisons of Elicited Epidemic Probability and
Epidemic Classification Results per Tweet Between
Models and Between Prompt 1 and Prompt 2
We next compared the elicited epidemic probabilities from the
LLMs with weekly tweet volume based on our search, as

described in the Methods section. We computed the Pearson
correlation of the number of tweets meeting the search criteria,
as well as the mean elicited percentages for GPT-3.5 and GPT-4
in response to prompt 1. We also used a binary indicator of
whether GPT-3.5 responded “YES” to prompt 2. The estimated
correlations for GPT-3.5 using prompt 1 ranged from 0.10
(India) to 0.53 (American Samoa [United States]); for GPT-4
using prompt 1, the estimated correlations ranged from 0.18
(India) to 0.64 (Guam [United States]), with broadly higher
correlations seen in GPT-4 (P=.004, Wilcoxon signed rank test).
The results for each of the 9 countries are shown in Table 5.
When weeks containing 0 tweets were excluded, the results
were similar (refer to Table S2 in Multimedia Appendix 1).
Similarly, when we did not exclude duplicated or highly
repetitive tweets, the results were similar (although slightly
lower; results not shown).
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Table 5. Correlation of weekly tweet volume and elicited outbreak percentages by the GPT models (refer to the text for details).

GPT-3.5 “YES,” prompt 2, weekly
mean, r (95% CI)

GPT-4, prompt 1, weekly
mean, r (95% CI)

GPT-3.5, prompt 1, weekly
mean, r (95% CI)

Country

0.04 (−0.01 to 0.13)0.18 (0.09 to 0.37)0.10 (−0.00 to 0.29)India

0.08 (0.04 to 0.18)0.64 (0.55 to 0.79)0.42 (0.34 to 0.57)Guam (United States)

0.13 (0.08 to 0.26)0.45 (0.40 to 0.81)0.36 (0.31 to 0.66)Martinique (France)

0.05 (−0.02 to 0.13)0.23 (0.13 to 0.32)0.14 (0.07 to 0.21)Philippines

0.20 (0.09 to 0.85)0.60 (0.52 to 0.94)0.53 (0.39 to 0.89)American Samoa (United States)

0.18 (0.13 to 0.59)0.42 (0.37 to 0.81)0.33 (0.30 to 0.67)Fiji

0.08 (0.04 to 0.16)0.22 (0.16 to 0.43)0.17 (0.13 to 0.33)Costa Rica

0.05 (0.03 to 0.12)0.29 (0.24 to 0.66)0.12 (0.08 to 0.37)Haiti

0.06 (0.03 to 0.11)0.58 (0.52 to 0.71)0.41 (0.36 to 0.50)Bahamas

Comparisons of Elicited Epidemic Probabilities With
Known Epidemics
We next calculated the Pearson correlation of the weekly
indicator variable with the mean elicited percentage for GPT-3.5
and GPT-4 in response to prompt 1. We note that because
conjunctivitis is not typically reportable (except under special
circumstances), no comprehensive set of known epidemics is
available—weeks coded as not epidemic related could have
contained epidemics. As conjunctivitis outbreaks no longer
seem to be reported on the Program for Monitoring Emerging
Diseases (ProMED) system, we restricted the analysis to the
same time period as our earlier report [14]. The correlations
with these epidemic indicators were smaller than those with the
tweet counts and were effectively 0 in India, Costa Rica,
Martinique (France), and the Philippines; the correlations were
substantial for American Samoa. Smaller but nonetheless
indicative results were found for Fiji, Guam, and Haiti (for
GPT-4). For large nations, we found correlations that were lower
than those for small countries or island territories, as expected
based on our earlier findings [14]. As before, broadly higher
correlations were found for GPT-4 (P=.004, Wilcoxon signed
rank test). A summary of these correlations is presented in Table
6.

In Table 7, for each country, we computed the average of
available elicited probabilities for the months containing a

known epidemic start date and for the months without. For 8
(89%) of the 9 countries, this average was larger in the months
with an epidemic start date than in the months without. To
potentially improve specificity, we also calculated the mean of
only those elicited probabilities that were ≥51% (in an
unprespecified analysis). These findings are shown in the last
2 columns of Table 7; of the 9 countries, 5 (56%) had a much
higher difference between the epidemic and nonepidemic
months.

Figure 4 shows weekly mean elicited probabilities compared
with epidemic and nonepidemic weeks and with weekly tweet
volume for 3 selected countries. In the left column, we show in
red the weekly mean of all available GPT-4–derived percentage
likelihoods (with 0 when there are none); in the right column,
we show the mean of all GPT-4 percentage likelihoods that are
≥51%. The green bands indicate epidemic periods (4 weeks
before through 6 weeks after the reported start date of known
epidemics). Not all conjunctivitis outbreaks are known and
reported. For American Samoa, high weekly likelihood values
corresponded with the peak in tweet volume and the known
outbreak, whereas for some larger countries, such as India, this
was not as apparent. In general, plots of weekly means of all
likelihoods >51% provide a potentially more useful visualization
of likely epidemics.
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Table 6. Correlation of weekly mean GPT-3.5– and GPT-4–elicited epidemic probabilities with a weekly epidemic indicator (a time series taking the
value 1 for the first 4 weeks of known reported outbreaks and 0 otherwise).

