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Abstract

Background: The systematic review of clinical research papers is a labor-intensive and time-consuming process that often
involves the screening of thousands of titles and abstracts. The accuracy and efficiency of this process are critical for the quality
of the review and subsequent health care decisions. Traditional methods rely heavily on human reviewers, often requiring a
significant investment of time and resources.

Objective: This study aims to assess the performance of the OpenAI generative pretrained transformer (GPT) and GPT-4
application programming interfaces (APIs) in accurately and efficiently identifying relevant titles and abstracts from real-world
clinical review data sets and comparing their performance against ground truth labeling by 2 independent human reviewers.

Methods: We introduce a novel workflow using the Chat GPT and GPT-4 APIs for screening titles and abstracts in clinical
reviews. A Python script was created to make calls to the API with the screening criteria in natural language and a corpus of title
and abstract data sets filtered by a minimum of 2 human reviewers. We compared the performance of our model against
human-reviewed papers across 6 review papers, screening over 24,000 titles and abstracts.

Results: Our results show an accuracy of 0.91, a macro F1-score of 0.60, a sensitivity of excluded papers of 0.91, and a sensitivity
of included papers of 0.76. The interrater variability between 2 independent human screeners was κ=0.46, and the prevalence
and bias-adjusted κ between our proposed methods and the consensus-based human decisions was κ=0.96. On a randomly selected
subset of papers, the GPT models demonstrated the ability to provide reasoning for their decisions and corrected their initial
decisions upon being asked to explain their reasoning for incorrect classifications.

Conclusions: Large language models have the potential to streamline the clinical review process, save valuable time and effort
for researchers, and contribute to the overall quality of clinical reviews. By prioritizing the workflow and acting as an aid rather
than a replacement for researchers and reviewers, models such as GPT-4 can enhance efficiency and lead to more accurate and
reliable conclusions in medical research.

(J Med Internet Res 2024;26:e48996) doi: 10.2196/48996
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Introduction

Knowledge synthesis, the process of integrating and
summarizing relevant studies in the literature to gain an
improved understanding of a topic, is a key component in
identifying knowledge gaps and informing future research
endeavors on a topic of interest [1,2]. Systematic and scoping
reviews are among the most commonly used and rigorous forms
of knowledge synthesis across multiple disciplines [1,2]. Given
that the results from systematic and scoping reviews can inform
guidelines, protocols, and decision-making processes,
particularly for stakeholders in the realms of health care, the
quality of the evidence presented by such reviews can
significantly impact generated recommendations [3].

The quality of systematic and scoping reviews is highly
dependent on the comprehensiveness of the database searches
and the subsequent article screening processes. Overlooking
relevant articles during these critical steps can lead to bias [4],
while including discrepant studies can yield misleading
conclusions and increase discordant heterogeneity [5]. Thus,
guidelines surrounding the conduct of clinical reviews, such as
the Cochrane Handbook [6], recommend that article screening
be completed in duplicate by at least 2 independent reviewers.

However, duplicate screening effectively doubles the financial
and human resources needed to complete systematic reviews
compared to single screening. This is especially problematic
for small research groups, review projects with broad inclusion
criteria (such as network meta-analyses), or time-constrained
review projects (such as reviews relating to COVID-19 during
the early stages of the pandemic) [7,8]. Additionally, there is
often substantial interrater variability in screening decisions,
leading to additional time spent on discussions to resolve
disagreements [9]. Due to the time constraints and wasted
resources that are often features of duplicate screening, research
studies may also include a more tailored, sensitive search
strategy that can lead to missing several articles during the
retrieval process [10]. Furthermore, although the nuances of
each study differ, many systematic reviews may contain
thousands of retrieved articles, only to exclude the majority (ie,
up to 90%) from the title and abstract screening [10,11].

