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Abstract

Artificial intelligence (AI) broadly describes a branch of computer science focused on developing machines capable of performing
tasks typically associated with human intelligence. Those who connect AI with the world of science fiction may meet its growing
rise with hesitancy or outright skepticism. However, AI is becoming increasingly pervasive in our society, from algorithms helping
to sift through airline fares to substituting words in emails and SMS text messages based on user choices. Data collection is
ongoing and is being leveraged by software platforms to analyze patterns and make predictions across multiple industries. Health
care is gradually becoming part of this technological transformation, as advancements in computational power and storage
converge with the rapid expansion of digitized medical information. Given the growing and inevitable integration of AI into
health care systems, it is our viewpoint that pediatricians urgently require training and orientation to the uses, promises, and
pitfalls of AI in medicine. AI is unlikely to solve the full array of complex challenges confronting pediatricians today; however,
if used responsibly, it holds great potential to improve many aspects of care for providers, children, and families. Our aim in this
viewpoint is to provide clinicians with a targeted introduction to the field of AI in pediatrics, including key promises, pitfalls,
and clinical applications, so they can play a more active role in shaping the future impact of AI in medicine.
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What is Artificial Intelligence in Medicine?

Artificial intelligence (AI) is a broad term describing the use of
machine-based learning algorithms and software [1].
Nonmedical applications of AI include text prediction when we
write emails or movie suggestions on cable and streaming based
on our previous viewing choices. Machine learning (ML) is a
specific branch of AI focused on altering programs or algorithms
based on exposure to data in order to improve performance over
time; in other words, the “machine” is “learning” as it
accumulates more data and patterns. ML exists on a continuum.
Supervised algorithms, for example, may require a great deal
of outside input in order to function, while unsupervised
algorithms can function with much greater degrees of autonomy
[2]. One ML approach, useful when exploring complex
nonlinear patterns, involves convolutional neural networks
(CNNs). CNNs apply a special mathematical operation called
a convolution across cumulative steps to perform specialized
tasks like image processing. Natural language processing (NLP)
solutions using ML are also being pioneered to help computers
understand, categorize, and extract insights from natural
language data sets [1]. In the field of medicine, AI has shown
promise to assist with a wide array of clinical tasks, including
risk prediction, diagnosis, and augmented decision-making and
treatment and monitoring. Intelligent technology may also be
leveraged to streamline workflows and automate some routine
but historically time-intensive tasks, such as clinical note-taking
[3]. NLP solutions, for example, have proven extremely useful
in supporting clinicians to more efficiently leverage the large
quantities of data collected in electronic medical records (EMRs)
every day. NLP “reads” EMRs, attempting to understand
medical words and phrases within the specific context of a given
patient. IBM Watson, for example, has already successfully
been used to examine large data sets of EMRs from diverse
populations to create lists of common complications for a given
population. Watson has also been used to gather medical
literature in response to queries contained within examined
EMRs [4].

In the following section of this viewpoint, we explore a selection
of pediatric conditions, where AI-based approaches are being
pioneered to various support risk prediction, diagnosis, therapy
and response monitoring, or clinical workflow efficiency.

AI in Pediatric Asthma Care

Risk Prediction
Despite well-established clinical standards and pathways for
asthma management, asthma remains one of the most frequent
clinical concerns in pediatric offices and emergency rooms [5].
AI-based innovative solutions are being explored to help predict
asthma risk so earlier intervention can occur. One study analyzed
over 335,000 asthma events spanning the years 2005 to 2018
and then used ML to predict the risk of hospitalization for
patients with asthma [6]. Similarly, another set of ML algorithms
integrated clinical data with information on weather,
neighborhood characteristics, and community viral load to
predict the likelihood of hospitalization for children with asthma
[7]. Another study used EHR data from 9934 children to train

ML models to accurately predict the likelihood of a child’s
asthma persisting over time [8].

