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Abstract

Background: Adverse drug reactions (ADRs), which are the phenotypic manifestations of clinical drug toxicity in humans, are
a major concern in precision clinical medicine. A comprehensive evaluation of ADRs is helpful for unbiased supervision of
marketed drugs and for discovering new drugs with high success rates.

Objective: In current practice, drug safety evaluation is often oversimplified to the occurrence or nonoccurrence of ADRs.
Given the limitations of current qualitative methods, there is an urgent need for a quantitative evaluation model to improve
pharmacovigilance and the accurate assessment of drug safety.

Methods: In this study, we developed a mathematical model, namely the Adverse Drug Reaction Classification System (ADReCS)
severity-grading model, for the quantitative characterization of ADR severity, a crucial feature for evaluating the impact of ADRs
on human health. The model was constructed by mining millions of real-world historical adverse drug event reports. A new
parameter called Severity_score was introduced to measure the severity of ADRs, and upper and lower score boundaries were
determined for 5 severity grades.

Results: The ADReCS severity-grading model exhibited excellent consistency (99.22%) with the expert-grading system, the
Common Terminology Criteria for Adverse Events. Hence, we graded the severity of 6277 standard ADRs for 129,407 drug-ADR
pairs. Moreover, we calculated the occurrence rates of 6272 distinct ADRs for 127,763 drug-ADR pairs in large patient populations
by mining real-world medication prescriptions. With the quantitative features, we demonstrated example applications in
systematically elucidating ADR mechanisms and thereby discovered a list of drugs with improper dosages.

Conclusions: In summary, this study represents the first comprehensive determination of both ADR severity grades and ADR
frequencies. This endeavor establishes a strong foundation for future artificial intelligence applications in discovering new drugs
with high efficacy and low toxicity. It also heralds a paradigm shift in clinical toxicity research, moving from qualitative description
to quantitative evaluation.

(J Med Internet Res 2024;26:e48572) doi: 10.2196/48572
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Introduction

In recent years, the issue of drug toxicity has emerged as a
serious concern in the fields of clinical medicine, pharmacology,
and sociology. As a result, drug regulatory agencies worldwide
are making continuous efforts to monitor marketed drugs and
assess their potential risks in large populations [1,2]. The
precision medicine projects launched around the world have
drawn significant attention to the adverse effects of drug therapy.
As a result, high-risk drugs have been subject to warnings or
even market withdrawal. In the field of new drug discovery, the
focus of drug safety evaluation has shifted from early-stage cell
or animal toxicity to later-stage clinical toxicity [3].

Adverse drug reactions (ADR) represent the clinical
manifestations of drug toxicity in humans. Fundamentally,
information on ADRs can be obtained from the 4-phase clinical
trials, primarily through postmarketing surveillance. To evaluate
the benefits and risks of medicines, monitoring and reporting
systems, such as the US Food and Drug Administration Adverse
Event Reporting System (FAERS) and the European database
of suspected adverse drug reaction reports (EudraVigilance),
were established by regulatory authorities. These systems enable
researchers to access real-world individual responses to drug
therapy. Intelligent tools can be compiled to mine drug-ADR
associations, illustrate drug toxicity mechanisms, and predict
novel ADRs. In addition, some leading-edge projects like Tox21
and eTRANSAFE have been launched to develop integrative
data infrastructure and innovative computational methods. These
projects aim to enhance translational safety assessment during
the drug development process. High-end applications often use
machine learning or artificial intelligence algorithms to
automatically correlate chemicals with toxicity, even in cases
where the exact molecular mechanisms underlying toxicity are
not known [4-6]. For example, Kuang et al [7] built machine
learning models using topological information from the
drug-ADR associations network, drug chemical structures, and
drug Anatomical Therapeutic Chemical (ATC) classification
information to discover new drug-ADR associations. Anjani
and colleagues [8] constructed a convolutional neural network
model solely using drug chemical structures for the prediction
of ADR occurrence. However, due to the absence of
high-dimensional toxicity information such as ADR severity
and frequency, current ADR prediction models are insufficient
to comprehensively assess the true impact of drug toxicity on
human health [9]. ADR severity is a critical indicator that
manifests the seriousness of the ADR’s impact on human health,
while ADR frequency (occurrence rate) is a quantitative
parameter that reflects how often the ADR occurs in the
population receiving drug therapy. These 2 parameters are
crucial for accurately characterizing drug toxicity in humans.
Previously, Hartwig and his colleagues [10] proposed 7 levels
of ADR severity and graded 367 ADRs in 1992. Gottlieb et al
[11] used nonprofessional crowdsourcing to rank the severity
of 2929 ADRs. In 2010, a total of 11 French hospitals
collaborated to investigate and determine the severity and
frequency of ADRs resulting from self-medication among
emergency department patients [12]. Ferreira et al [13]
conducted a cross-sectional study to determine the severity and

frequency of ADRs based on reports from drug treatments for
Alzheimer disease in a Brazilian city. In 2017, the National
Cancer Institute released version 5.0 of the Common
Terminology Criteria for Adverse Events (CTCAE) [14], which
includes 837 distinct adverse event terms observed in cancer
therapy. Regrettably, many of these efforts were qualitative in
nature.

