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Abstract

Background:  Preeclampsia is a potentially fatal complication during pregnancy, characterized by high blood pressure and the
presence of excessive proteins in the urine. Due to its complexity, the prediction of preeclampsia onset is often difficult and
inaccurate.

Objective:  This study aimed to create quantitative models to predict the onset gestational age of preeclampsia using electronic
health records.

Methods:  We retrospectively collected 1178 preeclamptic pregnancy records from the University of Michigan Health System
as the discovery cohort, and 881 records from the University of Florida Health System as the validation cohort. We constructed
2 Cox-proportional hazards models: 1 baseline model using maternal and pregnancy characteristics, and the other full model with
additional laboratory findings, vitals, and medications. We built the models using 80% of the discovery data, tested the remaining
20% of the discovery data, and validated with the University of Florida data. We further stratified the patients into high- and
low-risk groups for preeclampsia onset risk assessment.

Results:  The baseline model reached Concordance indices of 0.64 and 0.61 in the 20% testing data and the validation data,
respectively, while the full model increased these Concordance indices to 0.69 and 0.61, respectively. For preeclampsia diagnosed
at 34 weeks, the baseline and full models had area under the curve (AUC) values of 0.65 and 0.70, and AUC values of 0.69 and
0.70 for preeclampsia diagnosed at 37 weeks, respectively. Both models contain 5 selective features, among which the number
of fetuses in the pregnancy, hypertension, and parity are shared between the 2 models with similar hazard ratios and
significant P values. In the full model, maximum diastolic blood pressure in early pregnancy was the predominant feature.

Conclusions:  Electronic health records data provide useful information to predict the gestational age of preeclampsia onset.
Stratification of the cohorts using 5-predictor Cox-proportional hazards models provides clinicians with convenient tools to assess
the onset time of preeclampsia in patients.
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Introduction

Preeclampsia is a pregnancy-associated condition characterized
by new-onset hypertension and proteinuria, typically diagnosed
after 20 weeks of gestation in approximately 3%-5% of all
pregnancies [1]. As one of the leading causes of maternal
mortality and morbidity worldwide, it can lead to a more serious
condition called eclampsia if left untreated [2]. Timely
identification of preeclampsia is a key factor in pregnancy risk
management and subsequent treatment. Current medical practice
guideline recommends prevention therapy of low-dose aspirin
on women at high risk for preeclampsia before the 13-week
gestation period [3]. However, preeclampsia does not typically
manifest itself clinically until after 20 weeks of gestation,
through clinical markers such as blood pressure (BP), urinary
protein excretion, mean arterial pressure, and placental growth
factor levels. Moreover, the gestational age of preeclampsia
onset can vary greatly across pregnancies [3]. Preeclampsia
diagnosed before 34 weeks of gestation is called early-onset
preeclampsia, and late-onset preeclampsia is diagnosed after
34 weeks [4]. To allow for maximal efficiency of prevention
therapy, tools that accurately predict the onset time of
preeclampsia and the patient risk will be extremely beneficial.

Previous studies have identified some qualitative risk factors
of preeclampsia, including preeclampsia in a previous
pregnancy, a multifetal pregnancy, chronic hypertension, kidney
disease, diabetes before pregnancy, autoimmune disorders, as
well as demographic factors including obesity, advanced
maternal age, and race [5]. However, the quantitative importance
of these risk factors relative to one another has not been
adequately investigated. Haile et al [6] discuss how maternal
age, weight, and history of preeclampsia significantly drive
preeclampsia onset time, but many additional factors remain
undefined. There is an unmet need to provide clinicians with
tools to accurately identify which mothers are at risk for
preeclampsia, and further identify when they will develop
preeclampsia.

Prognosis modeling using population-level health data provides
opportunities to systematically address both issues mentioned
above [7]. These new models enable the investigation of risk
factors (features) that may affect the gestational age at
preeclampsia diagnosis, using the hazard ratio (HR), which
indicates the importance of the risk factors. Each model outputs
risk factors that influence preeclampsia development and
predicts the gestational age at preeclampsia diagnosis for
patients using the weighted impact of each feature. In addition,
patients can be stratified into low-risk and high-risk
preeclampsia groups, accompanied by differences in risk factors
(features). These developed and validated prognosis models
will allow clinicians to practically identify when an at-risk
mother might develop preeclampsia and reveal any features
associated with the onset time of preeclampsia that are not
included in the current guidelines.