Monitoring and Medication Management
Several companies are pioneering efforts in this space. One
company is optimizing AI for spirometry in a cell phone app
[9]. The app captures a patient’s exhalation with the phone
microphone and then translates these acoustic sounds into a
curve representing lung volume. A portable spirometry test
allows patients to conveniently track deterioration or therapeutic
improvement over time. A separate mobile tool uses smart
sensor data to register inhaler usage. This sensor analyzes the
inhalation history of a patient in relation to weather conditions
in order to recognize potential triggers of asthma attacks [10].
This analysis can also provide suggestions for the treatment
dosage based on exacerbating factors present [10]. Another
innovative digital therapy (DTx) uses AI to alert patients and
parents to the early stages of an asthma attack. DTx continuously
analyzes respiratory sounds in order to more quickly recognize
changes in the sounds that could signal an oncoming asthmatic
event. Ideally, warnings from DTx will help children and
caregivers recognize the triggers as well as symptoms of an
asthmatic crisis. Predicting outcomes in real time by using
patient data and pattern detection algorithms patterns could lead
to more precise and personalized asthma management [11].

AI in Pediatric Rare Disease
Management: Diagnostics

A leading children’s hospital has developed a program that uses
pattern recognition and real-time data analysis to efficiently
diagnose rare diseases in newborns. Leveraging AI to help
automate genomic diagnosis could streamline and expedite the
diagnostic process in neonatal intensive care units and pediatric
intensive care units (PICUs). While clinical adoption
considerations must first be addressed, such technology could
potentially reduce delays to targeted life-changing treatments
in newborns with diseases of previously unknown etiology [12].

AI in Pediatric Sepsis: Risk Detection

Another serious concern in pediatrics is the early diagnosis of
sepsis. In a study of almost 500 PICU patients, AI detected
severe sepsis as early as 8 hours prior to traditional EMR-based
screening algorithms [13]. This efficiency can have a profound
impact on the management of sepsis in the PICU by allowing
for earlier intervention and thus potentially reducing morbidity
and mortality.

AI and Opioid Dependence: Monitoring
and Medication Management

In the United States, approximately 7% of adolescents develop
persistent opioid use after surgery [14]. A new company focused
on health and wellness for athletes recently made use of
AI-powered software, OR Advisor (AdaptX). The use of OR
Advisor enables frontline clinicians to perform rapid analysis
of real-world data collected in their EMR. OR Advisor is also
capable of tracking clinical metrics over time as well as
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monitoring treatment outcomes [14]. OR Advisor can help
physicians more quickly answer clinically relevant questions,
such as how adjusting medication doses might affect pain
management. Using OR Advisor, Seattle Children’s Bellevue
Clinic and Surgery Center was able to reduce opioid
administration from 85% of surgeries to less than 1% [15].
Decreasing perioperative opioid use could potentially not only
save thousands of lives per year but also reduce complications,
thereby reducing the length of stay and improving recovery.

AI in Radiology: Diagnostics

AI in radiology is perhaps the most impressive application of
AI in medicine, with CNNs often performing as or even more
accurately than clinicians. AI has already been applied in a
variety of pediatric settings, such as scoliosis quantification,
fracture and injury detection, and cystic fibrosis scoring on chest
radiographs [16], but there are many other potential uses. One
of the best potential uses of CNNs is as a screening tool for
life-threatening diagnoses that need rapid intervention, such as
acute ischemic strokes [17]. CNNs can accelerate the timeline
of a non–life-threatening diagnosis (such as a small pneumonia)
as well. Sophisticated AI image interpretation can also
potentially lead to novel discoveries in medical images (such
as tumor-stroma interfaces) that can help with subtyping, therapy
modification, and prognostication of medical conditions [18].
To date, the majority of AI-based radiology solutions have been
developed for adult populations. Radiology imaging advocacy
groups have recently begun lobbying the US Congress to
develop policies addressing the scarcity of pediatric-specific
AI-based innovations [19].

AI in Pediatric Autism: Diagnosis

AI is being leveraged to support improved behavioral and mental
health outcomes in pediatric populations, including in children
with autism. While autism diagnosis is possible as early as the
age of 18 months, the average age of diagnosis in the United
States remains older than 4 years [20,21]. The majority of these
children are diagnosed in specialty care; however, the increasing
demand for evaluations coupled with a shortage of specialists
has contributed to lengthy waits for assessments [20,22,23].
Delays in treatment initiation can have lifelong implications for
children and their families [24,25]. Applications using AI can
potentially reduce these delays. For example, a Food and Drug
Administration (FDA)–authorized AI-based diagnostic device,
Canvas Dx, uses inputs from a child’s health care provider,
caregiver, and video analysis to help health care providers
rapidly diagnose or rule out autism in young children with
concern for developmental delay [26-28]. The diagnostic device
can be used in primary care settings, potentially decreasing
delays to treatment initiation and thus significantly improving
the child’s trajectory [27].