Recent developments in artificial intelligence and machine
learning have made it possible to semiautomate or fully automate
repetitive steps within the systematic review workflow [12-14].
Prominent examples of such applications include
RobotReviewer [15], TrialStreamer [16], Research Screener
[7], DistillerSR [17], and Abstrackr [18], which are artificial
intelligence models developed to extract information from
scientific articles or abstracts to judge study quality and infer
treatment effects. More specifically, RobotReviewer (2016)
was shown to have similar capabilities to assess the risk of bias
assessment as a human reviewer, only differing by around 7%
in accuracy [19]. Similarly, TrialStreamer was a system
developed to extract key elements of information from full texts,
such as inferring which interventions in a clinical paper worked
best, along with comparisons in study outcomes between all
relevant extracted full texts of a topic indexed on MEDLINE
[20].

While there have been previous attempts at automating the title
and abstract screening process, they often involved labor- or
computationally-intensive labeling, pretraining, or vectorizations
[21]. For instance, Rayyan and Abstrackr are 2 free web tools
that provide a semiautomated approach to article filtering by
using natural language processing algorithms to learn when and
where a reviewer includes or excludes an article and
subsequently mimics a similar approach [22,23]. Rayyan also
demonstrated high specificity, wherein 98% of all relevant
articles were included after the tool had screened 75% of all
articles to be analyzed in a study [24]. While automation using
these tools was found to save time, there was still minimal to
substantive risk that there would be missing studies if the tool
were fully independent or automated [22,23]. Furthermore,
current programs may use previously standard methods,
including n-grams, in comparison to more updated techniques,
such as the generative pretrained transformer (GPT) model,
which is trained with data from a general domain and does not
require additional training to learn embeddings that can represent
the semantics and contexts of words in relation to other words
[25,26].

In this paper, we introduce a novel workflow to screen titles
and abstracts for clinical reviews by providing plain language
prompts to the publicly available OpenAI GPT application
programming interface (API). We aimed to assess GPT models’
ability to accurately and efficiently identify relevant titles and
abstracts from real-world clinical review data sets, as well as
their ability to explain their decisions and reflect on incorrect
classifications. We compare the performance of our model
against ground truth labeling by 2 independent human reviewers
across 6 review papers in the screening of over 24,000 titles
and abstracts.

Methods

Overview
In our study, we obtained a corpus of title and abstract data sets
that have already been filtered by a minimum of 2 human
reviewers to train our model (Figure 1). Subsequently, we
created a Python script that provides the screening criteria for
each paper to the OpenAI Chat GPT or GPT-4 API, depending
on the input token length. We then passed each paper to the API
using a consistent instruction prompt to determine whether a
paper should be included or excluded based on the contents of
its title and abstract. The overall accuracy (computed by dividing
papers selected by both GPT and human reviewers by the total
number of papers), sensitivity of both included and excluded
papers, and interrater reliability through Cohen κ and
prevalence-adjusted and bias-adjusted κ (PABAK) were
computed against the human-reviewed papers:

Where k is the number of categories and pobs is the proportion
of included papers. All data and code are available in Mendeley
data sets [27].
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Figure 1. Overview of the Python script to automate screening with the generative pretrained transformer (GPT) application programming interface
(API). LLM: large language model.

Data Collection
To validate our proposed inclusion and exclusion methodology,
we obtained 6 title and abstract screening data sets from different
systematic and scoping reviews previously published by the
authors of this study, each screened by 2 independent reviewers
with conflicts resolved through consensus. These projects cover

various medical science topics and vary in size, methodology,
and complexity of screening criteria (Table 1 and Table S1 in
Multimedia Appendix 1 [28-33]). We obtained the inclusion
and exclusion decision from expert reviewers for each title and
abstract entry, as well as the criteria provided to the expert
reviewers during the screening process. A summary of the
review characteristics is presented in Table 2.

Table 1. Included studies and their characteristics. The first 5 data sets are systematic reviews with meta-analyses. The last study is a scoping review.