Methods

Data Source
The discovery cohort for this project was obtained from the
University of Michigan (UM) Medicine Healthcare System. All
deidentified pregnancy records between the years 2015 and
2021, with at least one preeclampsia diagnosis, based on the
ICD-10-CM (International Classification of Diseases, Tenth
Revision, Clinical Modification) codes, were extracted (Table
S1 in Multimedia Appendix 1). Patients who were diagnosed
with competing conditions (Table S1 in Multimedia Appendix
1) were removed from the cohort. Patients who did not have
any electronic medical record (EMR) in the UM system within
20 weeks of the start of their pregnancy were also removed.
Since preeclampsia is clinically defined after 20 weeks, all
patients with a preeclampsia diagnosis before 20 weeks of
gestation were dropped from the discovery cohort. A total of
1178 pregnancies remained in the UM discovery cohort after
this data selection.

Following the same inclusion and exclusion criteria, the
validation cohort was generated from the University of Florida
Health System and contained 881 preeclamptic pregnancies
from 2015 to 2021. The Integrated Data Repository managed
the deidentification and transfer of patient data to the
researchers.

Feature Extraction and Preprocessing
The electronic medical records include medical history, obstetric
diagnostic codes entered during each unique pregnancy,
demographics, medications, laboratory results, and vital signs
(Table S2 in Multimedia Appendix 1). The baseline model
initially used age at the start of pregnancy, race, pregnancy start
date, date of the first preeclampsia diagnosis, gravidity, parity,
and previous history of preeclampsia at the trimester it was
diagnosed. In addition, medical histories based on ICD-10-CM
diagnosis codes were extracted using the Elixhauser
Comorbidities definitions [8]. Current diagnoses entered within
20 weeks of gestation were extracted using the same ICD-10-CM
diagnosis codes and definitions.

The full model includes all features in the baseline model. In
addition, laboratory results, vital signs, and medications ordered
before 20 weeks of gestation were also added. Laboratory tests
that included a complete blood count were considered (Table
S2 in Multimedia Appendix 1). Vital signs included diastolic
and systolic BP. Laboratory findings and vitals collected from
the start of pregnancy (0 days gestation) to 20 weeks (140 days)
gestation were included. The mean, maximum, minimum, and
SD for each laboratory value were calculated. Medication
records were retrieved based on previous reports that
medications prescribed during pregnancy may be related to
preeclampsia development [9]. Patients who did not have any
laboratory finding or vital data collected and entered in the EMR
system within the first 20 weeks (~15%) were assigned as
“missing”. These missing values were imputed using the
predictive mean matching algorithm from the R package “mice”
[10], which has been shown to produce the least-biased results
for data sets that use feature selection [11-13]. The standards
for missing data used for multiple imputations were followed,
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and imputation was performed on only the variables with no
more than 20% missingness [14]. All numeric variables were
log-transformed to adjust for skewness. Each feature in the
medical history, clinical diagnosis, and medication categories
was computed as a binary category: 1 for presence, and 0 for
absence, to reduce feature dimensionality and improve
interpretability. All analysis was conducted using R (version
4.2.2; The R Foundation) [15]. Data cleaning was carried out
using the packages “dplyr” [16] and “gtsummary” [17].

Feature Selection, Model Construction, and
Evaluations
The UM discovery data set was randomly divided into a training
set (80%) and a hold-out testing set (20%) after multiple
imputations on missing variables. A Cox-proportional hazards
model with Least Absolute Shrinkage and Selection Operator
(LASSO) regularization was conducted through 5-fold
cross-validation, using the “glmnet” [18] package in R. We used
cross-validation to select the optimal LASSO hyperparameter
(lambda) that gave the smallest mean squared error and then
performed bootstrapping with 1000 replicates to calculate a
concordance index (C-index) and 95% CIs for each data set
(training, testing, and validation). The baseline model had an
optimal lambda of 0.0058 (Figure S1A in Multimedia Appendix
2) and the full model had an optimal lambda of 0.0066 (Figure
S1B in Multimedia Appendix 2). The baseline model had 31
features and the full model had 92 features before selection.
Following regularized feature selection using the LASSO
method on the training data sets, both final models have 5
selected features. The output of the Cox-PH model is the log
hazard ratio, also called the prognosis index (PI), which depicts
the relative risk of a patient when compared with the baseline
hazard of the population. The full model was constructed in the
same way as the baseline model.