GPT-3.5 “YES,” prompt 2, weekly
mean, r (95% CI)

GPT-4, prompt 1, weekly mean, r
(95% CI)

GPT-3.5, prompt 1, weekly mean,
r (95% CI)

Country

−0.00 (−0.05 to 0.07)−0.00 (−0.16 to 0.12)−0.03 (−0.13 to 0.08)India

−0.01 (−0.02 to −0.00)0.13 (0.07 to 0.22)0.05 (0.01 to 0.10)Guam (United States)

0.02 (−0.01 to 0.07)0.05 (−0.02 to 0.11)0.03 (−0.02 to 0.09)Martinique (France)

0.01 (0.00 to 0.03)0.07 (0.02 to 0.13)0.06 (0.01 to 0.10)Philippines

0.20 (−0.00 to 0.94)0.60 (0.29 to 0.85)0.40 (0.16 to 0.81)American Samoa (United States)

0.08 (−0.01 to 0.57)0.24 (0.08 to 0.42)0.13 (−0.01 to 0.26)Fiji

0.07 (0.04 to 0.15)0.06 (0.03 to 0.12)0.05 (0.03 to 0.10)Costa Rica

−0.01 (−0.02 to −0.00)0.09 (0.03 to 0.16)0.01 (−0.02 to 0.07)Haiti

0.01 (−0.01 to 0.04)0.07 (0.01 to 0.14)0.04 (0.01 to 0.09)Bahamas

Table 7. Average monthly mean values for GPT-3.5 and GPT-4 of all elicited epidemic probabilities for months not containing a known epidemic start
date (column 2) compared with months with a known epidemic start date (column 3). Monthly means of only those elicited probabilities that were ≥51%
are shown for months not containing a known epidemic start date (column 4) compared with months with a known epidemic start date (column 5).

Monthly mean (SD) of
probabilities >51%, epidem-
ic months, GPT-4

Monthly mean (SD) of
probabilities >51%, nonepi-
demic months, GPT-3.5

Monthly mean (SD) of all
probabilities, epidemic
months, GPT-4

Monthly mean (SD) of all
probabilities, nonepidemic
months, GPT-3.5

Country

36 (32.8)7.2 (20.8)9.3 (5.3)8.4 (4.1)India

0 (N/A)0 (0)13.6 (N/Aa)7.6 (4.4)Guam (United States)

0 (N/A)0.9 (7.3)10 (N/A)6.2 (5.2)Martinique (France)

80 (N/A)8.2 (21.0)13.7 (N/A)9.8 (1.1)Philippines

80 (N/A)0 (0)16.4 (N/A)1.1 (3.8)American Samoa (United
States)

75 (N/A)0 (0)19.1 (N/A)4.1 (6.5)Fiji

0 (N/A)2.7 (12.5)11.9 (N/A)10.5 (1.4)Costa Rica

60 (N/A)1.1 (9.1)9.5 (N/A)7.1 (4.9)Haiti

0 (N/A)0.9 (7.3)5 (N/A)8.2 (4.3)Bahamas

aN/A: not applicable.
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Figure 4. Representative time series plots of average weekly elicited likelihood scores for GPT-4 for 3 countries (American Samoa, India, and Costa
Rica) using either all output results (column 1) or only values >50% (column 2). Red points: weekly average elicited probability for any week with at
least 1 post for all values (column 1) or for only values >50% (column 2), white bars: number of tweets per week, and green band: reported epidemic
period.

Discussion

Principal Findings
Our main findings, with regard to the objectives and hypotheses
stated in the Introduction section, are as follows.

1. We found that LLMs can be used to assess Twitter content
related to conjunctivitis in general and in relation to
infectious outbreaks of conjunctivitis. We found that we
could elicit percentages representing the probability of an
outbreak on a regional basis (in the sense of quantifying an
uncertain judgment).

2. The 2 LLMs we examined (GPT-3.5 and GPT-4) showed
substantial correlation with each other’s assessments of the
likelihood of a conjunctivitis outbreak, as well as with the
assessments of the 2 human raters.

3. We also found that these correlated with the results of other
conjunctivitis-related prompts. In addition, we found
evidence that the mean elicited percentages positively
correlated with conjunctivitis-related tweet volume.

4. We also found evidence that these percentages correlate
with known epidemics, particularly in selected small
countries or island territories.