Study topicStudy typeIncluded studies
(538/24,307), n/N

Data set nameStudy title

COVID-19 treatment and
antimalarials

Systematic review and meta-anal-
ysis of randomized and nonrandom-
ized trials

35/279IVMaEfficacy and Safety of Ivermectin for the
Treatment of COVID-19: A Systematic Review
and Meta-Analysis [29]

COVID-19 treatment and
antidepressants

Systematic review and meta-anal-
ysis of randomized and nonrandom-
ized trials

29/3989SSRIbEfficacy and Safety of Selective Serotonin Re-
uptake Inhibitors in COVID-19 Management:
A Systematic Review and Meta-Analysis [30]

COVID-19 treatment and
antiretrovirals

Systematic review and meta-anal-
ysis of randomized and nonrandom-
ized trials

91/1456LPVRcEfficacy of Lopinavir-Ritonavir Combination
Therapy for the Treatment of Hospitalized
COVID-19 Patients: A Meta-Analysis [31]

Raynaud syndrome and
acupuncture

Systematic review and meta-anal-
ysis of randomized and nonrandom-
ized trials

6/942RAYNAUDSdThe Use of Acupuncture in Patients With Ray-
naud’s Syndrome: A Systematic Re-View and
Meta-Analysis of Randomized Controlled Tri-
als [32]

Postoperative pain and
analgesics

Systematic review and meta-anal-
ysis of randomized and nonrandom-
ized trials

354/14,771NOAeComparative Efficacy of Adjuvant Non-Opioid
Analgesia in Adult Cardiac Surgical Patients:
A Network Meta-Analysis [33]

Machine learning in clin-
ical medicine

Scoping review23/2870LLMAssessing the Research Landscape and Utility

of LLMsf in the Clinical Setting: Protocol for

a Scoping Review g

aIVM: ivermectin.
bSSRI: selective serotonin reuptake inhibitor.
cLPVR: lopinavir-ritonavir.
dRAYNAUDS: Raynaud syndrome.
eNOA: nonopioid analgesia.
fLLM: large language model.
gRegistered with Open Science Framework [28].
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Table 2. Data formatting for the Python script automating screening with the generative pretrained transformer application programming interface. All
non-English characters were removed before analysis.

ColumnsData

df_info • Dataset Name (str): name of data set
• Inclusion Criteria (str): screening inclusion criteria
• Exclusion Criteria (str): screening exclusion criteria

Dataseta • Title (str): paper title
• Abstract (str): paper abstract

aThe name of the data set must match Dataset Name in df_info.

App Creation
Given a data set, df_info, containing information about inclusion
and exclusion criteria of the data sets containing titles and

abstracts to be reviewed, the app calls the OpenAI GPT API to
classify each paper to be screened as either included or excluded.
The app was coded in Python. The prompt given to the GPT
API is provided in Textbox 1.

Textbox 1. Prompt given to the generative pretrained transformer application programming interface.

Instructions: You are a researcher rigorously screening titles and abstracts of scientific papers for inclusion or exclusion in a review paper. Use the
criteria below to inform your decision. If any exclusion criteria are met or not all inclusion criteria are met, exclude the article. If all inclusion criteria
are met, include the article. Only type “included” or “excluded” to indicate your decision. Do not type anything else.

Abstract: {abstract}

Inclusion criteria: {inclusion_criteria}

Exclusion criteria: {exclusion_criteria}

Decision:

Where “Decision:” is whether GPT API includes or excludes the article. Thus, the algorithm is as follows:

data_df <- load(df_info)

for each dataset in data_df: for each row in dataset:

prompt <- instructions + title + abstract + inclusion criteria \

+ exclusion criteria decision <- GPT(prompt) row[‘decision’] <- decision

save(dataset)

Assessment and Data Analysis
After the app was run on all data sets included in our analysis,
the following metrics were computed: accuracy, macro F1-score,
sensitivity for decision tags, κ, and PABAK. A subset of the
results was selected for the GPT models to explain their
reasoning. The following prompt was appended to the beginning
of the original prompt given to the API: “Explain your reasoning
for the decision given with the information below.” The human
and GPT decisions were appended to the end of the prompt. A
subset of incorrect results was selected for GPT to reflect on its
incorrect answers. The following prompt was appended to the
beginning of the original prompt given to the API: “Explain
your reasoning for why the decision given was incorrect with

the information below.” The human and GPT decisions were
appended to the end of the prompt.