External validation on each finalized model (baseline and full
models) was done through collaboration with the University of
Florida (UF), where the electronic health record (EHR) data
and patient characteristics are different. Each feature chosen by
the model was able to be identified in the UF validation cohort
except for the nonsteroidal anti-inflammatory drug (NSAID)
medication prescription, which was not available at the time of
collection.

The performance of each model was evaluated using the C-index
with bootstrapping of 1000 replicates to calculate 95% CI and
P values from log-rank tests. The C-index is a metric to compare
the discriminative power of a risk prediction model that
describes the frequency of concordant pairs among all pairs of
patients included in the model construction [19]. We used the
C-index calculated from the “cindex” [20] function. Low- and
high-risk pregnancies were stratified based on the median PI
score of the model, and Kaplan-Meier curves were plotted for
each risk group. Their differences were tested with log-rank

tests using the training data set, hold-out testing data set, and
the validation data set separately to evaluate the discriminative
power of the model. The log-rank test is a significance test in
survival analysis, with the null hypothesis that 2 groups have
identical distributions of survival time. Any log-rank P value
below .05 is considered statistically significant in these analyses.
Feature importance was evaluated in the Cox-PH model by their
HR P values. HR describes the relative contribution of a feature
to the patient’s PI. In the context of our model, HRs above 1
shorten the gestational age of preeclampsia diagnosis, while
HRs below 1 lengthen it.

We further measured model performance by calculating the
sensitivity and specificity for each model, classified by
predicting preeclampsia diagnosis by 34 and 37 weeks,
respectively. We also plotted the area under the curve (AUC)
from each testing data set for both models at both time points,
using the “pROC” [21] package in R.

Ethical Considerations
The institutional review board (IRB) of the UM Medical School
(HUM#00168171) and the UF (#201601899) approved the
original data collection and the use of the discovery cohort. All
authors have permission for the use of this data. IRB approval
was not required for the secondary analysis presented here, as
it was deemed exempt. [22].

Results

Study Design and Data Set Overviews
The overall study design is shown in Figure 1. The discovery
cohort was extracted from patient records in the UM Health
System from 2015 to 2022 with ICD-10 (International Statistical
Classification of Diseases, Tenth Revision) code access. All
patients with a preeclampsia diagnosis after 20 weeks of
gestation were included in the cohort, and other exclusion
criteria are detailed in the Methods section. The finalized UM
discovery cohort consists of EMRs from 1178 pregnancies.
Using the same inclusion and exclusion criteria, 881 pregnancies
were identified in the validation data set from UF. The patient
characteristics for each cohort are listed in Table 1. The average
maternal age was 30.2 years (SD 5.67) in the discovery cohort
and 29.1 years (SD 6.18) in the validation cohort. The mean
gestational age of preeclampsia onset was 251 (SD 25.4) days
for the discovery cohort and 257 (SD 25.9) days for the
validation cohort. We constructed and validated 2 models using
this data: (1) a baseline model using only patient medical history,
demographics, and diagnoses of any new medical issues within
the first 20 weeks of gestation; and (2) a full model including
those features from the baseline model, as well as additional
information on medication, laboratory findings, and vitals within
the first 20 weeks of pregnancy.
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Figure 1. Study design and workflow for the University of Michigan preeclampsia cohort (N=1178) and the University of Florida preeclampsia cohort
(N=881), 2015-2021. The discovery cohort was obtained from the University of Michigan Health System and a validation cohort of similar size and
time was obtained from the University of Florida Health System. We constructed 2 preeclampsia predictive models: baseline and full model. The input
variables in baseline models include patients’ demographics, lifestyle, comorbidities, and medical history (n=31) which were reduced to 5 features. The
input for the full model includes additional lab tests and vital signs around preeclampsia diagnosis time, in addition to the variables in the baseline
models (n=92), and was reduced to 5 features for the discovery cohort, and 4 features for the validation cohort. We trained the Cox-proportional hazards
models with the Least Absolute Shrinkage and Selection Operator regularization, using 80% training from the University of Michigan discovery cohort.
We tested it on 20% hold-out data from the same discovery cohort and validated it using the University of Florida validation cohort. Cox-PH: Cox
proportional-hazard; LASSO: Least Absolute Shrinkage and Selection Operator; PE: preeclampsia; UF: University of Florida; UM: University of
Michigan.
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Table 1. Summaries of the characteristics of the University of Michigan preeclampsia discovery cohort (N=1178) and University of Florida preeclampsia
validation cohort (N=881) for patients admitted from 2015 to 2021. Data are presented as the average (SD) or counts (% in the cohort).