AI may also have a role to play in reducing diagnostic bias
prevalent in some autism care pathways. Currently, compared
to White peers, Black and Latino or Hispanic children receive
later autism diagnoses [29,30]. One study found that in
comparison to White children, Hispanic and Black children are
65% and 19% less likely to be diagnosed with autism and these

racial or ethnic disparities exist regardless of economic class
[29]. Similarly, girls are diagnosed with autism an average of
1.5 years later than their male peers [31,32]. Children from rural
communities also experience lags in diagnosis and access issues.
AI could help address some of these biases and promote
diagnostic equity in several ways. Item-level racial or gender
bias noted in some existing diagnostic and screening tools [33],
for example, could be reduced through careful training of
AI-based diagnostic alternatives on large samples of gender and
racially diverse accurately labeled data. AI-based remotely
administered technologies may also reduce access barriers for
children in rural communities who face health care disparities
due to geographical isolation, hospital closures, and insufficient
clinical workforce coverage [34].

Adolescent Depression and Anxiety: AI
and Symptom Management

Mental health management in preteens and adolescents is
another important concern in the primary care pediatric setting
and can be especially challenging in the context of limited
mental health resource availability. An estimated 31% of teens
have an anxiety disorder [35]. The severity of these disorders
and the scarcity of providers make it imperative that patients
and caregivers have easily accessible resources that can be used
while waiting to see a mental health provider. Such is the case
with a research-based mental health software app, Woebot, that
provides digital cognitive behavioral therapy to patients. Using
AI, Woebot tailors its conversations to each patient, with the
goal of providing personalized and high-quality care [33]. In a
study published in JMIR, the intervention group experienced a
22% reduction in depressive symptoms over the course of 2
weeks after using this software in comparison with the control
group [33]. The product was initially tested with subjects
between the ages of 18 and 65 years; however, it may prove to
be useful in the pediatric space as well, given ongoing mental
health access and resource issues. Table S1 in Multimedia
Appendix 1 [6-10,12,13,36,37] summarizes topical studies
discussed in this viewpoint including further detail about
methodology, performance metrics, and product development.

Clinical Challenges and Concerns

Although AI has the potential to meaningfully benefit pediatric
care, a number of regulatory, implementation, and ethical
challenges exist. Additionally, poorly conceived AI has the
potential to cause harm and therefore requires serious clinical
consideration and risk identification and mitigation as part of
any workflow implementation process. First, clinicians should
be aware that training algorithms often require large data sets.
In pediatrics, the small sample sizes of some data sets, especially
when split by age group, can pose challenges when building
unbiased AI algorithms. Relatedly, in order to build less biased
algorithms, training data must be representative of the applicable
populations across domains such as race, ethnicity, gender,
socioeconomic status, and geographic contexts. Obtaining
samples with known demographics and large enough subsamples
of intersecting groups can prove challenging.
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While we previously touched on the potential of AI to enhance
health equity, the reverse may also be true. Without careful and
equitable sampling, algorithms can potentially perpetuate rather
than reduce bias. Even when this risk is mitigated by training
AI algorithms on a diverse patient base, bias can still occur at
the data labeling level. This is because the algorithm may be
“learning” from the implicit biases of humans who are
annotating the input data or validating its output classifications.
Clinicians can help mitigate these risks by requesting
information on the size and diversity of the training data used
and through careful interrogation of any potential labeling
biases.

Also considering that even when AI is built on representative
data sets and yields generalizable algorithms, implementation
challenges may reduce the extent to which such technologies
can address inequities in practice. An unbiased algorithm
implemented inequitably could, in fact, maintain or perpetuate
disparities in pediatric health care. Families without access to
a computer or reliable internet connectivity, for example, may
not be able to access some digital technologies that could benefit
them. As AI-powered tools become more commonplace in
clinical practice, we recommend that their implementation be
accompanied by physician education, antibias training, and
system-wide change aimed at making health care more
accessible to marginalized populations. Similarly, disparities
in access to technology should be addressed. These goals should
be supported through tactics such as the development of
consensus ethical frameworks for the use of AI health care, the
introduction of robust AI and ethics curriculum in medical
education, as well as regulatory frameworks.