Results

The overall accuracy of the GPT models was 0.91, the sensitivity
of included papers was 0.76, and the sensitivity of excluded
papers was 0.91 (Table 3 and Figure 2). On the nonopioid
analgesia (NOA) data set (354/14,771 included abstracts), the
model ran for 643 minutes and 50.8 seconds, with an
approximate cost of US $25. The data set characteristics are
detailed in Table 1, the model performance is in Table 3 and
visualized in Figure 2, and the reasoning from GPT is tabulated
in Table 4.
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Table 3. Performance of generative pretrained transformer (GPT) in screening titles and abstracts against a human reviewer’s ground truth. κ (human)
is the agreement between 2 independent human reviewers. κ (screen) is the agreement between GPT and the final papers included and excluded in each
data set.

PABAKaκ (screen)κ (human)Sensitivity (excluded)Sensitivity (included)Macro F1-scoreAccuracyData set

0.780.260.720.7560.6860.6100.748IVMb

0.990.210.580.9490.9660.5950.846SSRIc

0.880.250.510.8620.5930.6130.949LPVRd

0.990.220.910.9660.8330.6070.965RAYNAUDSe

0.950.230.350.8980.7820.6010.895NOAf

0.980.210.690.9421.0000.5940.943LLMg

0.960.220.460.9100.7640.6000.907Total (weighted)

0.930.230.630.9000.8100.6640.891Total (macro)

aPABAK: prevalence-adjusted and bias-adjusted κ.
bIVM: ivermectin.
cSSRI: selective serotonin reuptake inhibitor.
dLPVR: lopinavir-ritonavir.
eRAYNAUDS: Raynaud syndrome.
fNOA: nonopioid analgesia.
gLLM: large language model.
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Figure 2. (A-F) Confusion matrices for the included and excluded papers for all data sets and (G) the overall performance. IVM: ivermectin; LLM:
large language model; LPVR: lopinavir-ritonavir; NOA: nonopioid analgesia; RAYNAUDS: Raynaud’s syndrome; SSRI: selective serotonin reuptake
inhibitor.
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Table 4. Decision and reasoning of the generative pretrained transformer (GPT) application programming interface for a subset of 4 example titles and
abstracts. Full abstracts are in ivermectin (IVM) data set [27].

Decision and reasoningPrompt

•• Human: IncludedTitle: Use of Ivermectin in the Treatment of COVID-19:
A Pilot Trial • GPT: Included

• Abstract: Objectives: In this randomized open-label trial
pilot study we assessed the antiviral effects and safety of
various doses of ivermectin in patients with mild clinical
symptoms of COVID-19. Method(s): Patients were ran-
domly assigned to receive standard of care (SOC) treatment
at hospital admission...

• Reasoning: The study meets all of the inclusion criteria. It is a randomized
controlled trial that compares ivermectin against standard of care treatment in
adult COVID-19 patients. The study reports outcomes related to time to viral
clearance and adverse events. Additionally, the study is published in a peer-re-
viewed journal. Therefore, the article should be included in the review paper.

•• Human: ExcludedTitle: What Does the COVID-19 Pandemic Mean for the
Next Decade of Onchocerciasis Control and Elimination? • GPT: Excluded

• Abstract: Background: Mass drug administration (MDA)
of ivermectin for onchocerciasis has been disrupted by the
coronavirus disease 2019 (COVID-19) pandemic. Mathe-
matical modelling can help predict how missed/delayed
MDA will affect short-term epidemiological trends and
elimination prospects by 2030...

• Reasoning: The article does not meet any of the inclusion criteria or exclusion
criteria listed. It is not a randomized controlled trial or comparative cohort study,
it does not compare ivermectin against standard of care or control group/placebo,
it does not include adult COVID-19 inpatients and/or outpatients, and it does
not report any of the specified outcomes. Additionally, there is no indication
that the article is non-peer-reviewed. Therefore, the article is excluded.