Validation cohort (N=881)Discovery cohort (N=1178)Characteristics

29.1 (6.18)30.2 (5.67)Maternal age (years), mean (SD)

2.82 (2.04)2.31 (1.74)Gravidity, mean (SD)

1.17 (1.5)0.68 (1.12)Parity, mean (SD)

1.04 (0.22)1.07 (0.26)Number of fetuses, mean (SD)

257 (25.9)251 (25.4)Gestational age at PE onset (days), mean (SD)

112 (13)61 (5)Current smoker, n (%)

184 (21)311 (26)Current alcohol user, n (%)

Race or ethnicity, n (%)

335 (38)195 (17)African American

19 (2)74 (6)Asian

4 (1)58 (5)Hispanic

117 (13)184 (16)History of PEa

3 (<1)66 (6)History of PE diagnosed in the second trimester

Medical history, n (%)

19 (2)34 (3)Uncomplicated type I diabetes

22 (3)62 (5)Uncomplicated type II diabetes

81 (9)201 (17)Uncomplicated hypertension

1 (<1)14 (1)Kidney disease

Other clinical diagnoses within 20 weeks of gestation, n (%)

19 (2)265 (22)Depression

0318 (27)Mood and anxiety disorder

aPE: preeclampsia.

Baseline Model
A baseline model was first built using medical history,
demographics, and ICD-10-CM diagnosis codes of new medical
conditions entered during the first 20 weeks of pregnancy. To
build and test the model, we randomly split the data into an
80:20 ratio for training and testing data sets, and the Cox-PH
model with LASSO (L1) regularization was built with the UM
training data under 5-fold cross-validation. Alternatively, we
explored ElasticNet (combined L1 and L2 regularization) as
well as L2 penalization. However, the LASSO (L1) model
overall performs better with higher C-indices and fewer features
over these alternatives. We therefore chose LASSO as the
regularization method (Table S3 in Multimedia Appendix 1).

We then applied this model to the 20% UM hold-out testing
data and external UF validation cohort. The C-indices for the
training, hold-out testing, and external validation data of the
baseline model are 0.62 (95% CI 0.61-0.63), 0.64 (95% CI
0.60-0.65), and 0.61 (95% CI 0.59-0.63), confirming its validity.
Table 2 shows the baseline model’s C-index and corresponding

95% CI values for each data set. To further facilitate
interpretation, we classified each preeclampsia diagnosis
prediction by the timeline of its occurrence, specifically by
gestational weeks 34 and 37, using the UM hold-out testing
data set. Such simple binary classification shows a sensitivity
of 0.74, specificity of 0.50, and AUC of 0.65 for preeclampsia
diagnosed at 34 weeks (Table 2). It has improved performance
for preeclampsia diagnosis by 37 weeks, with a sensitivity of
0.82, specificity of 0.50, and AUC of 0.69 (Table 2 and
Multimedia Appendix 3).

Five features were selected for the baseline model. Their
respective HRs and rankings in the multivariate Cox-PH are
depicted in Figure 2A and Table 3. By the descending order of
HR, these features are the number of fetuses in pregnancy of
interest (HR 25.2; P<.001), parity (HR 2.08; P<.001), history
of uncomplicated hypertension (HR 2.01; P<.001), history of
uncomplicated type II diabetes (HR 1.87; P<.001), and a mood
or anxiety disorder (HR 1.24; P=.01). All features increase
preeclampsia risk and shorten the gestational age of
preeclampsia diagnosis.
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Table 2. Binarized performance for baseline and full models using 34- and 37-week preeclampsia diagnosis occurrences, measured using the hold-out
testing data obtained from the randomly selected 20% patients from the University of Michigan discovery cohort.