Undoubtedly, qualitative descriptions of ADRs have become
insufficient to support advanced computational algorithms and
reduce the use of animals in preclinical toxicity testing. It also
hampers the widespread adoption of quantitative methods for
cautious pharmacovigilance and prospective assessment of
clinical drug toxicity. Therefore, in this study, we aimed to
develop mathematical models for estimating ADR severity and
frequency by mining millions of historical medical reports over
a 10-year period at the population level. Additionally, we created
a benchmark data set of drug-ADR relations with quantitative
features to support advanced computational applications in drug
toxicity research.

Methods

Rationale
The rationale for quantifying ADR severity was graphically
illustrated in Figure 1, and we briefly described the principles
here. A cohort of patients (MDi–Aj ∈ M) takes the drug Di (Di ∈
D, D = {D1, D2, …, Dn}) and thus induce the ADR Aj (Aj ∈ A,
A = {A1, A2, …, Am}) (the Di-Aj pair). Treating the patients with
Aj may have 5 clinical outcomes in FAERS: recovered,
recovering, not recovered, resolved with sequelae, and fatal
(corresponding to O = {O1, O2, O3, O4, O5}, respectively). While
clinical outcomes in response to ADR treatment are influenced
by multiple factors, such as primary medical status, treatment
location (in or outside the hospital), individual genetic variation,
and others, the primary determinant remains the severity of the
ADR itself. This inspires us to develop a penalized model that
uses a statistical score to quantitatively characterize the primary
outcome, which is the most frequently occurring, of ADR
treatment in large patient populations. In the model, various
outcomes of ADR treatment will be penalized differently, with
the “recovered” outcome receiving the highest penalty and the
“fatal” outcome receiving the lowest. The model calculates the
cumulative effects of ADR treatment through penalties, with
the primary outcome contributing the most. Summing up the
penalties across large populations MDi–Aj would then reveal the
primary treatment outcomes of ADR Aj induced by the drug Di.
The penalty score (later referred to as Severity_score) can also
be used to indicate the severity of the ADR in the Di-Aj pair. In
most cases, an ADR (Aj ∈ A) can be induced by multiple drugs
(Dn ∈ D); hence, Aj may have several scores (corresponding to
different Di-Aj pairs), indicating varying severities for Aj.

To grade ADR severity, we assume a congruent relationship
between ADR treatment outcomes and ADR severity. Therefore,
we divide the penalty scores of all Di-Aj pairs in large
populations M into 5 zones, corresponding to 5 severity grades.
The upper and lower score boundaries for the 5 zones in the
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entire score distribution can be theoretically determined by
calculating the scores for the extreme cases where only 1 of the
5 treatment outcomes occurs. Accordingly, severity grades for

Aj can be assigned by determining the zones where the penalty
scores of Aj fall.

Figure 1. Schematic illustration of ADR severity quantification process. (A) Mining and processing of drug-ADR relations; (B) Estimate the ADR
Severity_score; (C) Determine boundarise of Severity_score; (D) Assignment of ADR severity grade. ADR: adverse drug reaction.

Mining, Processing, and Normalization of Drug-ADR
Relations
The drug-ADR associations used for model construction were
extracted from the extensive real-world historical adverse drug
event (ADE) reports in the FAERS. The FAERS is a shared
database maintained by the US Food and Drug Administration.
It contains reports of adverse events, including ADRs,
medication errors, and drug product problems. These reports
are submitted by health care professionals, consumers, and
manufacturers during the postmarketing use of drug and
therapeutic biologic products. Since 2012, information on ADR
treatment outcomes has been recorded in the FAERS. Therefore,
data since 2012 can be used for the quantitative study of ADR.
The FAERS data files, dating from the first quarter of 2012 to
the first quarter of 2020, were downloaded in JSON format from
openFDA [15]. These files included 9,146,439 ADEs.