There are a number of ethical questions to consider when
integrating AI-based technologies into clinical pathways. For
example, what are the implications of physicians relying on
outputs from complex, multidimensional ML models in clinical
decision-making when they may have limited visibility into
how such models arrive at diagnostic conclusions? [3,38]
Thoughtful use of technology also necessitates weighing the
benefits of intelligent technology against the potential scale of
harm that could occur if a widely deployed algorithm were to
malfunction [3]. Open questions also remain about who should
be held accountable for incorrect diagnostic or treatment
recommendations produced by devices powered by AI [39].
Some patients have also raised concerns about how their data
privacy and security will be maintained within such systems
[40]. In response to these questions, a number of ethical
frameworks for the use of AI in clinical practice are being
developed [41,42]. These include action points related to
building institutional capabilities to redress any emerging
AI-related harms; distinguishing between appropriate and
inappropriate AI task delegation; developing metrics to help
measure and monitor the trustworthiness of AI-based
technologies; and financially incentivizing the inclusion of
ethical, legal, and social considerations in AI research projects
[41].

Open questions also remain about how to effectively regulate
AI-based medical technologies. To date, the FDA has cleared
more than 160 AI-powered devices for use [43]. Existing
regulatory frameworks, however, do not account for the ability

of intelligent devices to iteratively “learn” from the data they
are exposed to and alter their algorithms in response [44]. Should
such features be disabled in approved products to avoid drift in
performance and function? If not, how should such features be
scrutinized and regulated on an ongoing basis? The FDA
proposed regulatory framework for software as medical device
technologies provide some direction for potential solutions such
as predetermined change control plan and algorithm change
plan protocol specifications [45].

Future of AI in Medical Education

As clinical AI apps become more commonplace, pediatricians
will require fundamental training and orientation to the data
science behind AI so they can use AI-enabled tools appropriately
and evaluate their strengths and weaknesses. However, AI
integration into medical curriculum is currently limited and
inconsistent, and no topical content is tested in key licensing
examinations [46]. This has left both students and practicing
clinicians with knowledge and confidence gaps regarding the
application of AI in clinical practice [47-49].

Medical schools should establish introductory AI courses to
foster clinical confidence and competence. The future
pediatrician will benefit greatly from the synergy between AI
and human cognition. A number of proposed curriculum updates
are being explored [46,50,51], including MEd2030, an updated
medical school curriculum that will add 10 additional modules
(eg, biomedical informatics and AI, transdisciplinary
collaboration and diversity principles, biomedical
entrepreneurship, design innovation) [52]. In the continuing
education sector, conferences and programs on digital
therapeutics and AI-based health technologies are also growing
as more companies introduce FDA-regulated products.

Actively engaging with AI-based technologies will allow
pediatricians to play a greater role in the implementation and
use of AI in every aspect of health care. Learning to apply
developing technologies is one key to optimizing patient care
and improving the future of health care systems globally. When
EMRs were first introduced in the 2000s, many clinicians knew
about them, but few were engaged in the implementation and
continual improvement of the technology. EMRs have since
infiltrated almost every aspect of a clinician’s practice; yet, as
a result of limited early-stage clinical engagement, they are
often not optimized for the clinical workflow [1]. By seeking
to understand and engage with the next wave of technological
advances earlier and more proactively, pediatricians can help
ensure they will be more tailored to the needs of both care
providers and patients.

Conclusions

Health care delivery models are changing rapidly, and AI is
poised to greatly impact the future of pediatric care. Efficient
diagnostic tools, faster data analysis, predictive outcomes
modeling, more streamlined care experiences, and automation
of some previously time-intensive tasks are just some of the
potential benefits offered by AI. However, widespread clinical
integration of AI into pediatric care pathways will also require
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thoughtful solutions to complex data quality and privacy issues,
and ethical and regulatory implementation barriers. We
recommend that tailored AI-focused curriculum and ongoing
training opportunities be developed and implemented rapidly
to support pediatricians and medical students alike to responsibly

use and understand the strengths and limitations of such
technologies more deeply. With improved education, we are
optimistic about the future potential of AI to enhance clinical
efficiencies and outcomes and to support broader access to
high-quality pediatric health care in marginalized communities.
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CNN: convolutional neural network
DTx: digital therapy
EMR: electronic medical record
FDA: Food and Drug Administration
ML: machine learning
NLP: natural language processing
PICU: pediatric intensive care unit
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