37 weeks34 weeksModel version

AUCSpecificitySensitivityAUCSpecificitySensitivityMetrics

0.700.500.820.650.500.74Baseline

0.700.500.860.700.510.98Full

Figure 2. Gestational age of preeclampsia diagnosis baseline model features and performance. (A) Bar plot of hazard ratios of the selected features by
Cox-proportional hazards method with Least Absolute Shrinkage and Selection Operator regularization. Ranging from smallest to largest hazard ratio:
mood and anxiety disorder, diabetes, hypertension, parity, and number of fetuses. (B-D) Kaplan-Meier survival curves of high-risk (red) and low-risk
(blue) pregnancies in the respective data sets, each with a log-rank test P value <.001. (B) University of Michigan training data set with a C-index of
0.62. (C) Hold-out testing set with a C-index of 0.64. (D) University of Florida validation data set with a C-index of 0.61.
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Table 3. The selected features in the baseline model to predict the gestational age of preeclampsia diagnosis.

P valueHazard ratio (95% CI)Features

<.00125.2 (10.7-59.4)Number of fetuses

<.0012.08 (1.54-2.81)Parity

<.0012.01 (1.68-2.40)History of uncomplicated hypertension

<.0011.87 (1.41-2.49)History of uncomplicated type II diabetes

.011.24 (1.07-1.43)Mood and anxiety disorder

To evaluate the discriminative power of this model, patients
from the training data set were dichotomized into high- and
low-risk groups by stratifying the samples using the median of
the predicted PI (PI=1.17) from the model. The 2 risk groups
showed significant differences in prognosis (Figure 2B and
Table S4 in Multimedia Appendix 1). The high-risk group was
characterized by higher parity and number of fetuses, while the
low-risk pregnancies had no prevalence of hypertension
(P<.001) or diabetes (P<.001). The median PI value above was
applied to categorize samples into high versus low-risk groups
in the hold-out (PI=1.17) and validation data (PI=2.38), similar
to others [23-25]. As shown in Figures 2C and 2D, the KM
curves on these 2 risk groups are also significantly different
(P<.001).

Full Model
We next evaluated a model with the addition of laboratory
findings, vitals, and medications prescribed in the first 20 weeks
of gestation to the clinical data used in the baseline model. We
constructed the new Cox-PH model, or the “full model,” in the
same manner as the baseline model and obtained a 5-feature
Cox-PH model (Figure 3A). Similar to the baseline model,
LASSO regularization shows better overall performance than
ElasticNet and L2 regularization and is chosen as the default
(Table S3 in Multimedia Appendix 1). This new model reaches
the C-indices of 0.66 (95% CI 0.64-0.67) and 0.69 (95% CI
0.64-0.70) for the training and hold-out testing data sets,
respectively. It also yields a C-index of 0.61 (95% CI 0.60-0.63)
on the UF validation cohort, despite missing 1 feature (NSAID
medication) in the UF cohort. Table 2 lists the full-model
C-indices and 95% CIs for each data set. Similar to the baseline
model, to help interpretation, we classified each preeclampsia
diagnosis prediction using the timeline of preeclampsia
occurrence by gestational weeks 34 and 37, respectively, using
the UM hold-out testing data set. It yields a sensitivity of 0.98,
specificity of 0.51, and AUC of 0.70 for correctly predicting
preeclampsia by week 34 (Table 2). The model has an improved
correct diagnosis by week 37, with a sensitivity of 0.86,
specificity of 0.50, and AUC of 0.70 (Table 2 and Multimedia
Appendix 3).

The full model also yields 5 features, all with positive HRs
(Figure 3A and Table 4). In descending order of HR, these

features are maximum diastolic blood pressure (HR 21.7;
P<.001), number of fetuses in current pregnancy (HR 21.1;
P<.001), parity (HR 1.81; P<.001), history of uncomplicated
hypertension (HR 1.79; P<.001), and NSAID medication
prescription (HR 1.35; P<.001). Three of these features, namely
the number of fetuses, history of uncomplicated hypertension,
and parity features were also selected by the baseline model
(Figure 3B). Table S5 in Multimedia Appendix 1 shows each
of the features and their HRs in a univariate analysis. Their HRs
across the baseline and full models remain very similar and had
P values less than .05, suggesting that they are all significant
in predicting preeclampsia onset time regardless of the other
additional input information. Maximum diastolic BP and NSAID
medication prescription are newly selected features unique to
the full model (Figures 3A and 3B).