To ensure the reliability of drug-ADR associations, the following
operations were performed: (1) qualified ADE reports were
obtained by excluding redundant, unreliable, and unrelated
reports. Reports submitted by nonprofessionals, such as

consumers and patients, were considered unreliable.
Additionally, nondrug-induced ADE reports under the System
Organ Class (SOC) categories of “congenital, familial and
genetic disorders,” “surgical and medical procedures,” “social
circumstances,” “product issues,” and “injury, poisoning, and
procedural complications” were considered unrelated. Only
ADE reports involving single-ingredient small molecule drugs
were included in this study; (2) to reduce the data bias caused
by occasional reports, misinformation, or underreporting, we
excluded ADRs that were reported less than two times and drugs
that were reported less than 26 times in all reports; (3)
drug-ADR pairs reported in less than two separate reports were
also discarded; and (4) the reporting odds ratio (ROR) for ADR
Aj induced by drug Di was calculated based on the two-by-two
contingency table. In this study, the ROR was determined using
the formula:
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Where a represents the number of reports in which the Aj is
caused by the Di, b represents the number of reports in which
other ADRs are caused by the Di, c represents the number of
reports in which Aj is induced by other drugs, and d represents
the number of reports in which other ADRs are caused by other
drugs. A value of ROR>1.0 typically indicates that the drug is
a risk factor for ADR, suggesting a reliable drug-ADR
association. A 95% CI was used for statistical analysis, and a
significance level of P<.05 was applied.

Before constructing the model, the reliable drug-ADR pairs
underwent preprocessing and normalization to eliminate
redundancy. The drugs were standardized based on their main
active ingredients. Pharmacological and chemical data about
the drugs, including drug description, indication, synonyms,
structure, PubChem ID, DrugBank ID, KEGG (Kyoto
Encyclopedia of Genes and Genomes) ID, ATC code, National
Drug Code product code, and targets, were extracted from
publicly available medical repositories. These repositories
included the Unified Medical Language System [16], DrugBank
[17], PubChem [18], KEGG [19], and the ATC classification
system [20]. The drug names were consolidated by
cross-referencing with the DrugBank database. The ADRs were
standardized by associating them with the standard ADR terms
in the Adverse Drug Reaction Classification System (ADReCS)
[21] using self-coded scripts. When encountering novel ADR
terms, we adhered to the ADR standardization protocol outlined
in ADReCS (version 1.2). This involved standardizing the ADR
terms, establishing an ADR hierarchy, and assigning digital
IDs.

Construction of the ADReCS Severity-Grading System
for ADR Severity Estimation

Constructing the Penalized Model to Estimate the ADR
Severity_score
To quantitatively characterize the primary outcome of ADR
treatment in large populations, we developed a penalized model.
We represented the drugs in the qualified ADE reports of
FAERS as D = {D1, D2, …, Dn}, the collection of ADRs as A
= {A1, A2, …, Am}, the distinct ADE reports as M (which was
nearly equal to the size of patient populations, with different
events of the same patient treated as a separate report), and the
5 outcomes of ADR treatment as O = {O1, O2, O3, O4, O5},
corresponding to the clinical end points of recovered, recovering,
not recovered, resolved with sequelae, and fatal, respectively.
The model penalized Aj according to the clinical outcomes in
a reciprocal manner. The “recovered” outcome was penalized
the most, while the “fatal” outcome was penalized the least. We
defined the penalty scheme as Penalty(Ok) = {5, 4, 3, 2, 1},
corresponding to the outcomes O one-by-one in order. Hence,
for an ADR Aj (Aj ∈ A) induced by the drug Di (Di ∈ D) (the
Di-Aj pair), the overall penalty scores of ADR treatment
outcomes can be determined by:

To eliminate potential data bias (eg, cases of Aj-Ok combinations
may vary greatly) in FAERS, we introduced 2 parameters: the
conditional probability of Aj with treatment outcome Ok (that
is P(Ok|Aj) in M which was determined by counting the number
of Aj-Ok cases against all Aj-O cases, and the association strength
of Di-Aj pair (ROR) which was further normalized with the
sigmoid function to a range of 0.5 to 1.0.

To emphasize severe ADRs, we further introduced a weight
parameter wk (wk = {1, 2, 3, 4, 5}). Since the primary treatment
outcomes contributed most to the sum-up penalty score, we
could use the penalty score as the indicator of the primary
outcome of Aj and further infer the Aj severity as well. Hence,
we defined the ADR severity score, Severity_scoreAj, which
can be determined by:

The Severity_score ranges from 0 to 5.0; the larger the score is,
the more severe the ADR will be.