•• Human: IncludedTitle: Use of Ivermectin Is Associated With Lower Mortal-
ity in Hospitalized Patients With Coronavirus Disease
2019: The Ivermectin in COVID Nineteen Study

• GPT: Excluded
• Reasoning: The article meets all of the inclusion criteria and none of the exclu-

sion criteria, therefore it should be included in the review paper.• Abstract: Background: Ivermectin was shown to inhibit
severe acute respiratory syndrome coronavirus 2 replication
in vitro, which has led to off-label use, but clinical efficacy
has not been described previously. Research Question:
Does ivermectin benefit hospitalized coronavirus disease
2019 (COVID-19) patients?...

• Reflection: The given decision of excluding the article is incorrect. The article
meets all the inclusion criteria as it is a non-randomized comparative cohort
study that compares ivermectin against standard of care or control
group/placebo, includes adult COVID-19 inpatients, and reports mortality inci-
dence. The article does not use ivermectin for prophylaxis of COVID-19 and
is a peer-reviewed article. Therefore, the correct decision should be “Included.”

•• Human: ExcludedTitle: What to Expect From Different Drugs Used in the
Treatment of COVID-19: A Study on Applications and in
Vivo and in Vitro Results

• GPT: Included
• Reasoning: The study is not a randomized controlled trial or a non-randomized

comparative cohort study, which is an inclusion criteria. Therefore, the article
does not meet all inclusion criteria and must be excluded.

• Abstract: The end of 2019 was marked by the emergence
of a new type of coronavirus (SARS-CoV-2), which has
killed more than 240,000 people... • Reflection: As per the given inclusion and exclusion criteria, the decision given

is incorrect. The abstract does not mention the use of ivermectin in any of the
studies. Therefore, the article cannot be included based on the inclusion criteria.

Discussion

Overview
In this study, we assessed the performance of the OpenAI GPT
API in the context of clinical review paper inclusion and
exclusion criteria selection. We report an overall accuracy of
0.91 and a PABAK of 0.96, indicating a high level of agreement
between the app’s decisions and the reference standard.
However, the κ was low, ranging from 0.21 to 0.26, largely due
to the imbalanced nature of the data sets in this study. The
sensitivity of the included papers was 0.76, suggesting that the
app needs improvement to correctly identify relevant papers
(Table 3 and Figure 2). The sensitivity of excluded papers was
0.91, showing promise in excluding irrelevant papers. These
results highlight the potential of large language models (LLMs)
to support the clinical review process.

Implications of GPT API’s Performance in the Review
Process
GPT’s performance has several implications for the efficiency
and consistency of clinical review paper inclusion and exclusion
criteria selection. By prioritizing the workflow and acting as an

aid rather than a replacement for researchers and reviewers, the
GPT and other large language models have the potential to
streamline the review process. This enhanced efficiency could
save valuable time and effort for researchers and clinicians,
allowing them to focus on more complex tasks and in-depth
analysis. Further, the API does not require pretraining or seed
articles and can provide reasoning for its decision to either
include or exclude papers, an aspect traditional natural language
processing algorithms lack in automated or semiautomated
paper screening (Table 4). Interestingly, upon being asked to
explain its reasoning for a subset of incorrect classifications,
GPT corrected its initial decision. Ultimately, this increased
efficiency, paired with reasoning capabilities, could contribute
to the overall quality of clinical reviews, leading to more
accurate and reliable conclusions in medical research.

The use of LLMs in the review process could also promote
consistency in the selection of relevant papers. By automating
certain aspects of the process and acting as an aid to researchers
and clinicians, the model can streamline the review process and
help reduce the potential for human error and bias, leading to
more objective and reliable results [34]. This increased
consistency could, in turn, improve the overall quality of the
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evidence synthesized in clinical reviews, providing a more
robust foundation for medical decision-making and the
development of clinical guidelines.

The potential of LLMs as a decision tool becomes particularly
valuable when resources are limited. In such situations, LLMs
can be used as a first-pass decision aid, streamlining the review
process, and allowing human screeners to focus on a smaller,
more relevant subset of papers. By automating the initial
screening process, LLMs can help reduce the workload for
researchers and clinicians, enabling them to allocate their time
and effort more efficiently.