Like the baseline model, we stratified patients into high- versus
low-risk groups using the median predicted PI value of 5.15
from the training data set (Figure 3C). The high-risk group was
characterized by higher parity, a higher number of fetuses, and
higher maximum diastolic BP (Table S4 in Multimedia
Appendix 1). In contrast, the low-risk group had no history of
hypertension and rare use of NSAID medication. BP had the
most statistically significant difference (P<.001), as expected.
The same median threshold was applied to the 20% hold-out
testing data set (PI=5.08) and validation data (PI=5.18) for
dichotomization (Figures 3D and 3E). KM curves on these 2
risk groups in the testing set have even more significant
differences in their gestational age at diagnosis (P<.001). Both
models are to be used by entering patient information in the
predictors to predict when the patient may develop preeclampsia.

To determine the potential impact of missing data on modeling
results, we explored building a baseline and full model with
only cases that had complete BP data—the main selected feature
in the full model. Table S6 in Multimedia Appendix 1 shows
the selected features of both of these models. The complete
cases baseline model had a training C-index of 0.63 and a testing
C-index of 0.64. The complete cases full model had a training
C-index of 0.67 and a testing C-index of 0.65. Due to similar
performance and selected features, it can be safely assumed that
imputation had little impact on the finalized models.
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Figure 3. Gestational age of preeclampsia diagnosis full model features and performance. (A) Bar plot of hazard ratios of the selected features in the
full model by Cox-proportional hazards method with Least Absolute Shrinkage and Selection Operator regularization. Ranging from smallest to largest
hazard ratio: nonsteroidal anti-inflammatory drug use, hypertension, parity, number of fetuses, and maximum diastolic blood pressure. (B) The bubble
plot of significant features from preeclampsia baseline and full models. The size of the bubbles represents the hazard ratio of each feature. The number
of fetuses, parity, and hypertension were shared between both models with similar hazard ratios. (C-E) Kaplan-Meier survival curves of high-risk (red)
and low-risk (blue) pregnancies in the respective data sets, each with a log-rank test P value <.001. (C) University of Michigan training data set with a
concordance index of 0.62. (D) Hold-out testing set with a concordance index of 0.64. (E) University of Florida validation data set with a concordance
index of 0.61. BP: blood pressure.

Table 4. Summary of the selected features in the full model to predict the gestational age upon preeclampsia diagnosis.

P valueHazard ratio (95% CI)Features

<.00121.7 (7.93-59.8)Maximum diastolic blood pressure

<.00121.1 (9.88-45.1)Number of fetuses

<.0011.81 (1.37-2.39)Parity

<.0011.79 (1.53-2.11)History of uncomplicated hypertension

<.0011.35 (1.15-1.58)NSAIDa medication

aNSAID: nonsteroidal anti-inflammatory drug.

Discussion

Principal Results
This paper is the first of its kind to implement and externally
validate a prognosis-predicting model for preeclampsia onset
time using EHR data from the first 20 weeks of pregnancy [26].
These models confirmed that factors such as BP in the first 20
weeks of pregnancy, the number of fetuses, parity, and previous
history of hypertension are associated with earlier preeclampsia
onset time. Moreover, comorbidities such as gestational diabetes
and anxiety, as well as NSAID medication, shorten preeclampsia

onset time. The similar performance across validation and
development data sets provides confidence in the accuracy of
the predictive outputs.

Comparison With Previous Work
A recent study stratified patients with preeclampsia by
gestational age to build classification models, resulting in many
models that are difficult for clinicians to select from [27].
Moreover, these classification models cannot predict the
gestational age of onset for an individual patient, thus failing
to assist clinicians in making early decisions on delivery plans
and proper antenatal care. Unlike most other accurate
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preeclampsia onset time prediction models, our models only
use EMR data from the first 20 weeks of pregnancy and do not
require advanced testing inputs, such as biomarkers [27],
enabling earlier use in clinics. In a systematic review of 68
preeclampsia prediction models [27], only 6% (4/68) of them
were externally validated, and those not requiring complex
biomarker features had much lower AUCs (0.58-0.61) than the
models presented here (AUC 0.65-0.70), highlighting the
accuracy of our models once validated against a different patient
population.