Assignment of ADR Severity Grade by the Severity_score
Most of the current expert systems follow the generally accepted
principles or rules for ADR severity grading; however, the
grades and the rules between systems are different and the rules
are sometimes uneasy for experts to follow exactly. In this study,
we used the CTCAE’s 5-grade architecture, including mild,
moderate, severe, life-threatening, and death. To determine the
appropriate Severity_score boundaries for grading ADR severity,
we assumed that there was a congruent relationship between
ADR treatment outcomes and ADR severity (actually, they were
not fully matched). Hence, we calculated the Severity_scores
for the extreme cases, for instance, when the ADRs in FAERS
have only 1 of 5 treatment outcomes (that is P(Ok|Aj) = 1, ROR

→ ∞, and 1 + e
–log2(ROR) ≈ 1). Accordingly, we can denote the

theoretical upper and lower boundary of Severity_scores for
ADR severity grades:

Thereby, we determined the threshold scores for each severity
grade as given in Table 1.
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Table 1. Architecture comparison of ADRa severity-grading systems.

Vertigo (CTCAE version 5.0)fCTCAEe version 5.0Vertigo (ADReCS)dADReCSb severity-grading systemc

Mild symptomsGrade 1: mildMild (0.196-0.385)Mild (0.000-0.387)

Moderate symptoms; limiting instru-

mental ADLg
Grade 2: moderateModerate (0.394-0.839)Moderate (0.387-0.861)

Severe symptoms; limiting self-care
ADL

Grade 3: severe but not immediately
life-threatening

Severe (0.875-1.179)Severe (0.861-1.500)

—Grade 4: life-threatening conse-
quences

—hLife-threatening (1.5-2.524)

—Grade 5: death related to AEi—Death (2.524-5.000)

aADR: adverse drug reaction.
bADReCS: Adverse Drug Reaction Classification System.
cThe value in the brackets stands for the upper-lower boundaries of Severity_score. Values are limited to 3 decimal places.
dUsing “Vertigo” as an example. The value in the brackets represents the range of Severity_score for vertigo estimation using the ADReCS severity-grading
system.
eCTCAE: Common Terminology Criteria for Adverse Events.
fUsing “Vertigo” as an example.
gADL: activities of daily living.
hAn em dash (—) indicates that a grade is not available.
iAE: adverse event.

Evaluation of the ADReCS Severity-Grading System
The applicability of the ADReCS severity-grading system in
estimating ADR severity was evaluated by comparing it with
the widely recognized expert-based system, CTCAE. CTCAE
classifies ADR severity into 5 grades: mild, moderate, severe,
life-threatening, and death. As CTCAE grades are primarily
designed for cancer therapy, the evaluation focused on the
mutually preferred terms (PTs) shared by both grading systems.
CTCAE, version 5.0, includes 837 MedDRA Lowest Level
Terms, corresponding to 729 PTs, of which 658 terms align
with those in ADReCS. However, 71 terms in CTCAE could
not be matched with terms in ADReCS. These unmatched ADRs
often stem from clinical treatments other than drug therapy,

such as pulmonary valve disease, vaccination site
lymphadenopathy, and vaccination complications.

The evaluation was conducted on the mutual 658 PTs by
comparing the consistency of ADR severity grades assigned by
both systems. The correspondence of ADR severity grades
between both systems was summarized in Table 1. Considering
an ADR may have several grades subject to different drug
therapies, we classified the comparison results of severity grades
into three states (Figure 2A): (1) “consistent” if the CTCAE
grades were fully matched or covered by the ADReCS severity
grades, (2) “partially consistent” if the CTCAE grades
overlapped with the ADReCS severity grades, and (3)
“inconsistent” when the grades of both systems were exclusive
to each other.
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Figure 2. Schematic illustration of the results of ADR severity grading. (A) Evaluation of the ADReCS severity-grading system with the expert system
CTCAE, along with illustrated rules and evaluation outcomes. (B) Statistics of ADRs with the information on severity grade and frequency by SOCs.
(C) Density distribution of drug-ADR pairs based on Severity_scores. (D) Distribution of drug-ADR pairs categorized by ADR severity grades. ADR:
adverse drug reaction; ADReCS: Adverse Drug Reaction Classification System; CTCAE: Common Terminology Criteria for Adverse Events; PT:
Preferred Term; SOC: System Organ Class.

Estimation of ADR Frequency by Cross-Mining the
Big Data of Historical Medical Reports

Overview
Theoretically, ADR frequency can be determined by dividing
the number of reported ADRs by the number of drug
prescriptions. However, the FAERS, like many other
spontaneous reporting systems, faces challenges related to
underreporting and bias in reporting. Typically, serious events
are more likely to be reported than nonserious ones [22].
Previous studies have estimated that the average underreporting
rate (URR) in FAERS is around 94%, implying that the reporting
rate is only 6%. For particularly severe events, the URR drops
to 77% [22,23].