Our results suggest that our approach using a generative LLM
(GPT-3.5 or GPT-4) could be used to both thematically define
the contents of eye health–related tweets and assign Bayesian
probability scores and classifications to help identify if a tweet
is mentioning an eye disease outbreak. In view of the better
performance of GPT-4 in benchmarks and tests [38-41], it is
reassuring that the results from GPT-4 yielded higher
correlations with tweet volume than GPT-3.5 with the same
prompt. This study adds to a growing literature regarding the
use of LLMs for analysis of social media posts related to health
[42-45] (in our case, the assigning of a measure of health risk
in addition to the interpretation of content). Future studies could
explore the potential of the use of LLMs to assess the weekly
content of posts about infectious eye cases to score the
probability of an outbreak on a regional basis or as a low-cost
weekly surveillance approach to help detect ocular epidemics.
This could also validate suspected ocular epidemics determined
from other web-based data sources [14]. This approach could
also be applicable, in concert with topic modeling, to
thematically define the content of posts regarding eye health
risk. Such methods could allow for scalable thematic assessment
of large sets of posts (eg, inductive content analysis [46] beyond
the scope practical for time-consuming human analysis) to
characterize current and emerging eye health topics of interest
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to the public with specific eye conditions. Topics could be
scored for factors such as toxicity in an unbiased fashion.

Future studies should assess the ability of our model to use other
sources of data (web-based discussion groups, forums, or blogs)
to interpret and assess the likelihood of eye disease outbreaks
or other emerging eye health risks. In addition, we could explore
the ability of these models to classify other key informative
features of an outbreak, such as health severity, etiology, or
size. Although we have chosen conjunctivitis as a model (and
certainly conjunctivitis outbreaks can act as a harbinger of a
systemic and higher-risk disease), the principles used to develop
this model can be applied to identify outbreaks of symptoms
associated with a wide range of localized or systemic diseases
that pose severe population health risk or threaten a pandemic
[8,9,47], especially when these symptoms may be nonreportable.

This study highlights a relatively new use of LLMs for
infodemiology and suggests potential for more efficient
assessment of social media than in prior works; for example,
scalable thematic assessment of large sets of posts could be
completed by LLMs with less manual effort required than in
prior studies [46]. As LLMs continue to be developed, we
anticipate that the quality of such assessments by LLMs will
continue to improve and that costs will fall. In addition, new
discoveries about improving methods of prompting LLMs for
better results are steadily emerging. Investments in automated
content screening of microblog posts, as well as other public
social media, blog, and forum data, may be warranted as an
additional channel of potentially useful information for disease
outbreak surveillance. Such methods could be particularly useful
for other nonreportable conditions.

Limitations
Our findings are subject to several limitations beyond those
inherent in the selection of our 9 countries. Some relevant tweets
may have been omitted because of our efforts to remove
cinematic, celebrity-related, and other irrelevant content, and
we note that an important potential application of LLMs is to
help identify such content for elimination. It is also possible
that our original query was missing some conjunctivitis-related
keywords for some of the languages used in the countries
included in our study, leading us to obtain low counts of posts
about conjunctivitis in some languages. Future studies could
further explore and expand keywords in other languages to
improve our data signal for use in LLM analyses. Our prompts
could be further optimized for the elicitation of probability
scores from the LLMs with improved results [48]. Another
limitation we found was that the LLM-elicited percentages did

not correlate as well with known epidemics in large countries
as they did with known epidemics in selected small countries
or island territories. A possible reason for this could be that
small disease outbreaks in large countries may occur frequently
but go undetected when analyzing content for the entire
country—this suggests that analysis of posts geolocated to
smaller regions may prove more useful for detecting disease
outbreaks in large countries.

In addition, tweets from some of the countries (eg, India,
Martinique, Haiti, and Costa Rica) contained substantial content
in other languages, and the current generations of the GPT
models are somewhat less skillful in non-English languages.
We note, however, that the models were entirely capable of
translating and explaining content in many languages, which
included Japanese, Marathi, and others in our sample [49,50],
although we note a higher fraction of unusable replies for Haiti
for GPT-3.5, prompt 2. Additional sources of social media data
beyond Twitter could improve coverage and sensitivity. We
also note that although the current LLMs were capable of
replying with probabilities (expressed as percentages) seemingly
indicating a degree of belief—with such values correlated with
those of human raters—we have no evidence that these
probabilities are calibrated (in the sense that the empirical
relative frequency of true epidemics among tweets classified as
probability X is, in fact, X). Finally, no complete database exists
for known conjunctivitis outbreaks; therefore, it is not possible
to precisely evaluate the sensitivity or specificity of our methods
at this time.

Conclusions
Our findings suggest that GPT prompting can efficiently assess
the content of social media posts and possible disease outbreaks
to a degree of accuracy comparable to that of humans.
Furthermore, we found that the results of our automated content
analysis of tweet content is related to tweet volume for
conjunctivitis-related posts in some locations as well as to the
occurrence of actual epidemics. Future work may improve the
sensitivity and specificity of these methods. The approaches
presented in this manuscript suggest the potential to leverage
LLMs to assess social media or forum posts not only for
automated and highly efficient identification of infectious eye
disease outbreaks and other emerging eye health risks but also
to detect outbreaks of high-risk diseases or classify key
epidemiological characteristics of cases during outbreaks. This
could improve timely identification of the most severe disease
outbreaks, enabling localized action for mitigating impact on
human health.
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