Clinical and Research Implications
Due to the difficulty in predicting preeclampsia, accurate models
that can identify women at high risk for preeclampsia can
provide early targeted treatment as well as increased surveillance
to reduce adverse outcomes [28]. The models here not only
confirm the importance of some previously known risk factors,
such as the number of fetuses, history of hypertension, and
parity but also assign quantitative scores (weights) on the
importance of these risk factors relative to each other. This is
a significant advancement from most of the other studies
focusing on a single risk factor. It also provides clinicians as
well as pregnant women with quantitative tools to assess the
onset time of preeclampsia more accurately, beyond the
qualitative assessment of risks. Risk factors with higher weights
can take a higher priority for clinicians to identify potential
patients with preeclampsia. The fact that maximum diastolic
BP had the highest HR in the full model confirms the importance
of monitoring BP as early as possible, even before preeclampsia
is diagnosed clinically [29]. More importantly, it identifies
additional alarming factors to be considered in predicting
preeclampsia diagnosis at gestational age, such as mood and
anxiety disorder.

Further risk stratification of the survival models had slightly
low specificity values in predicting the dichotomous diagnosis
of preeclampsia at 34 and 37 weeks, suggesting that the
continuous risk diagnosis has overall better performance
compared with the simple binary prediction. However, the
stratification may offer an easier way to identify women who
may benefit more significantly from prevention therapy and
need more medical attention from doctors for the possibility of
preeclampsia. EHR-based models can serve as a screening test.
For the patients that are potentially false positive for
preeclampsia due to the lower specificity of the model,
additional confirmative diagnostic tests using very specific
biomarkers should be done, as practiced clinically.

Earlier studies using all pregnant women also revealed that
mood and anxiety disorders increase the risk of preeclampsia
[30]. We further show that within patients with preeclampsia,
mood and anxiety disorders shorten the onset time of
preeclampsia. This provides more context for clinicians to
identify pregnant patients who present mood and anxiety
disorders and provide preventative care to reduce preeclampsia
onset risk. The molecular mechanism linking mood and anxiety
disorders with preeclampsia is worth further research. We also
show that NSAID use is positively associated with earlier onset
of preeclampsia. However, aspirin is a common NSAID used

by pregnant women at risk for preeclampsia early in pregnancy
[31]. It was suggested that NSAID use may serve as a proxy
for the interaction of many unmeasured risk factors [32]. Thus,
the positive association of NSAID to the earlier onset of
preeclampsia may indicate that it is a marker of high-risk
preeclampsia in the population, rather than the cause of it.

Strengths and Limitations
A particular strength of the models here is their simplicity
despite being quantitative. The models can also be generalized
to different medical centers and hospitals, given the good
accuracy when validated by vastly different institutions with
different protocols, data collection, and data storage. There is
a growing need for evidence-based and effective tools for
clinicians to screen women at high risk of preeclampsia early
in pregnancy, in the first and early second trimesters. This model
supplies this need for early prediction models that previous
models have not been able to fulfill [33]. Most clinical models
recently published include many predictors from biomarkers
and ultrasound markers that need special procedures [34], further
suggesting that a simpler model on routinely collected clinical
data is valuable to be implemented in a clinical setting. The
main strength of this modeling for clinical use proposed here
is providing more context in screening patients at risk for
preeclampsia.

Our ultimate goal is to implement these models in the health
care system, for example, starting from the University of
Michigan. Potential challenges for implementing these models
in a clinical setting include institutional buy-in, installation of
the software in a HIPAA (Health Insurance Portability and
Accountability Act)-compliant computing environment, and
explaining the meaning of risk factors and model results to
patients informatively without overly stressing them. In addition,
these models may potentially require more active updating for
improving accuracy, by considering additional multicenter data.
Also, the current Cox-PH model is not designed to include
longitudinal observations, limiting the kind of input variables
to be incorporated into the model. Future work may benefit
from more sophisticated modeling approaches [35]. Besides
EHR, other omics information such as genetics, genomics,
proteomics, and metabolomics using maternal blood samples
[34] may be used, if they are available, to improve the model
performance. However, implementing multimodal and complex
models like this in the clinical setting is additionally challenging
and would require more advanced modeling that can calculate
individual risk scores for clinical application. It is also important
to note the use of EHR data to extract medication prescriptions
does not accurately capture the actual use or adherence of the
medication by patients, and future research could be
strengthened by combining data sources that provide such
information.

Conclusions
In conclusion, this study reports prognosis models to predict
the onset gestational age of preeclampsia with EMR data before
the first 20 weeks of pregnancy. They identify clinical and
physiological factors that clinicians should monitor as indicators
of early preeclampsia development.
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