Determination of the Average Annual Prescription
(AAP)
To address the potential bias resulting from underreporting, we
acquired real-world drug prescription data from the Medical
Expenditure Panel Survey (MEPS) [24]. The MEPS is a publicly
available repository that gathers information on health services

and expenditures in the United States through surveys conducted
among households and individuals. We downloaded the
SAS/XLSX files containing household-reported prescription
medicines from the MEPS, which amounted to 2,545,184
records and covered the period from 2012 to 2019. This
timeframe closely aligns with the period of FAERS reports
analyzed in this study. The MEPS records were preprocessed
to consolidate the drug name with the FAERS, intermediated
by the DrugBank ID, through three routes (Figure 3A): for each
MEPS record, (1) the standard generic name, brand name, and
active ingredient name of the drug were retrieved from the US
Food and Drug Administration National Drug Code Directory
via the drug National Drug Code record (RXNDC).
Subsequently, the standard drug name was mapped to DrugBank
to obtain the unique DrugBank ID; (2) in cases where the
RXNDC retrieval failed, the drug name (RXNAME and
RXDRGNAM) in the MEPS record underwent an exact keyword
search in DrugBank for direct consolidation; and (3) for the
remaining reports that failed in the previous 2 routes, the
RXNAME or RXDRGNAM names underwent cleaning by
removing extraneous words such as “mg,” “ophthalmic,”
“tablets,” “chewable,” etc. The clean drug names were then
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mapped to DrugBank again. The correspondence of the drug
name to the DrugBank ID was manually checked for validation.

For drugs with confirmed DrugBank IDs, the annual
prescriptions were calculated based on the respondent person
weights in the MEPS records. Subsequently, the AAPs were

determined for the period spanning 2012 to 2019. In instances
where drugs were not listed in the MEPS, their AAPs were
estimated by inferring from drugs in the same ATC class (at
the 2nd level, which corresponds to the therapeutic subgroup;
Figure 3B).

Figure 3. Evaluation of ADR frequency by mining historical medical records data. (A) Schematic illustration of obtaining the AAPs from the MEPS
database. (B) Estimation of AAPs for drugs not mapped in the MEPS through ATC code inference. (C) Density distribution of drug-ADR pairs by ADR
frequency. (D) Distribution of frequency for common and very common ADRs with ADR severity. AAP: average annual prescription; ADR: adverse
drug reaction; ATC: Anatomical Therapeutic Chemical; FDA: Food and Drug Administration; MEPS: Medical Expenditure Panel Survey; NDC:
National Drug Code.

Estimation of ADR Frequency
For an ADR Aj (Aj ∈ A) induced by a drug Di (Di ∈ D), the
frequency FreqDi–Aj can be calculated as follows:

The count(Di – Aj) represents the number of times that the Di-Aj

pair was reported in the ADE collection M of FAERS. “yr”
stands for the period of this estimation, which was 8 years
(corresponding to quarter 1, 2012, to quarter 1, 2020, of

FEARS). The URR was estimated to be 77% for very serious
ADRs (life-threatening and death) and 94% for other ADRs
(mild, moderate, and severe).

Association Analysis Between the Targets and the
ADRs
The association analysis was conducted on the 129,407
drug-ADR pairs with quantitative features. The information on
therapeutic targets was obtained from the DrugBank, and the
drug-ADR pairs were associated with therapeutic targets to
generate a list of distinct drug-ADR–target entries. Singleton
drug-ADR–target entries, where the ADR was associated with
only 1 target or vice versa, were excluded from the analysis.
The strength of association between the ADR/ADR group (fatal

J Med Internet Res 2024 | vol. 26 | e48572 | p. 7https://www.jmir.org/2024/1/e48572
(page number not for citation purposes)

Yue et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


or nonfatal) (Aj) and the target (Tp) was assessed using the odds
ratio (OR) through the construction of a two-by-two contingency
table:

Where a represents the number of drug-ADR–target entries that
involve both Aj and Tp, b represents the number of
drug-target–ADR entries that involve Tp but not Aj, c represents
the number of drug-target–ADR entries that involve Aj but not
Tp, and d represents the number of drug-target–ADR entries
that involve neither Tp nor Aj. A 95% CI was used for statistical
analysis, and a P value of .05 was determined for significance.