In particular, using the GPT API as a first-pass decision aid can
also help mitigate the risk of human error and bias in the initial
screening phase, promoting a more objective and consistent
selection of papers. While the API’s sensitivity for including
relevant papers may not be perfect, its high specificity for
excluding irrelevant papers can still provide valuable support
in narrowing down the pool of potentially relevant studies [10].
This can be particularly beneficial in situations where a large
number of papers need to be screened and human resources are
scarce [35].

Comparison to Other Tools
The comparison of our proposed machine learning method to
other tools, such as Abstrackr [18], DistillerSR [17], and
RobotAnalyst [36], provides evidence of its efficacy and
reliability in the context of systematic review processes. On a
data set of 24,307 abstracts and titles, our model achieved an
accuracy of 0.91 and comparable sensitivity of 0.91 and 0.76
for excluded and included papers, respectively. The significant
interrater agreement (κ=0.96) between our proposed method
and consensus-based human decisions, juxtaposed to the lower
interrater variability between 2 independent human screeners
(κ=0.46), emphasizes the model’s robustness. In comparison,
Abstrackr reported overall sensitivities of 0.96, 0.79, 0.92, and
0.82 on data sets ranging from 5243 to 47,385 records. When
comparing the proportion of missed records across Abstrackr,
DistillerSR, and RobotAnalyst on nonpublic medical title and
abstract screening data sets, Abstrackr exhibited the lowest
proportions of missed records, namely 28%, 5%, and 0%,
respectively [37]. Conversely, DistillerSR showed a high
proportion of missed records, reaching up to 100% in the last
data set. RobotAnalyst’s performance fell between the 2, with
missed proportions of 70%, 23%, and 100%, respectively. Future
work will explore comparative analyses in greater depth and on
a broader array of data sets to compare state-of-the-art screening
tools.

Limitations and Challenges in Implementing GPT API
in the Review Process
While the GPT API shows promise in streamlining the review
process, it is important to acknowledge its limitations and

challenges. One notable limitation is the disparity between the
high specificity of 0.91 for excluding papers and the lower
sensitivity of 0.76 for including papers. This discrepancy
suggests that while the API effectively excludes irrelevant
papers, it may not be as proficient in identifying relevant papers
for inclusion. This could lead to the omission of important
studies in the review process, potentially affecting the
comprehensiveness and quality of the final review. Therefore,
the GPT API should not be considered a replacement for human
expertise. Instead, it should be viewed as a complementary tool
that can enhance the efficiency and consistency of the review
process. Human screeners should still be involved in the final
decision-making process, particularly in cases where the API’s
sensitivity for including relevant papers may be insufficient [7].
Another limitation arises in the selection of data sets for
screening; 3 of the 6 data sets focused on the efficacy of various
drugs for COVID-19, potentially limiting the generalizability
of the results from other types of studies. Further work will
assess GPT on a greater diversity of studies. By combining the
strengths of the GPT API with human expertise, researchers
can optimize the review process and ensure the accuracy and
comprehensiveness of the final review.

Future Research and Development
Several avenues for future research and development include
refining the GPT API’s performance in the clinical review paper
context, incorporating metadata such as study type and year,
and exploring few-shot learning approaches. Additionally,
training a generator-discriminator model through fine-tuning
could improve the API’s performance [38]. Expanding the
application of the GPT API to other areas of medical research
or literature review could also be explored. This would involve
large language models for tasks such as identifying and
extracting study design information, patient characteristics, and
adverse events. As the maximum token length increases with
future iterations of the GPT model, screening entire papers may
become feasible [39]. Furthermore, exploring the use of LLMs
to generate clinical review papers could be a promising research
direction.

Conclusions
The GPT API shows potential as a valuable tool for improving
the efficiency and consistency of clinical review paper inclusion
and exclusion criteria selection. While there are limitations and
challenges to its implementation, its performance in this study
suggests that it could have a broader impact on clinical review
paper writing and medical research. Future research and
development should focus on refining the API’s performance,
expanding its applications, and exploring its potential in other
aspects of clinical research.
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