Ethical Considerations
The FAERS and MEPS databases are freely available to the
public, and patient information is anonymous and deidentified.
Therefore, this study does not require ethical review and
informed consent.

Results

Performance Evaluation of the ADReCS
Severity-Grading Model
After conducting data preprocessing and normalization, we
obtained 1,058,727 qualified ADE reports from FAERS. From
these reports, we extracted 129,407 reliable and distinct
drug-ADR relations, encompassing 774 drugs and 6277 standard

ADR terms (PTs). Using these reports, we developed the
ADReCS severity-grading model and introduced a new
parameter, Severity_score, to quantify the severity of ADRs.
We also determined the boundaries of the Severity_score
parameter to classify the ADRs into 5 severity grades (Table 1
and Figure 2C). To evaluate the reliability of the ADReCS
severity-grading system, we compared it with the expert system
CTCAE (version 5.0). Out of a total of 635 mutual ADR PTs
between the 2 systems, 287 (45.20%) terms were assigned
identical severity grades, 343 (54.02%) were partially consistent,
and only 5 (0.79%) had completely different grade assignments
(Figure 2A). This result indicates the reliability of the ADReCS
severity-grading system. Furthermore, we conducted additional
comparisons of the ADReCS severity-grading system with other
severity-grading systems or related works (Table 2). The
ADReCS severity-grading system outperformed others in almost
all aspects of data size and data width.

After applying the ADReCS severity-grading system, severity
grades were determined for 6277 standard ADRs, involving a
total of 129,407 drug-ADR pairs and 774 single-active
ingredient drugs. The distribution of severity-graded ADRs was
summarized by SOCs, as shown in Figure 2B, using all ADR
standard terms in ADReCS as the background. Additionally,
we counted the drug-ADR pairs based on ADR Severity_scores.
The majority of the ADR Severity_scores fell within the range
of 0 to 1.5, corresponding to the intervals for mild, moderate,
and severe ADRs (Figures 2C and 2D). This outcome offers
supporting evidence for the general consensus that the safety
of most marketed drugs has undergone meticulous evaluation.

Table 2. Comparison of the ADReCSa severity-grading system with previous works.

Hartwig et al’s study [10]Gottlieb et al [11]Ferreira et al [13]CTCAEb version 5.0ADReCS severity-
grading system

367292911498376277Number of ADRsc

Qualitative (expert)Qualitative (expert)Qualitative (expert)Qualitative (expert)Quantitative (model)Method

7 gradesRank without grading4 grades5 grades5 gradesArchitecture of grades

————d129,407Graded by drug-ADR
pair

————774Corresponding drugs

September 1992March 2015December 2020November 2017March 2023Latest update

aADReCS: Adverse Drug Reaction Classification System.
bCTCAE: Common Terminology Criteria for Adverse Events
cADR: adverse drug reaction.
d—: not available.

Estimation of ADR Frequency in Large Patient
Populations
Mining the MEPS data, we extracted 2,064,016 qualified
prescription records of 743 drugs. Based on these records, we
calculated the AAPs for 774 drugs in the FAERS. For 438 drugs,
AAPs were directly computed from the MEPS data, while for
315 drugs, AAPs were estimated via ATC inference. However,
for 21 drugs, the AAPs could not be estimated due to the absence
of ATC classification for 17 drugs and failed ATC mapping for

4 drugs. Consequently, we obtained the frequency of 6272
ADRs, covering 127,763 drug-ADR pairs and 753 drugs.

Following conventional rules [25], we classified the 127,763
drug-ADR pairs into 5 groups based on their estimated
frequency: 87.87% were classified as very rare
(frequency<0.0001), 10.78% were classified as rare
(0.0001<frequency<0.001), 1.27% were classified as uncommon
(0.001<frequency<0.01), 0.08% were classified as common
(0.01<frequency<0.1), and 0.002% were classified as very
common (0.1<frequency; Figure 3C). This distribution is
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consistent with previous estimates indicating that most ADRs
are low-probability events [5,21]. More specifically, among the
127,763 drug-ADR pairs, only 75 distinct ADRs were
categorized as common and very common, and they were
involved in 98 drug-ADR pairs. The majority of the very
common ADRs were mild, such as diarrhea, fatigue, headache,
nausea, rash, weight gain, cough, and dizziness. It is noteworthy
that 3 drugs, namely paricalcitol, clozapine, and lenalidomide,
exhibited a high incidence of death (Figure 3D). Paricalcitol is
a vitamin D receptor activator used to treat secondary
hyperparathyroidism. Studies have reported that treatment with
paricalcitol can induce life-threatening ADRs, including
hypercalcemia, hyperphosphatemia, and cardiovascular diseases
[26-28]. Clozapine is an antipsychotic medication used to treat
treatment-resistant schizophrenia. However, it is known to cause
potentially life-threatening side effects such as arrhythmias,
agranulocytosis, myocarditis, seizures, and nonsuicidal death
in the patient population [29,30]. Lenalidomide is an
immunomodulatory and antitumor agent used to treat multiple
myeloma. According to reports, lenalidomide has been
associated with rare instances of severe acute liver injury or
acute liver failure, which can lead to fatal outcomes [31]. In
summary, the estimated ADR frequency is reasonable.

Store and Distribution of the Quantitative Features
The ADR data obtained from this study have been integrated
into the ADReCS. This effort added 2831 novel ADR terms
and 33,271 synonyms to the ADReCS, resulting in a total of
9375 distinct standard ADR terms and 68,067 synonyms.
Meanwhile, the number of single-active ingredient drugs
increased significantly by approximately 86.4%, from 1355 in
the previous ADReCS version to 2526. Additionally, the number
of nonredundant drug-ADR relations increased by about 6-fold,
from 134,022 to 809,346. More importantly, the quantitative
features of ADR severity and frequency were also incorporated.
Of all 7570 ADR PTs in the updated ADReCS, approximately
82.92% (6277 ADRs) were assigned a severity grade and
82.85% (6272 ADRs) were estimated for frequency (Figure 4).
This enhancement makes ADReCS the most information-rich
database of drug-ADR interactions, providing unique
quantitative data for multi-scale drug safety assessment and
drug discovery purposes.

The quantitative parameters of ADRs can be obtained using the
BROWSE or the keyword search function of ADReCS [32]
(Figure 4). The complete data set of drug-ADR relations with
quantitative features is available for download from the
DOWNLOAD page of ADReCS [33].

Figure 4. Statistics and retrieval of the quantitative features of ADRs from the ADReCS. ADR: adverse drug reaction; ADReCS: Adverse Drug Reaction
Classification System; HLT: High-Level Term; HLGT: High-Level Group Term; PT: Preferred Term; SOC: System Organ Class.

Potential Applications

Elucidation of ADR Mechanism
The quantitative features can aid in revealing potential
mechanisms underlying ADRs. For instance, we conducted an
association analysis between the ADRs and the therapeutic
targets based on 549,670 distinct drug-target–ADR relations,
involving 689 drugs, 6050 ADRs with quantitative features,
and 1082 therapeutic targets. All ADR-target relations were
roughly categorized into 4 zones based on the association
strength (the OR) and the frequency of ADRs (Figure 5A). These
4 zones pretty much elucidated 4 types of ADR mechanisms:
zone 1 and zone 2 included the majority (about 89.59%) of
ADR-target relations, in which the ADRs were most likely
induced in an on-target way or via the overdose mechanism.
On-target ADRs are predictable by assessing the

pharmacological activity of drugs [34]. Usually, a well-designed
dosage can prevent the high occurrence of ADRs in large patient
populations (zone 1). For example, cinacalcet is a
calcium-sensing receptor agonist used to treat secondary
hyperparathyroidism; occasionally, cinacalcet can cause
hypocalcemia in a dose-dependent manner [35]. In contrast, the
improper dosage regimen for normal drug therapy was prone
to cause dose-dependent ADRs (zone 2). For instance,
zoledronic acid, which was designed to target the farnesyl
pyrophosphate synthase for the treatment of osteolytic bone
disorders, is often accompanied by osteonecrosis of the jaws
[36,37]. In this regard, there is still some space for optimizing
the therapy dosage of zoledronic acid to gain the balance
between efficacy and toxicity. A selected list of drugs with
“improper” dosages is provided in Multimedia Appendix 1.
This list will also suggest potential ADR mechanisms by
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providing the drug-target–ADR associations. Zones 3 and 4
accounted for approximately 10.41% of total ADR-target
relations. The ADRs in these 2 zones were likely induced by
off-target effects, with unclear underlying mechanisms. Thus,
these ADRs were usually unpredictable based on
pharmacological principles, and some of them could be direct
immune-mediated ADRs [34,38]. For example,

clozapine-induced neutropenia has been found to be associated
with the carriage of specific human leukocyte antigen risk alleles
[34,39] rather than overacting on the anticipated therapeutic
target of clozapine, histamine H1 receptor, used to treat
psychotic diseases. Here, we also listed the drug-ADR pairs
within zone 4 in Multimedia Appendix 2.

Figure 5. Potential applications of quantitative features in mechanistic understanding of ADRs. (A) Brief elucidation of ADR mechanisms via analyzing
the relationship between ADR-target association strength and ADR frequency. (B) The ATC classification of 94 drugs susceptible to fatal ADRs. (C)
The protein-protein interaction network of 104 risky therapeutic targets, constructed with Cytoscape (Cytoscape Consortium). (D) The KEGG pathway
enrichment analysis of the risk targets. ADR: adverse drug reaction; ATC: Anatomical Therapeutic Chemical; CASR: calcium-sensing receptor; FDPS:
farnesyl pyrophosphate synthase; KEGG: Kyoto Encyclopedia of Genes and Genomes; OR: odds ratio.

Seeking the Risky Factors of Fatal ADRs
Fatal ADRs are of paramount concern in new drug discovery.
Identifying the risk factors of fatal ADRs could substantially
enhance the success rate of designing “high efficacy and low
toxicity” drugs. In this study, we conducted an association
analysis to identify the risk factors of fatal ADRs (ADRs graded
as life-threatening or death). As a result, we found 104 targets
for 94 drugs that were susceptible to fatal ADRs (OR>2). Many
of these targets were prioritized to combat complex diseases
such as cancers, immunological diseases, blood diseases, and
cardiovascular diseases (Figure 5B). The protein-protein
interaction network analysis revealed that many of these “toxic”
targets were interconnected in a highly dense subnetwork, which
centered around several well-known targets such as epidermal
growth factor receptor, AKT1 (RAC-alpha
serine/threonine-protein kinase), and TP53 (cellular tumor
antigen p53; Figure 5C). The functional analysis further
specified that these targets were enriched in the PI3K-Akt
signaling pathway, one of the major cell signaling pathways
involved in regulating various cellular processes such as cell

proliferation, growth, cell size, metabolism, and motility (Figure
5D). Actually, some PI3K/Akt/mTOR inhibitors have been
reported to often induce severe ADRs such as cardiac toxicity,
liver toxicity, immunosuppression, and pneumonia [40,41]. In
this regard, the discovery of novel targets or drugs for safe
cancer therapy remains a significant challenge. Similar
approaches can be applied to discover the potential risk factors
for a definite severe ADR.

Discussion

Principal Findings
ADR is more than a binary issue of occurring or not occurring;
instead, it is a multidimensional concept. For instance, a drug
may not always trigger a definite ADR in all cases of drug
therapy. The occurrence of ADR is influenced by multiple
factors such as drug dosage, treatment course, individual genetic
variation, physiological and pathological states of patients, and
so on. Moreover, different ADRs, or even the same ADR
induced in the treatment of different diseases, may exhibit
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varying impacts on patient health. In drug discovery, common
ADRs such as nausea and itching are often considered tolerable
as they are not severe. However, when it comes to combating
life-threatening diseases for which there are no available drugs,
drug candidates that may cause severe but rare ADRs may still
have a chance to enter the market. Therefore, information on
ADR severity and frequency is essential for fair characterization
of drug toxicity in humans, and a simple counting of ADRs
would be inadequate and biased for precise drug safety
assessment. To break the qualitative constraints, we take the
first step in measuring ADR severity quantitatively by learning
from the big data of historical ADE reports in this study.
Furthermore, we also estimate ADR frequency in large patient
populations by cross-mining real-world prescription records.
These attempts could be a significant leap for the community
of clinical pharmacology and toxicology, surpassing the binary
dimension of current ADR research and expanding it to a
multidimensional space. Meanwhile, these multidimensional
features can enrich the vectorized representation of ADRs,
providing machine learning applications with richer input
information on ADRs.

Limitations
This work has several limitations. The ADReCS
severity-grading system is based on the assumption that the
ADEs have been fully and unbiasedly reported to the FAERS.
However, in real-world clinical practices, clinicians tend to
report severe ADRs rather than mild ADRs. As a consequence,
the severity of serious ADRs could be overestimated. For this,
the incorporation of more ADE sources such as EudraVigilance
for severity grading and frequency estimation will partially
rectify the reporting bias. Moreover, optimization of the
ADReCS severity-grading model or deployment of new
algorithms is also desirable to improve the quantitative
characterization of ADRs.

Conclusions
In summary, quantitative estimation of ADR severity and
frequency enriches current knowledge of the clinical phenotypes
caused by drug toxicity in both depth and width. It also
addresses data gaps by providing high-quality data sets of
drug-ADR relations for multiscale drug safety assessment and
drug discovery using advanced artificial intelligence algorithms.
Last but not least, it prompts current drug safety research to
shift from qualitative description to quantitative analysis.
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